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ABSTRACT

Model selection and feature selection are usually considered two
separate tasks. For example, in a Linear Discriminant Analysis (LDA)
setting, a modeling assumption is typically made first (e.g., a full or a
diagonal covariance matrix can be chosen) and then with this model
the feature subset providing the best prediction performance is se-
lected. If limited training data is available, then the number of para-
meters of a model that can be reliably estimated will also be limited.
In the context of LDA, model selection basically entails simplifying
the covariance matrix by setting to zero some of this components.
This leads to different block diagonal matrix structures (e.g., full /
diagonal) which involve different sets of features and require differ-
ent parameters to be estimated. In this paper we argue that LDA fea-
ture and parameter selection should be done jointly; and we propose
a greedy algorithm for joint selection of features and of a block di-
agonal structure for the covariance matrix. To the best of our knowl-
edge this is the first time such a joint design has been proposed in
the context of LDA. The choice of a block diagonal structure is mo-
tivated by microarray classification problems, where we have a very
large amount of features, i.e., genes, that are expected to be corregu-
lated in small groups. Results obtained with artificial datasets show
that the algorithm can flexibly choose an adequate covariance matrix
structure according to the size of the training set and the generating
distribution. Our results consistently outperform those achieved with
other LDA based techniques.

1. INTRODUCTION

In statistical pattern recognition problems, Bayes decision techniques
provide optimal classification performance as long as the distribution
of the samples is known[1]. In many practical cases, these distrib-
utions are not known and they must be learned from training data.
We focus on the case where the training data is in fact very limited,
as compared to the number of features. In particular our work is
motivated by classification in the context of genomic applications.

Consider the process of selecting the right model to represent the
training data. Two steps are involved: a model has to be selected and
then parameters of the model have to be estimated. Because only
limited training data is available, we argue that these two steps have
to be performed jointly in order to achieve better performance.

To illustrate why, consider two extreme cases. First, if we select
a relatively simple model structure (and correspondingly few para-
meters) the overall model estimation variance will be low, but the
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risk is that the model oversimplifies the characteristics of the train-
ing data, thus leading to large model bias. Conversely, if we choose
a relatively complex model, a better match to the underlying training
data characteristics may be achieved, but the small training set leads
to increased model variance. Thus the optimal performance will be
given for a certain bias/variance trade-off, which has to be found in
the process of model selection (see Chapter 7 in [2]).

In this paper we focus on Linear Discriminant Analysis (LDA)
techniques. These assume that samples have a multivariate normal
distribution, where each class has its own vector mean but all classes
have a common covariance matrix. Thus, in the most general case
we need to estimate class vector means and the covariance matrix.
Clearly, an LDA approach is only feasible when the number of train-
ing samples, n, is much larger than the number of features, p, other-
wise the covariance matrix will be ill-conditioned (Chpt. 3 [1]).

When n and p are comparable, different authors [3] have pro-
posed a regularized solution for the problem by assuming some struc-
ture in the covariance matrix (e.g., a diagonal covariance matrix).
This has the advantage of reducing the number of parameters that
need to be estimated (only diagonal terms). However, when n is
much smaller than p regularization alone is not enough to achieve re-
liable classification and it is necessary to further simplify the model
by discarding features, i.e., by selecting a reduced feature set. Fea-
ture selection is in fact almost always needed in the context of mi-
croarray genomic classification, where p is in the order of tens of
thousands of genes while n corresponds to a few hundred tissue sam-
ples. Taking cancer as an example, it is typically expected that only
a few genes will be associated with the disease. Thus, feature (i.e.,
gene) selection serves the dual purpose of i) reducing the effect of a
small training set on classification performance, and ii) identifying
concrete genes that are more likely to be associated with the disease.

There are three major approaches to classifier design and feature
selection [4]; namely, (i) filter, (ii) wrapper, and (iii) embedded. In
filter approaches, features are first ranked using a statistical score,
such as a t-test. Then the classifier is built by selecting the high-
est ranking features. This is the most popular method in microarray
classification problems, due primarily to its simplicity. Note, how-
ever, that it completely ignores interactions among genes.

