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ABSTRACT guantizer optimization for source localization, and propose a dis-

i . o . tributed source localization algorithm that uses the Maximum A Pos-
In this paper, we propose a distributed source localization algoritherior (MAP) criterion. First, consider the localization problem un-
based on the Maximum A Posteriori (MAP) criterion, where the ob-ger the assumptions of no measurement noise and known source sig-
servations generated by each of the distributed sensors are quantized energy. In this scenario, the only source location uncertainty
before b_elng transml'_[ted to a fusion node_ for Iocal|zat|on._ If thejs que to quantization. Because the source signal energy is known,
source signal energy is known, each quantized sensor reading cortgsch quantized reading can be mapped to a region in the sensor field,
sponds to a region in which the source can be located. Aggregatinghose shape depends on the characteristics of the sensor. For the
the information obtained from multiple sensors corresponds to gefase of an acoustic sensor that provides no directional information,
erating |ntersect|_ons bet\_/veen the_reglons. In our previous work_wg1e region corresponding to one quantized reading is a “ring” cen-
developed quantizer design techniques aimed at optimizing localizggeq at the sensor location (see Figure 1). Since the measurements
tion accuracy for a given aggregate rate. In this paper we develoge assumed to be noiseless we expect the source to be located in
localization algorithms based on estimating the likelihood of eachye jntersection of all the ring regions, one generated by each sensor.
of_the intersection regions. This likelihood can incorporate Uncera vector of readings (one per sensor) will correspond to a unique
tainty about the source signal energy as well as measurement nOi§gcation and, after quantization, there will be a unique (non-empty)
We show that the computational complexity of the algorithm can benersection region (as shown in Figure 1.) Here, efficient quantizer
significantly reduced by taking into account the correlation of thegesigns seek to minimize the average area of all admissible intersec-
received quantized data. We also propose a technique, based ogghs 4, 3]. Our previous work assumed low measurement noise and
weighted average of estimators, to address the case when the SigRghwn source signal energy and used heuristic techniques for esti-

energy is unknown. Our simulation results show that our localizationy ation in cases when quantized sensor readings were “inconsistent”
algorithm achieves good performance with reasonable complexity & e., when intersections were empty)

compared with Minimum Mean Square Error (MMSE) estimation. Clearly, localization becomes more difficult when measurement

noise is not negligible and/or the source signal energy is not known;
1. INTRODUCTION these situations make it more likely that vector readings will lead to

regions whose intersection is empty. Also, quantized sensor read-
Source localization algorithms have been proposed for distributethgs may change over time, even if the source does not move. To ad-
sensor networks operating with different sensor types, e.g., acoustidress these problems we use a probabilistic formulation, where we
seismic or thermal. Because the sensors tend to have limited powarodel the likelihood that a given candidate source location would
and the fusion node can be physically separate from the sensors, thepduce a given vector reading. In this context, we first formulate
efficiency of a localization algorithm should be assessed in terms dhe source localization problem as a Minimum Mean Square Error
both its accuracy and the amount of bandwidth it requires. ThugMMSE) estimation problem; this approach generally has signifi-
practical systems will normally have to operate using quantized sersant computational complexity, especially for the non-Gaussian case
sor readings in order to reduce bandwidth. In our work we havesonsidered in this paper. We show that the complexity can be sig-
focused on (i) quantization techniques that are optimized for localnificantly reduced by taking into account the quantization effect and
ization and (i) localization algorithms that take into account the factthe distributed property of the quantized data, without significant im-
that only quantized measurements are available. pact on localization accuracy. Based on this, under the assumption

Source localization based on acoustic energy measured at indivi@f known source signal energy we propose a distributed algorithm
ual sensors is proposed in [5], where each sensor transmits unqua¥gsed on the MAP criterion. We then show that for the unknown
tized acoustic energy readings to a fusion node. The localizatiogource signal energy case, a good estimator of the source location
problem has been solved mostly through nonlinear least squares e&n be found by computing a weighted average of the estimates ob-
timation (see [5], [6]), which is sensitive to local optima and saddletained by our MAP-based algorithm under different source energy
points. To overcome this drawback, the authors in [2] formulated thigissumptions. Simulation results show that our distributed localiza-
problem as a convex feasibility problem. None of these approachdion algorithm achieves good localization performance with reason-
take explicitly into account the effect of sensor reading quantizationable complexity, as compared with MMSE estimation.
In this paper, we extend our work in [4, 3], which focused on This paper is organized as follows. The problem formulation is



whereA; is the ring-shaped area correspondin@toobtained from
- Sensor locations z; (Figure 1). Letp(z) be the pdf associated to our a priori knowl-
e ey edge about the source location. Then the MMSE estimate of the
source location in the noiseless case wouldbe E(z|z € A). If
A p(x) is uniform & would simply be the sample mean.h
Consider now the case where there is measurement noise and/or
the source signal energy is unknown. There is no guarantee that ob-
taining the intersection of the quantized readings will lead to the true
intersectionA. Assuming the statistics of the measurement noise,
w;, are known, we can formulate the source localization problem as
an MMSE estimation problem as follows:

