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ABSTRACT

We address a scenario where energy-constrained sensors in a
wireless sensor network can choose among different distributed
coding schemes to encode their data. We propose a framework
where the network is described as a graph, with sensors repre-
senting the nodes, and where communication and processing costs
are associated to edge weights and the coding schemes associated
to states of operation. After describing data transitions and edge
costs, we show that a shortest-path algorithm can be used to find
the optimum network configuration, i.e., the one that leads to the
lowest overall energy consumption.

1. INTRODUCTION

Wireless Sensor Networks (WSN) can offer mobility and versatil-
ity for a variety of applications, such as object detection/tracking,
environment monitoring and traffic control [1]. Still, one of the
main obstacles they face is that they often rely on batteries for
power supply; thus limiting their energy consumption becomes es-
sential to ensure network survivability.

When data is acquired at multiple correlated sources, aggre-
gation involving in-network data compression can offer a more ef-
ficient representation of measurements, significantly reducing the
amount of information that needs to be transmitted over the net-
work, leading to a potentially large reduction in energy consump-
tion. Prior work has addressed a number of distributed source cod-
ing (DSC) methods as a means to decorrelate data. While some
rely on information exchange and additional computation inside
the network to propose distributed versions of transforms, such
as Karhunen-Loève [2] and Wavelets [3], others propose schemes
that do not require internode communication, such as networked
Slepian-Wolf coding [4, 5]. In general, DSC techniques face a
trade-off between i) more processing at each node to achieve more
compression and ii) less processing which would require more in-
formation (bits) to be sent to the sink. This trade-off has also been
addressed by previous research. [6] provides an analysis on the
regions in a network that should favor compression over routing
based on the impact of spatial correlation of the measurements.
The performance of aggregation under a more general data model
is considered in [7].

However, while previous works have typically provided a num-
ber of methods to decorrelate data in a network and/or individually
analyzed their performance, to the best of our knowledge, none
have addressed the problem of finding an optimal assignment of
compression algorithms to nodes, in the sense of minimizing the
energy consumption, when different methods are available. Since
the distortion/energy consumption trade-off also depends on fac-
tors such as network topology and medium characteristics, dif-
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ferent coding methods may be better suited for different parts of
the network. These methods can consist in simple coding schemes
such as DPCM, or more complex ones, such as Wavelet transforms
with an arbitrary number of levels of decomposition.

To illustrate how the network topology can influence the per-
formance of a given coding scheme, consider a simple example,
illustrated in Fig. 1. A group of 3 sensors in an array of equally
spaced nodes (at a distance d of each other) is separated from the
sink by N hops, and might choose between two coding schemes to
decorrelate data. Method “A” is limited in terms of performance,
but requires a smaller local cost (that takes into account additional
transmissions and local computation) from the group. Method “B”
is locally more expensive energy-wise, but achieves better decor-
relation, i.e., requires fewer bits. It is easy to show that, in this
example, if the three sensors are distant more than 4 hops from
the sink, method “B” will lead to a lower energy consumption. In
general, it is expected that sensors closer to the sink should bene-
fit from coding schemes that offer smaller local cost, while sensors
that are far from the sink should encode using schemes that require
a smaller average number of bits per sensor for a given distortion.
A similar conclusion is reached in [5].
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Fig. 1. (a) Method “A”: a simple encoding scheme is used; 12 bits are sent
to the sink. (b) Method “B”: a locally more expensive method is used, but
better compression is achieved; 10 bits need to be forwarded to the sink.
The cost of transmitting k bits over a distance d was computed as kd2.

In [8, 9] we introduced energy-aware distributed wavelet com-
pression algorithms for WSN [8] and introduced a partial coeffi-
cient approach based on the lifting implementation [9]. Our goal
was to generate the wavelet transform coefficients at the sensors, at
the expense of a little extra energy spent with a few “local” trans-
missions, i.e., data transmissions between neighboring nodes that
are needed to actually compute the wavelet transform coefficients,
since the transform operates by filtering “across nodes”. If the
original data has sufficient spatial correlation, after quantization
the wavelet coefficients can represent the original measurements
using fewer bits, and the overall energy consumption in the net-
work is lowered by reducing the amount of information that has
to be transmitted. Our proposed partial coefficient approach [9]
essentially allows all wavelet transform operations to be causal, in
the sense of that data is processed as it is being forwarded to the
central node, so that only data from nodes already traversed is used



to compute the wavelet coefficients. This requires the computation
and quantization of “partial” coefficients, which are transmitted
over a few hops, before being used to generate the final wavelet
coefficients. In future discussions, we refer to partial coefficients
as the coefficients that were computed at a node with insufficient
data, and still need to be refined at other nodes until they become
final, or full coefficients.

