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ABSTRACT

In this paper, we propose a distributed source localization algorithm
based on the Maximum A Posteriori (MAP) criterion, where the ob-
servations generated by each of the distributed sensors are quantized
before being transmitted to a fusion node for localization. If the
source signal energy is known, each quantized sensor reading corre-
sponds to a region in which the source can be located. Aggregating
the information obtained from multiple sensors corresponds to gen-
erating intersections between the regions. In our previous work we
developed quantizer design techniques aimed at optimizing localiza-
tion accuracy for a given aggregate rate. In this paper we develop
localization algorithms based on estimating the likelihood of each
of the intersection regions. This likelihood can incorporate uncer-
tainty about the source signal energy as well as measurement noise.
We show that the computational complexity of the algorithm can be
significantly reduced by taking into account the correlation of the
received quantized data. We also propose a technique, based on a
weighted average of estimators, to address the case when the signal
energy is unknown. Our simulation results show that our localization
algorithm achieves good performance with reasonable complexity as
compared with Minimum Mean Square Error (MMSE) estimation.

1. INTRODUCTION

Source localization algorithms have been proposed for distributed
sensor networks operating with different sensor types, e.g., acoustic,
seismic or thermal. Because the sensors tend to have limited power
and the fusion node can be physically separate from the sensors, the
efficiency of a localization algorithm should be assessed in terms of
both its accuracy and the amount of bandwidth it requires. Thus,
practical systems will normally have to operate using quantized sen-
sor readings in order to reduce bandwidth. In our work we have
focused on (i) quantization techniques that are optimized for local-
ization and (ii) localization algorithms that take into account the fact
that only quantized measurements are available.

Source localization based on acoustic energy measured at individ-
ual sensors is proposed in [5], where each sensor transmits unquan-
tized acoustic energy readings to a fusion node. The localization
problem has been solved mostly through nonlinear least squares es-
timation (see [5], [6]), which is sensitive to local optima and saddle
points. To overcome this drawback, the authors in [2] formulated this
problem as a convex feasibility problem. None of these approaches
take explicitly into account the effect of sensor reading quantization.

In this paper, we extend our work in [4, 3], which focused on

quantizer optimization for source localization, and propose a dis-
tributed source localization algorithm that uses the Maximum A Pos-
teriori (MAP) criterion. First, consider the localization problem un-
der the assumptions of no measurement noise and known source sig-
nal energy. In this scenario, the only source location uncertainty
is due to quantization. Because the source signal energy is known,
each quantized reading can be mapped to a region in the sensor field,
whose shape depends on the characteristics of the sensor. For the
case of an acoustic sensor that provides no directional information,
the region corresponding to one quantized reading is a “ring” cen-
tered at the sensor location (see Figure 1). Since the measurements
are assumed to be noiseless we expect the source to be located in
the intersection of all the ring regions, one generated by each sensor.
A vector of readings (one per sensor) will correspond to a unique
location and, after quantization, there will be a unique (non-empty)
intersection region (as shown in Figure 1.) Here, efficient quantizer
designs seek to minimize the average area of all admissible intersec-
tions [4, 3]. Our previous work assumed low measurement noise and
known source signal energy and used heuristic techniques for esti-
mation in cases when quantized sensor readings were “inconsistent”
(i.e., when intersections were empty).

Clearly, localization becomes more difficult when measurement
noise is not negligible and/or the source signal energy is not known;
these situations make it more likely that vector readings will lead to
regions whose intersection is empty. Also, quantized sensor read-
ings may change over time, even if the source does not move. To ad-
dress these problems we use a probabilistic formulation, where we
model the likelihood that a given candidate source location would
produce a given vector reading. In this context, we first formulate
the source localization problem as a Minimum Mean Square Error
(MMSE) estimation problem; this approach generally has signifi-
cant computational complexity, especially for the non-Gaussian case
considered in this paper. We show that the complexity can be sig-
nificantly reduced by taking into account the quantization effect and
the distributed property of the quantized data, without significant im-
pact on localization accuracy. Based on this, under the assumption
of known source signal energy we propose a distributed algorithm
based on the MAP criterion. We then show that for the unknown
source signal energy case, a good estimator of the source location
can be found by computing a weighted average of the estimates ob-
tained by our MAP-based algorithm under different source energy
assumptions. Simulation results show that our distributed localiza-
tion algorithm achieves good localization performance with reason-
able complexity, as compared with MMSE estimation.