In wrapper approaches [5] a classifier is constructed with dif-
ferent candidate feature subsets, the performance is measured (us-
ing, for example, cross validation), and finally the feature subset that
achieves the maximum performance is chosen. This is a combina-
torial optimization problem and a full search would be very com-
plex, requiring 2p different evaluations , and prone to overfitting.
For this reason, only greedy search strategies using different heuris-
tics are feasible. In the context of microarrays and LDA, wrapper
approaches have been proposed using full [6] or diagonal [7, 8] co-
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Table 1. Sequential generation of candidate covariance matrix models for LDA. Starting with an empty list, we add one feature at a time
(namely, the one that maximizes a statistical score) using two possible operations: (i) Block expansion (solid lines), where a new feature is
added to an existing block grouping already chosen features in the correlation structure. (ii) Independent feature addition (dashed lines),
where a feature is added ignoring correlations (i.e., independent of existing blocks of variables in the correlation structure). The best among
all these models is selected using crossvalidation.

variance matrices and different search strategies.

Finally, embedded approaches [9] consider jointly the classifier
design and the feature subset selection. This is in contrast to the
wrapper approaches that consider the classifier as a black box that
induces a prediction rule once the feature subset is chosen. Guyon
et al. proposed an embedded approach[10] for Support Vector Ma-
chines. To the best of our knowledge no embedded design tech-
niques have been proposed in the context of LDA.

In this paper we present a novel LDA embedded approach for
joint feature and model selection. In the LDA context model selec-
tion is essentially a choice of a structure for the covariance matrix.
Thus a simple method would perform feature selection for both di-
agonal and a full covariance matrix structures and pick the best of
them. In a diagonal model, the number of parameters to estimate, l,
equals p, while in a full matrix l = 1

2
p (p + 1). We propose to fur-

ther increase the number of available models by including a whole
range of block diagonal matrix structures, as shown in Table 1.

Applying the bias/variance tradeoff principle in this setting im-
plies that the more parameters we estimate the less bias we will have,
but at the cost of increasing the variance. For this reason, the LDA
performance is limited primarily by the number of parameters to es-
timate (rather than by the number of features). We use this insight
to develop novel efficient techniques to embed feature and model
selection, which are based on searching for the best feature set and
covariance model for a given number of parameters.

Thus, for a given number of parameters, more features can be
used with a diagonal covariance model than with a full covariance
matrix, but correlation among features will be completely ignored.
For uncorrelated features this model will perform best, but there
might be correlations present that could be exploited to get better
performance with fewer features. Exploring all possible feature sub-
sets and possible block diagonal structures is not feasible. Thus, we
propose a sequential greedy algorithm, SeqBDLDA, for finding at the
same time a feature subset and a block diagonal structure.

This paper is organized as follows, in Section 2 we present our
proposed greedy algorithm, SeqDBLDA, in Section 3 the algorithm
is evaluated and compared to two related methods, and finally in
Section 4 we draw our conclusions.

2. GREEDY FEATURE AND MODEL SELECTION FOR
BLOCK DIAGONAL LDA

Linear Discriminant Analysis (LDA) [1, 2] for two classes is defined
by a linear function g(x) called discriminant that partitions the fea-
ture space into two regions:

g (x) = wtx− b

� ≥ 0⇒ ClassA
< 0⇒ ClassB

(1)

where x is the feature vector of the sample to classify, w is a vector
of weights orthogonal to the hyperplane that jointly with the scalar b
define the decision boundary g(x) = 0.

If the class conditional distribution is multivariate normal —
fA (x) ∼ N (mA,K), fB (x) ∼ N (mB, K) —, then the optimal
parameters in the decision rule (1) are:

w = K−1d d = mA −mB (2)

b = ln
�

πA
πB

�
−wt 1

2
(mA + mB) (3)

We consider cases where the mean vectors mA, mB ; the co-
variance matrix K; and the prior class probabilities πA, πB have
to be estimated from training data. If we use the maximum likeli-
hood (ML) estimators then ŵ coincides with the Fisher canonical
variate computed as the direction which maximizes covariance be-
tween/within ratio [2]:

JK̂ (w) =
(d̂tw)2

wtK̂w
(4)

ŵ = arg max
w

JK̂ (w) = K̂−1d̂ (5)

Our proposed greedy algorithm for feature and model selection
(see Algorithm 1), adds features to the model sequentially, one at
a time. The process starts by selecting the best feature measured
with the J score of (4). Then, at each stage, we have two options: i)
adding another feature to be considered independent of all previously
selected features, thus leading to a new block in the block-diagonal
structure, and ii) growing the current block in the matrix structure
by adding one more feature to it. These two options are marked with



dashed and solid line, respectively, in Table 1 and can be used al-
ternatively to produce feature subsets with different block diagonal
covariance structures. In both operations the current set of features,
A, is “inherited” from the parent node; in order to determine which
is the best new feature for a given structure we use the scoring pro-
cedure discussed in Section 2.1. After obtaining one feature subset
Am for each of the models in Table 1, we are interested in finding
which is the more reliable model if the number of parameters is lim-
ited. To do so we use leave-one-out cross-validation (see Section
2.2).