% / 2p(e|Qu)de = / p(Qul2)p(2) /p(Qr)d
€S xeS
_ fxesx[Hi‘ilLieQip<zi|x>dzi1p(x>dx’ -

P(Qr)
presented in Section 2. Our distributed source localization algorithm _ M ‘ i )
is presented in Section 3 and its implementation is discussed in Se‘c’:\’-herep(Qr) o fwes[Hi=1 fzieQi p(zilw)dz:]p(w)dz. The con

tion 4. The case of unknown source signal energy is treated in Seélitional probability p(z;|x),i = 1,...,M in (3) can be obtained
tion 5. Simulation results are given in Section 6. using the sensor model in (1) along with a probabilistic character-

ization ofa (e.g., its pdf): that isp(z:|x) = [ p(zilz,a)p(a)da
wherep(z;|z, a) is normal distributionN(gimpf). When
p(z;|x) andp(z) are available (3) provides the MMSE estimator,
Consider a sensor field ¢ R?2 containingM nodes that measure which allows us to take into consideration optimally the unknown
an acoustic signal emitted from a source assumed to be static durifsgnal energy and the measurement noise. However, estimiating
the localization process. By adopting the energy decay sensor modél (3) is highly complex and results may be sensitive to accuracy of
proposed in [5], we assume that the signal energy measured at noti a priori modelg(x) andp(a). In this paper, we use an unin-
i over a time intervak can be expressed as follows: formative or uniform prior distribution whenever there is ignorance
about the parameters to be estimated, since this allows us to obtain
zi(z, k) = giL +wi(k), i=1,..,.M (1)  the posteriori distribution which will be approximately proportional
[l 1 to the likelihood. In addition, the uninformative prior has another
advantage of keeping subsequent computations relatively simple. In
the following sections, we focus on developing our localization al-
gorithm.

Fig. 1. Source Localization based on quantized energy readings

2. PROBLEM FORMULATION

wherez; is the acoustic energy reading at nagde the source loca-

tion, andz; the position of node. Note thatr, z; € R2. The model

parameters consist of the gain factor of thia sensoly;(~ 1), an

energy delay factor(~ 2), and the source signal energy We

assume that the measurement naisék) is independent of and 3. PROPOSED LOCALIZATION ALGORITHM BASED ON

can be approximated by a normal distributidif0, o7). The signal MAXIMUM A POSTERIORI (MAP) CRITERION

energya in (1) is assumed to remain constant during the localiza-

tion process and to be in the ran@g,:, am..]. We also assume We first consider the case where the signal eneigys known to

that the positions of all nodes are known and each node collects ithe fusion node. The case of unknown signal energy will be treated

noise-corrupted energy reading,(z, k) at time intervalk, quan-  in Section 5. With no measurement noise, only certafrtuples

tizes it with a given quantization levdl;, and sends it to a fusion can be produced by the sensors, those corresponding to non-empty

node. Source localization is performed at the fusion node, basddtersection regions ifs. DenoteSé; the set ofM-tuples that can be

on the received noisy/-tuple, Q. = (Q1, ..., @), Where@; is  generated in a noise-free environment, which can be written as:

the quantization index sent froirth node. In what follows; will

be used to denote both a quantization indgxe {1,..., L;} and S(g ={(Q1,...,Qm)|g:

the quantization interval@;,; Q). corresponding to noisy mea-

surement; at node:. Throughout the paper we assume that thereDenoteAj

is only one-way communication from sensors to fusion node, i.e., . s PR N 7

there is no feedback channel and the sensors do not communicat8€n. A’ N A* = @, if j # 4, so that we can partitiof into | S|

with each other; we also assume that the fusion node rec€lyes regions.

without transmission error. We now consider the noisy case. Our approach is to first identify
Consider first the case of a known source signal energnd no  the most likely regiomd? corresponding to an/-tuple in Sg, given

measurement noisa = 0in (1)). Localization based on quantized the noisy observatiof@. and then compute the estimated source lo-

energy readings is illustrated by Figure 1, where at least three energyation within the chosen region. Note that now there is no guarantee

readings are required to achieve a connected intersection. More fahatQ, will belong toSé. DenoteH; the hypothesis corresponding

mally:

€Qii=1,...M ZCGS}

@
the region corresponding to theth M-tuple,@Q’ in S,g.