This paper is organized as follows. The problem formulation is



Fig. 1. Source Localization based on quantized energy readings

presented in Section 2. Our distributed source localization algorithm
is presented in Section 3 and its implementation is discussed in Sec-
tion 4. The case of unknown source signal energy is treated in Sec-
tion 5. Simulation results are given in Section 6.

2. PROBLEM FORMULATION

Consider a sensor fieldS ∈ R2 containingM nodes that measure
an acoustic signal emitted from a source assumed to be static during
the localization process. By adopting the energy decay sensor model
proposed in [5], we assume that the signal energy measured at node
i over a time intervalk can be expressed as follows:

zi(x, k) = gi
a

‖x− xi‖α
+ wi(k), i = 1, ..., M (1)

wherezi is the acoustic energy reading at nodei, x the source loca-
tion, andxi the position of nodei. Note thatx, xi ∈ R2. The model
parameters consist of the gain factor of thei-th sensorgi(≈ 1), an
energy delay factorα(≈ 2), and the source signal energya. We
assume that the measurement noisewi(k) is independent ofx and
can be approximated by a normal distributionN(0, σ2

i ). The signal
energya in (1) is assumed to remain constant during the localiza-
tion process and to be in the range[amin amax]. We also assume
that the positions of all nodes are known and each node collects its
noise-corrupted energy reading,zi(x, k) at time intervalk, quan-
tizes it with a given quantization levelLi, and sends it to a fusion
node. Source localization is performed at the fusion node, based
on the received noisyM -tuple,Qr = (Q1, ..., QM ), whereQi is
the quantization index sent fromi-th node. In what followsQi will
be used to denote both a quantization indexQi ∈ {1, ..., Li} and
the quantization interval,[Qi,l Qi,h], corresponding to noisy mea-
surementzi at nodei. Throughout the paper we assume that there
is only one-way communication from sensors to fusion node, i.e.,
there is no feedback channel and the sensors do not communicate
with each other; we also assume that the fusion node receivesQr

without transmission error.
Consider first the case of a known source signal energy,a and no

measurement noise (wi = 0 in (1)). Localization based on quantized
energy readings is illustrated by Figure 1, where at least three energy
readings are required to achieve a connected intersection. More for-
mally:

A =

M⋂
i=i

Ai, Ai = {x : gi
a

‖x− xi‖α
∈ Qi}, (2)

whereAi is the ring-shaped area corresponding toQi obtained from
zi (Figure 1). Letp(x) be the pdf associated to our a priori knowl-
edge about the source location. Then the MMSE estimate of the
source location in the noiseless case would bex̂ = E(x|x ∈ A). If
p(x) is uniformx̂ would simply be the sample mean inA.

Consider now the case where there is measurement noise and/or
the source signal energy is unknown. There is no guarantee that ob-
taining the intersection of the quantized readings will lead to the true
intersectionA. Assuming the statistics of the measurement noise,
wi, are known, we can formulate the source localization problem as
an MMSE estimation problem as follows:

x̂ =

∫

x∈S

xp(x|Qr)dx =

∫

x∈S

xp(Qr|x)p(x)/p(Qr)dx

=

∫
x∈S

x[
∏M

i=1

∫
zi∈Qi

p(zi|x)dzi]p(x)dx

p(Qr)
, (3)

wherep(Qr) =
∫

x∈S
[
∏M

i=1

∫
zi∈Qi

p(zi|x)dzi]p(x)dx. The con-

ditional probabilityp(zi|x), i = 1, ..., M in (3) can be obtained
using the sensor model in (1) along with a probabilistic character-
ization of a (e.g., its pdf): that is,p(zi|x) =