In this work, we consider networks where each sensor can
use one of several different compression schemes, which include
wavelet transforms with different number of levels of decompo-
sition, or simpler approaches, like raw (quantized) data transmis-
sion or DPCM. We provide a framework that allows finding, for a
given network topology, which among the available coding meth-
ods is more suitable for each of the sensors, such that the whole
network operates with a minimum cost to achieve a desired dis-
tortion level. Our method is flexible enough to accommodate any
network configuration (topology). We believe that the basic prin-
ciples of our approach could be applied to other data representa-
tion selection among other sets of coding schemes (i.e., not lim-
ited to wavelets) that operate by exploiting spatial redundancy (in
methods that do not involve data exchanges between nodes in the
compression process, the optimization becomes straightforward).
However, the exact formulation of the optimization problem, and
the suitability of dynamic programming techniques to solve it, will
depend on the specific algorithms involved.

This paper is organized as follows. In Section 2 we introduce
the proposed framework, and describe states, transitions and costs
for the state machine considered. Section 3 provides simulation
results. We conclude the paper with a summary in Section 4.

2. PROPOSED FRAMEWORK

In this paper, we assume that a sensor network acquires measure-
ments from a correlated data field. We consider data aggregation
(compression) along a 1-D path from an edge to the sink (Fig. 2).
This path is assumed known, which implies that a routing algo-
rithm has been applied to the network first. Each sensor is as-
signed a number n, starting from the edge. The network topology
(internode distances) is known, and each node in the 1-D path can
operate using a coding scheme chosen from a predefined set of
available coding schemes. In this paper, available schemes are dis-
crete wavelet transforms with using the same filterbank but with
different number of levels of decomposition: when the number of
levels decomposition is increased, the potential compression effi-
ciency also increases (if data is highly correlated across sensors),
but at the cost of more local information exchange (because data
from more nodes is needed to compute some of the wavelet coef-
ficients).
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Fig. 2. 1-D path with M nodes to the sink.

Since the wavelet transform is critically sampled, the number
of wavelet coefficients generated is equal to the number of nodes.
Using the partial coefficient approach [9], the wavelet coefficient
corresponding to node n is computed in steps: at node n a partial
version of the coefficient is first generated, which becomes a full
coefficient as it “incorporates” additional data from future nodes
(i.e., nodes closer to the sink). The number of hops required until
a partial coefficient becomes full depends on the specific transform
filters being used, refer to [9] for details.

2.1. Problem Description

In order to find the best coding scheme for each of the sensors, we
propose representing the network as a graph. Figure 3 illustrates

the graph associated to a 1D path including M + 1 sensors (the
last being the sink), where each sensor can use one of three avail-
able coding schemes. Each edge in the graph reflects a possible
transition from one coding scheme to another, and has an asso-
ciated weight that represents the transmission cost to continue in
a determined scheme or the extra processing/transmission cost to
change coding schemes. Each possible path in the graph is associ-
ated to one choice of coding scheme for each node in the routing
path from a leaf to the sink.

Let cn(i, j) be the cost of the transition from method i at node
n to method j at node n + 1, n = 1, . . . , M , where i, j ∈ S =
{A, B,C, . . .}, with A, B, C, . . . representing the coding schemes
considered. Let ln(i) denote the local processing cost for sensor
n to encode its data using coding scheme i. Our goal is to find
the sequence {i1, i2, . . . , in, . . . , iM} of coding schemes associ-
ated to each of the nodes such that

�
n(cn(in, in+1) + ln(in)) is

minimum.
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Fig. 3. Sensor network seen as a graph. Each sensor is a node that can be
in one state of operation, associated with a coding scheme (A, B, C) and
a position in the network. Edges correspond to transitions between states,
and have transmission and processing costs (weight) associated to them.