Algorithm 1 Greedy feature subset and model construction

1: Create first model with best feature: i = arg max
j∈S

dj

σj

2: for all Model m in Table 1 do
3: A ← Feature set of the parent node
4: j∗ ← ADDFEATURE(A,m) � Find the best feature to add

5: Am ← A∪ {j∗}
6: εm ← EVALUATEMODEL(Am,m) � Using crossvalidation

7: end for
8: l← Number of parameters
9: m∗ ← arg max

m:|m|=l
εm � Find the best model with l parameters

2.1. Feature addition scoring procedure

Assume that we have already chosen a subset of features A, with
sample covariance matrix K̂A and difference of sample means d̂A.
Then, from (2) the LDA classifier with a model m is constructed
using the following weights:

wA = K̂−1
A,md̂A, (6)

where K̂A,m is obtained from K̂A by zeroing out those terms that
are zero in model m (see examples in Table 1). Then, using (5),
the best new feature to add to the model j ∈ AC (where AC is the
complement of A in the original feature set) will be:

j∗ = arg max
j∈AC

�
d̂t
Aj

wAj

�2

wt
Aj

K̂Aj wAj

Aj = A∪ {j} (7)

In our greedy procedure, the new feature is always added in the
lower right corner of the matrix, either as an independent block (i.e.,
ignoring correlations), or by increasing the size of the lower right
block by one. In finding the best feature, significant computational
savings can be achieved by exploiting the block structure of the ma-
trix in (6), and the fact that only certain blocks in vectors and matri-
ces in (7) change with j.

2.2. Model selection with cross-validation

Since we used the J score (4) to guide the search for the feature
subset we cannot use it to decide which model to select. This is be-
cause it is a biased estimate of performance of the classifier that can
be used to compare alternative models with same number of para-
meters and features, but does not provide a reliable way to compare
models with different structures. Cross-validation [2] is an unbiased
procedure to estimate the probability of error of a classifier. In leave-
one-out crossvalidation, one sample is left out and we train with the
remaining n − 1 samples. Then the sample that has been left out is
classified. The entire training procedure is repeated n times for each

of the samples and the error rate εm is estimated as the total number
of misclassified samples divided by n. In our case, if the number of
parameters is limited to l, we will select the model in the column l
of Table 1 with the lowest cross-validation error.

2.3. Relationship with other LDA methods and applications

Table 1 contains several models that have been proposed in the liter-
ature: models “grown” by following only solid lines, correspond to
“full matrix” LDA with forward feature selection (SeqLDA, [6]). Al-
ternatively models grown by following only dashed lines correspond
to forward selection using the Diagonal LDA (SeqDLDA, [7, 8])
model. Thus both “full matrix” LDA and SeqDLDA are part of the
space of solutions being searched. Note also that if some a priori
knowledge was available about the structure of the covariance ma-
trix this could be exploited to reduce the complexity of the search
by removing some of the paths in Table 1 from consideration. For
example, if it is believed that features will tend to be correlated in
small groups, it is very easy to set limits on the maximum size of the
blocks to be explored by our algorithm.

3. EXPERIMENTAL RESULTS

We have extensively analyzed our algorithm with artificial data for
two basic reasons. First this allows us to control the covariance ma-
trix and so evaluate the ability of the algorithm to select a model
close to actual one. Second, evaluation is simplified, since for a
given LDA-trained model we can exactly compute the probability of
error without having to estimate it.

The training data is generated by drawing n samples with distri-
butions fA (x) ∼ N (mA, K), fB (x) ∼ N (mB ,K). The two ba-
sic generating parameters are K, and d = mA −mB . We have ex-
perimented with several covariance matrix structures and randomly
permuted the features, so that in general two contiguous features are
not necessarily correlated. In the experiments presented here d was
fixed so that the SNR of the features is exponentially decreasing
with parameter γ:����dj

σj

���� = e−γj �
σ2

j

�
j

= diag (K) (8)

The number of features that will be optimal for the classifier will
usually be between 1/γ and 4/γ approximately, increasing with the
sample size n and decreasing with p. When n and p are constant, if γ
is small, a large number of features will be required for the classifier
and a diagonal matrix model will be preferred over a full matrix one.