∫
a

p(zi|x, a)p(a)da

wherep(zi|x, a) is normal distribution,N(gi
a

‖x−xi‖α , σ2
i ). When

p(zi|x) andp(x) are available (3) provides the MMSE estimator,
which allows us to take into consideration optimally the unknown
signal energy and the measurement noise. However, estimatingx̂ as
in (3) is highly complex and results may be sensitive to accuracy of
the a priori modelsp(x) andp(a). In this paper, we use an unin-
formative or uniform prior distribution whenever there is ignorance
about the parameters to be estimated, since this allows us to obtain
the posteriori distribution which will be approximately proportional
to the likelihood. In addition, the uninformative prior has another
advantage of keeping subsequent computations relatively simple. In
the following sections, we focus on developing our localization al-
gorithm.

3. PROPOSED LOCALIZATION ALGORITHM BASED ON
MAXIMUM A POSTERIORI (MAP) CRITERION

We first consider the case where the signal energy,a, is known to
the fusion node. The case of unknown signal energy will be treated
in Section 5. With no measurement noise, only certainM -tuples
can be produced by the sensors, those corresponding to non-empty
intersection regions inS. DenoteSf

Q the set ofM -tuples that can be
generated in a noise-free environment, which can be written as:

Sf
Q = {(Q1, ..., QM )|gi

a

‖x− xi‖α
∈ Qi, i = 1, ..., M x ∈ S}

(4)
DenoteAj the region corresponding to thej-th M -tuple,Qj in Sf

Q.

Then,Aj ∩ Ai = ∅, if j 6= i, so that we can partitionS into |Sf
Q|

regions1.
We now consider the noisy case. Our approach is to first identify

the most likely regionAj corresponding to anM -tuple inSf
Q, given

the noisy observationQr and then compute the estimated source lo-
cation within the chosen region. Note that now there is no guarantee
thatQr will belong toSf

Q. DenoteHj the hypothesis corresponding

1Note that our proposed algorithm can be applied to other sensor types;
the only assumption we make is that the sensors lead to a partition of the
sensor field and given the specific partition for our chosen sensors, the same
algorithm can be applied.



to regionAj and vector readingQj ∈ Sf
Q. Our goal is to findH∗

based on the received noisy M-tupleQr as follows:

H∗ = arg max
j

p(Hj |Qr) = arg max
j

p(Qr|x ∈ Aj)pj

= arg max
j

M∏
i=1

p(Qi|x ∈ Aj)pj , j = 1, ..., |Sf
Q| (5)

wherepj = p(x ∈ Aj) andp(Qi|x ∈ Aj) is computed as

p(Qi|x ∈ Aj) = p(µi(x) + wi ∈ Qi|x ∈ Aj)

=

∫

x∈Aj

[Φ(
Qi,h − µi(x)

σi
)− Φ(

Qi,l − µi(x)

σi
)]pj(x)dx

(6)

whereµi(x) = gi
a

‖x−xi‖α andpj(x) = p(x|x ∈ Aj). Here,Φ(.)

is the cdf for the normal distribution,N(0, 1). OnceH∗ is obtained,
the source estimatêx is computed byE(x|H∗) = E(x|x ∈ A∗).

4. IMPLEMENTATION OF PROPOSED ALGORITHM

The most complex step in our proposed algorithm is the integration
in (6), which is required for each hypothesis. To simplify the pro-
cess, we propose to reduce the number of hypotheses to evaluate,
based onQr. We note that, even in the noisy case, if the source is in
Aj corresponding toQj ∈ Sf

Q the corresponding quantized vector

reading is likely to beQj. Based on this observation, we construct
the set,As(⊂ S) such thatp(x ∈ As|Qr) ≈ 1, i.e., the set contain-
ing the most likely hypotheses. By considering only the hypotheses
in As, we reduce the complexity of localization. Construction ofAs

can be accomplished by noting that given a source location,x and
the corresponding noisyM -tuple Qr, it would be very likely that
p(x ∈ Ai|Qr) > p(x ∈ Aj |Qr) as long asp(x̂i|Qr) À p(x̂j |Qr),
wherex̂j is the centroid of the setAj . Thus, to selectAs, we first
find a coarse estimate of the source location,x̂c, by determining
which of the centroids of allAj is most likely, i.e., we compute

x̂c = arg max
x̂j

p(x̂j |Qr) = arg max
x̂j

p(Qr|x̂j)pj

= arg max
x̂j

M∏
i=1

[Φ(
Qi,h − µi(x̂j)