We assume that the coding schemes in Figure 3 consist in
wavelet transforms with progressively larger number of levels of
decomposition, and that as a node gets closer to the sink it can
only choose between staying on the same scheme as the previous
node or encoding its data using a simpler scheme, specifically one
that uses one fewer level of decomposition than the current node.
These constraints limit the number of possible transitions in the
graph, as illustrated in Figure 4. As motivated by the example in
Section 1, the intuition behind this limitation is that as nodes get
closer to the sink, simpler coding schemes tend to be more effi-
cient energy-wise. This idea can also be linked to results obtained
in [5], where the authors addressed the problem of joint rate alloca-
tion and transmission structure optimization for sensor networks.
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Fig. 4. Data transitions for partial coefficient approach.

We can now describe the state and transitions for the state ma-
chine of Figure 4) based on the partial coefficient approach.

2.2. State Description

A state can be described by two parameters: the node’s position in
the 1-D path to the sink (n), and the coding scheme being used (j).
We can define the following quantities of interest:

• dn: distance to next node;

• Rn,j : rate allocation for coefficient at position n encoded
with j-levels of decomposition;



• D2
n: cost to forward one bit to the sink. If we assume

the cost to send k bits over d meters is kd2, then D2
n =� M

k=n
d2

k (sum of cost for each hop to the sink).

2.2.1. State I/O

Each state in the graph corresponds to a series of computations that
depend on the node and coding scheme represented by the state.
Specifically, if a node is at position n and is encoding data using
a wavelet transform with j levels of decomposition, it is respon-
sible for generating the j-level partial coefficient corresponding to
node n and refining any previous partials that were also encoded
with j-levels of decomposition and depend on the measurement at
position n to be fully computed (Fig. 5).
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+ new partial
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Fig. 5. State I/O.

2.2.2. State Costs

Each state adds to the current path cost the computational costs
associated to i) the corresponding partial coefficient generation and
update and ii) the cost of forwarding the any new full coefficients
to the sink. The computational costs are calculated in terms of
the number of multiplications required, and depend on the specific
state considered, while the transmission cost is given by Rn,jD

2
n.

2.3. Transition Description

We can take advantage of the embedded nature of the wavelet
transform structure (octave tree) to calculate the overhead involved
in changing the number of levels of decomposition in the trans-
form. In particular, we know that the transform coefficients gen-
erated by a wavelet transform with j − 1 levels of decomposi-
tion can be obtained from those generated with j levels. There-
fore, if W j

n corresponds to the set of wavelet coefficients for all
nodes up to n for the j-th level of decomposition, we can say that
· · · ⊂ W j−1

n ⊂ W j
n ⊂ W j+1

n ⊂ · · · . The information that is con-
veyed in each of the transition scenarios corresponding to different
branches of the state machine can be seen in Figure 6.
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Fig. 6. Data transitions for partial coefficient approach.

2.3.1. Transition Costs

In order to minimize impact of quantization, partial coefficients
are quantized using N more bits than the corresponding full co-
efficients [9] (a typical value for N for the application considered
is N = 3). Assume that a given state (n, j) receives P (n, j)
partial coefficients from the previous node. Figure 7 shows the
state and edge transmission costs. Since partial coefficients are
only forwarded during a few hops, the transmission cost for those
N extra bits is only added to the branch costs corresponding to

transmission of these partials (the cost for the full coefficient was
incorporated at the state where they were generated). If the next
node maintains in the same coding scheme, partials for that level
will be refined, and the transmission cost added to the path cost
considers only the current hop length. However, if the next node is
encoded using a simpler scheme, the partials from the higher level
of decomposition will not be further refined (they will be sent as
they are to the sink), and the cost of forwarding the N extra bits
related to unprocessed partials to the sink is added to the path cost.
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Fig. 7. State and edge transmission costs.

In addition to the transmission costs depicted in Figure 7, when
there is a change in coding schemes a, typically small, processing
cost is added to the branch to reflect a few extra operations the
node has to perform to extract the lower level coefficients from the
higher level ones.