[l = zil|*

INote that our proposed algorithm can be applied to other sensor types;

M a the only assumption we make is that the sensors lead to a partition of the
A= m Ai, Ai={z:97+— € Q:i}, ) sensor field and given the specific partition for our chosen sensors, the same
i lz — | algorithm can be applied.



to region A’ and vector reading)’ € Sé. Our goal is to findH *
based on the received noisy M-tugll. as follows:

H* = argmaxp(H;|Q:) = argmax p(Q.|z € A”)p;
J J
M
= argmgx[[lmcm € A)pj, j =185l ()
wherep; = p(z € A7) andp(Q: |z € A’) is computed as
p(Qilz € A7) = p(pi(z) + wi € Qi € A?)
ih — Mi\T il — M (X
= [ @y g Qe iy, g
zcAj i [
(6)
wherepi(z) = gi 5= andp;(z) = p(z|z € A7), Here,®(.)

is the cdf for the normal distributiony (0, 1). OnceH " is obtained,
the source estimateis computed by (x| H*) = E(z|x € A").

4. IMPLEMENTATION OF PROPOSED ALGORITHM

The most complex step in our proposed algorithm is the integratio
in (6), which is required for each hypothesis. To simplify the pro-
cess, we propose to reduce the number of hypotheses to evaluate,
based orQ,. We note that, even in the noisy case, if the source is in
A7 corresponding t&Qi € Sé; the corresponding quantized vector

reading is likely to beQ’. Based on this observation, we construct

the set,A,(C S) such thap(z € As|Q:x) = 1, i.e., the set contain-

quantization is coarse. In what follows we show that good source
localization can be achieved with a weighted average of estimated
source locations under different signal energy assumptions.

Consideringa to be a nuisance parameter [1], we can formulate
the MMSE estimation as in Section 2.

| avteiais= [ ot [ e.alquanias
/mx[/ap(x‘Qrva)P(a\Qr)da]dx

_ / #(@)p(aQr)da ~ / Fpron(@p(alQ)da (7)

a a

z

In (7), the MMSE estimate(a) given by (3) is approximated by
Zprop(a) Obtained by the proposed localization algorithm developed
for the case of known source signal energy in Section 3. Note
that significant computational complexity is required to compute
p(a|Qr) x p(a) fzesp(Qrkn, a)p(z)dz, which leads us to make
some further approximations.

First, while the source signal energy can take continuous values in
a predetermined intervédi..  ama<], We consider only discrete
gnergy values, since small variations in signal energy have a small
impact on localization accuracy (see Figure 2). That is,

. ro YW,
mprop(ak a/k'Qr = Z xp L ak k (8)

1 k=1 Z W

whereN is the number of discrete energy values usedlands the
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ing the most likely hypotheses. By considering only the hypothesek-th weight given byWi. = p(ax) [, ¢ p(Q: |z, ar)p(z)da.

in A, we reduce the complexity of localization. ConstructionQf
can be accomplished by noting that given a source locatiand
the corresponding noisy/-tuple Q., it would be very likely that
p(z € A'|Qr) > p(z € A’|Qy) aslong ap(#:|Qr) > p(2;|Qx),

wherez; is the centroid of the sed’. Thus, to select,, we first
find a coarse estimate of the source locatidp, by determining
which of the centroids of alll? is most likely, i.e., we compute

& = argmaxp(fcler):argmaxp(Qr\ij)pj

Pjs
Z UZ

= argmaxH[q> Q”l “Z(%)) (sz ,ul(asj))]

and then we defined,(6) = (J,_, A¥ (A, C S) such that

Secondly, some signal energy values are bound to be less likely
than others (for example, a particular energy value can lead to a non
empty intersection of quantization regions, while under other energy
values the intersections may be empty). Thus, there will be some
dominant weights in (8) and if we compute the weights first, we only
need to perform the localization algorithm for those weights that are
sufficiently large. That s,

e Z :L'pv‘op al Wl (9)
=1

where L is the number of chosen weights and the 88, }2_, is
arranged such thav; > Wj_if 1 < j. Note thatl¥; can be also ap-
proximated by, ~ p(a;) JzeAs(&W,aL) p(Qe|z, ar)p(x)de where

|#c — & < 6, Vk =1,...,K whered;, = E(z|z € A¥), i.e the setd; (4w, a;) can be constructed using the approach in Section
we include all hypothesis that are within a certain distance of ou#t. Clearly, there will be some trade-offs between the computational
coarse estimate. We select the most likely hypothesis following (5yomplexity and the localization performance and this can be con-
but among only those candidatesAn(§). Thus, by choosing we  trolled by adjusting the parameters suchMas., ands,,.

can control the trade-off between search complexity and localiza-
tion accuracy (a smallef will lead to a faster search, since fewer
hypotheses will be tested.)