σi
)− Φ(

Qi,l − µi(x̂j)

σi
)]pj ,

and then we defineAs(δ) =
⋃K

k=1
Ak (As ⊂ S) such that

|x̂c − x̂k| < δ, ∀k = 1, ..., K wherex̂k = E(x|x ∈ Ak), i.e.,
we include all hypothesis that are within a certain distance of our
coarse estimate. We select the most likely hypothesis following (5)
but among only those candidates inAs(δ). Thus, by choosingδ we
can control the trade-off between search complexity and localiza-
tion accuracy (a smallerδ will lead to a faster search, since fewer
hypotheses will be tested.)

5. UNKNOWN SOURCE SIGNAL ENERGY CASE

The source signal energy,a, is generally unknown and should also
be estimated along with the source location. To eliminate this energy
term in our estimation problem, we could adopt the energy ratios-
based source localization method proposed in [5]. However, this has
drawbacks in our problem because with quantized readings we can
only estimate a range of possible values for the signal energy, and
these ranges could result in significant uncertainty, especially when

quantization is coarse. In what follows we show that good source
localization can be achieved with a weighted average of estimated
source locations under different signal energy assumptions.

Consideringa to be a nuisance parameter [1], we can formulate
the MMSE estimation as in Section 2.

x̂ =

∫

x∈S

xp(x|Qr)dx =

∫

x

x[

∫

a

p(x, a|Qr)da]dx

=

∫

x

x[

∫

a

p(x|Qr, a)p(a|Qr)da]dx

=

∫

a

x̂(a)p(a|Qr)da ≈
∫

a

x̂prop(a)p(a|Qr)da (7)

In (7), the MMSE estimate,̂x(a) given by (3) is approximated by
x̂prop(a) obtained by the proposed localization algorithm developed
for the case of known source signal energy in Section 3. Note
that significant computational complexity is required to compute
p(a|Qr) ∝ p(a)

∫
x∈S

p(Qr|x, a)p(x)dx, which leads us to make
some further approximations.

First, while the source signal energy can take continuous values in
a predetermined interval[amin amax], we consider only discrete
energy values, since small variations in signal energy have a small
impact on localization accuracy (see Figure 2). That is,

x̂ ≈
N∑

k=1

x̂prop(ak)p(ak|Qr) =

N∑
k=1

x̂prop(ak)Wk∑N

i
Wi

(8)

whereN is the number of discrete energy values used andWk is the
k-th weight given byWk = p(ak)

∫
x∈S

p(Qr|x, ak)p(x)dx.
Secondly, some signal energy values are bound to be less likely

than others (for example, a particular energy value can lead to a non
empty intersection of quantization regions, while under other energy
values the intersections may be empty). Thus, there will be some
dominant weights in (8) and if we compute the weights first, we only
need to perform the localization algorithm for those weights that are
sufficiently large. That is,

x̂ ≈
L∑

l=1

x̂prop(al)Wl∑L

i
Wi

(9)

whereL is the number of chosen weights and the set{Wk}N
k=1 is

arranged such thatWi ≥ Wj if i < j. Note thatWl can be also ap-
proximated byWl ≈ p(al)

∫
x∈As(δw,al)

p(Qr|x, al)p(x)dx where

the setAs(δw, al) can be constructed using the approach in Section
4. Clearly, there will be some trade-offs between the computational
complexity and the localization performance and this can be con-
trolled by adjusting the parameters such asN, L, andδw.