2.4. Path Optimization

The partial coefficient approach guarantees that any computation
at any given node requires only data from previous nodes. Also,
due to the wavelet property discussed in Section 2.3, any node al-
ways has access to the past coefficients it needs to compute its own
partial coefficient regardless of whether the data it is receiving was
generated from the same coding scheme or from one with a larger
number of decomposition levels. As a result, transition costs de-
pend only on the present state: the physical position of the node
in the network and the coding scheme being used, and, since the
output of a node (its coefficient) is the same regardless of the pre-
vious path, costs up to a particular node do not influence the cost
for a future transition. Therefore, choosing a best path arriving
to a specific state does not eliminate optimal paths, and so a path
that minimizes the path metric (lowest cost) can be found using a
shortest-path algorithm. At each stage n of the decision, the algo-
rithm computes the best transition coming into each state at that
stage by computing the metrics of all the possible paths coming
into the state, and then selecting the path with the minimum metric
as the survivor path coming into that state. At the last stage, the
survivor path with the minimum path metric is selected as the op-
timum path. Since each state describes the coding scheme used at
each of the nodes, the optimum path also provides the optimal se-
lection of coding schemes for each sensor in the network, such that
the energy consumption is minimized. A more detailed description
about dynamic programming and the shortest-path algorithm can
be found in [10].

3. PERFORMANCE EVALUATIONS

For the simulations, we considered two different simple network
configurations. We compared our optimization technique to solu-
tions where the same coding scheme is used for all nodes in the
network. This was done with the three available coding schemes.
The coding schemes considered are raw (quantized) data transmis-
sion, wavelets with one level of decomposition, and wavelets with
two levels of decompositions.

The input process data was created using a second order AR
model, with poles placed such that a reasonably smooth output
would be generated from white noise (poles were at 0.99e±j π

64 ).
Figure 8 shows the energy consumption of different single-scheme



methods (only one coding scheme for the whole network) at dif-
ferent distortion levels, in a network with 3 clusters of 5 sensors
each (internode distance of 2m, intercluster distance of 37m).
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Fig. 8. Energy consumption comparison between methods with 3 clusters
of 5 sensors each.

For this network, the optimum configuration such that energy
consumption is minimized, obtained by the proposed dynamic pro-
gramming framework is shown in Fig. 9.
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Fig. 9. Optimum network configuration obtained for simulation in Fig. 8.

Figure 10 shows the energy consumption of different single-
scheme methods at different distortion levels, in a network with 1
cluster of 30 sensors (internode distance of 1m).
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Fig. 10. Energy consumption comparison between methods with 1 cluster
of 30 sensors.

For this network, the optimum configuration obtained by the
proposed dynamic programming framework is shown in Fig. 11.

Although the results suggest changes for just a few sensors
when compared to the best single-scheme method, in general, such
a behavior cannot be predicted beforehand. Also, as seen in Fig-
ures 8 and 10, different single-scheme methods perform differently
for different network configurations. Network performance can
be affected by a number of factors like the coding schemes be-
ing used, network topology, number of sensors, medium proper-
ties, data correlation, just to cite a few. Thus, a single-scheme
approach might not necessarily result in the near-optimal perfor-
mance. Optimization still proves to be necessary to point out the
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Fig. 11. Optimum network configuration obtained for simulation in
fig. 10.

configuration that will lead to the lowest energy cost. For the sim-
ulated case shown in Figures 8 and 10, for same distortion levels,
the optimum network consumed around 6% less energy than the
best single-scheme method (1-lvl wavelet for Figure 8 and 2-lvl
wavelet for Figure 10) and around 32% less energy than simple
raw (quantized) data transmission.

4. CONCLUSION

We have proposed a dynamic programming framework that can
be used to assign coding schemes to each of the nodes in a WSN
such that the energy consumption in the network is minimized.
This algorithm is flexible enough to accommodate any network
configuration, and could also be used as a benchmark to evaluate
the relative performance of fast heuristics. Simulation results have
shown that different coding algorithms can perform very differ-
ently (in terms of distortion and energy consumption) depending
on a number of factors like network topology, medium properties,
and data correlation, and that the proposed methodology provides
a framework that can be used to minimize energy consumption in a
WSN by efficiently assigning different coding schemes to different
regions of the network.
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