6. SIMULATION RESULTS

In our experiments, we consider a sensor network Witk= 5 nodes
deployed randomly in a0 x 10m sensor field. Each sensor mea-
sures an acoustic source energy based on the energy decay model in
The source signal energy, is generally unknown and should also (1), quantizes it using a quantizer designed by the algorithm in [4].
be estimated along with the source location. To eliminate this energiote that the measurement noise is assumed to be normal distributed,
term in our estimation problem, we could adopt the energy ratiosN (0, o) and SNR is computed bj0 log,, Zz. Note that SNR is
based source localization method proposed in [5]. However, this haseasured at 1 meter from the source. For example, SNR=40dB cor-
drawbacks in our problem because with quantized readings we caesponds to SNR5.5dB measured at each sensor on the average.
only estimate a range of possible values for the signal energy, and First, witha known, the proposed algorithm in Section 4 is tested
these ranges could result in significant uncertainty, especially wheusing a test set of 2000 source locations generated with a uniform

5. UNKNOWN SOURCE SIGNAL ENERGY CASE



a € [amin Gmaz] = [0 100], respectively and the parameters

are setasV = 10,ar € {10,20,...,100},L = 3,0, = Im,a =

2,9; = 1. In Figure 4, the intervalamin  amae] is divided into

8 subintervals such as [20 30],...,[90 100] and for each subinterval,

a test set of 2000 source locations with the signal energy randomly

. drawn from the subinterval is generated with= 0.05. Figure 4

" B shows that ERA provides worse localization accuracy than our pro-
Foures Smnal Fnermy: = posed algorithm. In Table 1, we give random perturbation to one

) o 9 ) ) of the sensor model parameters for each test set of 2000 source
Fig. 2. Localization Accuracyr:”) of Proposed Algorithm in Sec-  |gcations: that is, the actual value ofis randomly drawn from

tion 4 under Signal Energy Mismatch. A test set of 2000 sourc§ _ Aq, 2+ Aq] for eachAa and the actual gain is also drawn
locations generated with = 0.05, M = 5 for each signal energy  randomly from[1 — Ag 1+ Agl. Similarly, each sensor loca-
(=40.,...,60). The algorithm is performed usimg= 50 andd = 1m.  tjon (z,y) is randomly generated frofx — Az =z + Az] and
[y — Ay y + Ay], respectively. In addition, a test set of 2000
source locations with normal distribution of meéh 5) and vari-

ance(o3,0y) is generated for eactr(, o). From the results in

distribution ofp(xz) for each SNR. In Figure 3 the proposed algo- Taple 1, it can be said that small perturbation can be allowed to main-
rithm is compared with MMSE estimation since the latter gives Us ain good localization accuracy. Finally, our proposed algorithm is

good lower bound. It can be said that our algorithm provides googyso tested in a large sensor fieltix 20m and shows similar results.
localization accuracy as compared with MMSE estimation.

Average o Localization Erer{m)

ie Ao 0 0.1 0.2 0.3 0.4
LE(Proposed)| 0.5319| 0.7360 | 1.4643| 2.2653 | 3.6998
\ D W o s e LE(ERA) | 0.8886| 1.1402| 1.8658 | 2.7042 | 3.6696
— \ cx—: Pr digoriiim B0 el MMSE estimatjon

E R poser e ™™ S .- Ag; 0 0.1 0.2 0.3 0.4
B [\| "o pmes epumaen) S LE(Proposed)| 0.5414 | 0.6293| 0.8201| 1.1606 | 1.6215
5 \,\ g LE(ERA) | 0.8980]| 0.9695| 1.2012| 1.6407 | 2.0873
. \\ = oo (Az, Ay) 0 0.1 0.2 0.3 0.4
\ » s - LE(Proposed)| 0.5414 | 0.5380 | 0.5836 | 0.6242 | 0.7176
N e LE(ERA) | 0.8980| 0.8900| 0.9167 | 1.0074 | 1.0760

o [ . 0y 0y) 1 15 2 25 3
" SnR (aB), Ri=3bits “number of bits, SNR=60dE LE(Proposed)| 0.2710 | 0.3554 | 0.4806 | 0.8992 | 1.7617
LE(ERA) | 0.8879| 0.9233| 0.9732| 1.4556 | 2.2024

Fig. 3. Comparison of Proposed Algorithm in Section 4 with MMSE
estimation. SNR =40,...,100 dB witR; = 3 (left) andR;, = 2,3 Table 1. Localization Error (LE) £n%) of Proposed Algorithm in
and4bits with SNR=0 dB (right). The paramete¥is set as 1m. Section 5 (Proposed) vs. ERA under various mismatches.
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