6. SIMULATION RESULTS

In our experiments, we consider a sensor network withM = 5 nodes
deployed randomly in a10 × 10m sensor field. Each sensor mea-
sures an acoustic source energy based on the energy decay model in
(1), quantizes it using a quantizer designed by the algorithm in [4].
Note that the measurement noise is assumed to be normal distributed,
N(0, σ2) and SNR is computed by10 log10

a2

σ2 . Note that SNR is
measured at 1 meter from the source. For example, SNR=40dB cor-
responds to SNR≈5.5dB measured at each sensor on the average.

First, witha known, the proposed algorithm in Section 4 is tested
using a test set of 2000 source locations generated with a uniform



Fig. 2. Localization Accuracy (m2) of Proposed Algorithm in Sec-
tion 4 under Signal Energy Mismatch. A test set of 2000 source
locations generated withσ = 0.05, M = 5 for each signal energy
(=40,...,60). The algorithm is performed usinga = 50 andδ = 1m.

distribution ofp(x) for each SNR. In Figure 3 the proposed algo-
rithm is compared with MMSE estimation since the latter gives us a
good lower bound. It can be said that our algorithm provides good
localization accuracy as compared with MMSE estimation.

Fig. 3. Comparison of Proposed Algorithm in Section 4 with MMSE
estimation. SNR =40,...,100 dB withRi = 3 (left) andRi = 2, 3
and4bits with SNR=60 dB (right). The parameterδ is set as 1m.

Fig. 4. Comparison of Proposed Algorithm in Section 5 with MMSE
estimation and Energy Ratios-based Algorithm (ERA).

The proposed algorithm for unknown signal energy of Section
5 is tested and compared with the MMSE estimator and Energy
Ratios-based Algorithm (ERA) and also evaluated under various
types of mismatches. In applying the algorithm, prior distributions
for p(x) and p(a) are assumed to be uniform overx ∈ S and

a ∈ [amin amax] = [0 100], respectively and the parameters
are set asN = 10, ak ∈ {10, 20, ..., 100}, L = 3, δw = 1m, α =
2, gi = 1. In Figure 4, the interval[amin amax] is divided into
8 subintervals such as [20 30],...,[90 100] and for each subinterval,
a test set of 2000 source locations with the signal energy randomly
drawn from the subinterval is generated withσ = 0.05. Figure 4
shows that ERA provides worse localization accuracy than our pro-
posed algorithm. In Table 1, we give random perturbation to one
of the sensor model parameters for each test set of 2000 source
locations: that is, the actual value ofα is randomly drawn from
[2−∆α, 2 + ∆α] for each∆α and the actual gain is also drawn
randomly from[1 − ∆g 1 + ∆g]. Similarly, each sensor loca-
tion (x, y) is randomly generated from[x − ∆x x + ∆x] and
[y − ∆y y + ∆y], respectively. In addition, a test set of 2000
source locations with normal distribution of mean(5, 5) and vari-
ance(σ2

x, σ2
y) is generated for each (σx, σy). From the results in

Table 1, it can be said that small perturbation can be allowed to main-
tain good localization accuracy. Finally, our proposed algorithm is
also tested in a large sensor field20×20m and shows similar results.

∆α 0 0.1 0.2 0.3 0.4
LE(Proposed) 0.5319 0.7360 1.4643 2.2653 3.6998

LE(ERA) 0.8886 1.1402 1.8658 2.7042 3.6696

∆gi 0 0.1 0.2 0.3 0.4
LE(Proposed) 0.5414 0.6293 0.8201 1.1606 1.6215

LE(ERA) 0.8980 0.9695 1.2012 1.6407 2.0873

(∆x, ∆y) 0 0.1 0.2 0.3 0.4
LE(Proposed) 0.5414 0.5380 0.5836 0.6242 0.7176

LE(ERA) 0.8980 0.8900 0.9167 1.0074 1.0760

(σx, σy) 1 1.5 2 2.5 3
LE(Proposed) 0.2710 0.3554 0.4806 0.8992 1.7617

LE(ERA) 0.8879 0.9233 0.9732 1.4556 2.2024

Table 1. Localization Error (LE) (m2) of Proposed Algorithm in
Section 5 (Proposed) vs. ERA under various mismatches.
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