After training the weight vector w, the probability of error is

Pe|w = 1− Φ

�
1

2

�
JK (w)

1 + 1/n

�
JK (w) =

(dtw)2

wtKw
(9)

where Φ(x) is the standard normal cumulative distribution function
and 1 + 1/n takes into account the cost of estimating the b parameter
in (1). We repeat the training and evaluation T times and the average
Pe is estimated as:

P̂e =
1

T

T	
t=1

Pe|ŵt (10)

These results are reported for our proposed algorithm (SeqB-
DLDA) along with the two related not embedded methods SeqDLDA
and SeqLDA described in Section 2.3. Finally, 95% confidence in-
tervals asses the statistical significance of our findings.



3.1. Toeplitz symmetric covariance matrix

A Toeplitz symmetric matrix arises from AR processes, in which
contiguous features are locally correlated. This is exploited by sev-
eral classifying algorithms [3], which will, however, fail if the fea-
tures are permuted. Our proposed algorithm avoids this problem
since it is invariant to feature permutation. This comes indirectly
from our original design assumption that no prior knowledge exists
about correlation between features.

In our experiments the more diagonally dominant the matrix is,
the better the diagonal model will be. While if the training data
is limited, the full-matrix approach quickly fails as we increase the
number of parameters. Figure 1 illustrates this with the following
covariance matrix:

K =
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Fig. 1. Classification performance for p = 200, n = 120, K as in
(11), γ = 0.2. Solid and dotted lines represent the mean P̂e and its
95 % confidence interval for 100 trainings.

3.2. Block diagonal covariance matrices

We have tested our algorithm with block diagonal matrices. Figure
2 shows the results for the following covariance matrix structure:

K =



��

A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 D



�� (12)
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Fig. 2. Classification performance for p = 200, n = 60 (thin
line),120 (thick line), K as in (12) , γ = 0.1. Solid and dotted
lines represent the mean and its 95 % confidence interval for Pe of
100 trainings

Figure 2 shows that when training data is very limited, e.g.,
n = 60, a diagonal structure (SeqDLDA) outperforms a full ma-
trix approach (SeqLDA), while as n increases the full matrix ap-
proach becomes better. Our technique approach is able to choose
SeqLDA or SeqDLDA for number of parameters for which these
perform well, and is also capable of choosing intermediate block-
diagonal alternatives that outperform both of them in other cases.

4. CONCLUSIONS

This paper proposes a new method for performing Linear Discrimi-
nant Analysis in which the feature subset selection, and the covari-
ance matrix structure, are jointly selected. The proposed approach
is greedy but it is computationally feasible and can be seen to out-
perform existing LDA-based techniques. Furthermore, among the
models explored by our approach are two standard techniques: Se-
qDLDA [7, 8] and SeqLDA [6]. When one of these techniques pro-
vides the best performance, our algorithm is capable of selecting the
corresponding model among the solutions it searches. In general we
are capable of outperforming these two standard techniques. Fur-
ther work will explore different methods of guiding the search and
deciding which feature subsets to explore, e.g., by using compound
operations [5] in which more than one feature added at each iteration
in order to speed up the search.

5. REFERENCES

[1] Richard Duda, Peter Hart, and David Stork, Pattern Classification, John Wiley and Sons, 2001, 0-471-05669-3.

[2] Trevor Hastie, Robert Tibshirani, and J. H. Friedman, The Elements of Statistical Learning, Springer, July 2001.

[3] J. H. Friedman, “Regularized discriminant analysis,” Journal of the American Statistical Association, vol. 84, pp.
165–175, 1989.

[4] Isabelle Guyon and André Elisseeff, “An introduction to variable and feature selection,” Journal of Machine Learn-
ing Research, vol. 3, pp. 1157–1182, 2003.

[5] Ron Kohavi and George H. John, “Wrappers for feature subset selection,” Artificial Intelligence, vol. 97, no. 1-2,
pp. 273–324, 1997.

[6] M Xiong, W Li, J Zhao, L Jin, and E Boerwinkle, “Feature (gene) selection in gene expression-based tumor
classification.,” Mol Genet Metab, vol. 73, no. 3, pp. 239–47, 2001.

[7] Trond Bo and Inge Jonassen, “New feature subset selection procedures for classification of expression profiles.,”
Genome Biol, vol. 3, no. 4, pp. RESEARCH0017, 2002.
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