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ABSTRACT

Alterations in the number of DNA copies are very common in tumor
cells and may have a very important role in cancer development and
progression. New array platforms provide means to analyze the copy
number by comparing the hybridization intensities of thousands of
DNA sections along the genome. However, detecting and locating
the copy number changes from this data is a very challenging task
due to the large amount of biological processes that affect hybridiza-
tion and cannot be controlled. This paper proposes a new technique
that exploits the key characteristic that the DNA copy number is
piecewise-constant along the genome. First, wavelet footprints are
used to obtain a basis for representing the DNA copy number that
is maximally sparse in the number of copy number change points.
Second, Sparse Bayesian Learning is applied to infer the copy num-
ber changes from noisy array probe intensities. Results demonstrate
that Sparse Bayesian Learning has better performance than match-
ing pursuits methods for this high coherence dictionary. Finally, our
results are also shown to be very competitive in performance as com-
pared to state-of-the-art methods for copy number detection.

Index Terms— DNA Copy Number, piece-wise constant, de-
tection, denoising, sparse Bayesian learning.

1. INTRODUCTION

Normal human cells have two copies of nearly identical autosomal
chromosomes and a pair of sex chromosomes. Thus, for the au-
tosomal genome the DNA copy number is generally two, one copy
inherited from each parent. Cancer cells often exhibit genetic aberra-
tions in which chromosome sections may be lost (copy numbers 0 or
1), or replicated many times (copy number greater than 2). Detect-
ing and locating these alterations and determining their functional
effects is an essential foundation for improving diagnostic and ther-
apeutic strategies [2].

These genetic material gains and losses can be detected by dif-
ferent methods. One of the first techniques was comparative ge-
nomic hybridization (CGH) [3], which basically consists of using a
clone with a fluorescent tag that will hybridize specifically with a tar-
get section of the genome. A higher copy number will have a larger
fluorescent intensity. Moreover, arrays containing thousands of these
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clones or probes can be used to perform a genome-wide analysis of
copy number [4]. Additionally, the probe intensities from genotyp-
ing arrays can also be used for the same purpose [5].

Copy number changes correspond to physical losses/gains in ge-
netic material, which typically cannot affect arbitrarily small seg-
ments in the genome, so that the actual copy number will be piece-
wise constant. The hybridization intensities measured with microar-
rays will be affected by different sources of noise that cannot be con-
trolled in the experiment; e.g. clone fragment lengths, G-C content,
cross-hybridization, and others. Therefore, copy number changes are
perceived as a change on the statistics of the hybridization intensity
which can be modeled as follows:

ym = f (cm) + εm (1)

where ym is the observed hybridization intensity at genome location
m, εm is a random variable describing a zero mean hybridization
noise, and xm = f (cm) is the mean hybridization level that corre-
sponds to copy number cm.

The biological fact that the copy number cm and hence xm is
piece-wise constant along the genome will be exploited in this pa-
per to build a basis expansion using wavelet footprints [6]. The
representation obtained is shown to be maximally sparse, meaning
that no more footprints (basis vectors) than copy number changes
present are necessary to represent the signal xm. This representation
is much more compact than a standard wavelet-based method, where
one copy number change is represented by as many coefficients as
levels of decomposition are used. In contrast, with the footprint ap-
proach all the discontinuity information is gathered in one footprint.
To the best of our knowledge this is the first time that wavelet foot-
prints have been proposed to represent genomic copy numbers.

The goal is to infer where the copy number change points are
located, from noisy observed hybridization intensities y. Footprints
become useful for our purposes because they provide a representa-
tion that will be sparse when, as is to be expected, the number of
copy number changes is small. Thus, our goal will be to minimize
the error in approximating the observed noisy signal using footprints,
subject to the number of footprints (copy number changes) being no
greater than a given k. Even though the error measure can be a
simple quadratic function (e.g., mean square error MSE), the opti-
mization problem is still combinatorial because of the sparsity con-
straints, so that

�
M
k

�
solutions would have to be evaluated (where M

is the length of genome under analysis), for each possible k.
When the error measure is quadratic, there exist several tech-

niques developed to search overcomplete dictionaries that may be
applied to solve this problem [7], namely, matching pursuits (MP) [8],
orthogonal matching pursuits (OMP) [9], basis pursuit (BP) [7], method



of frames (MOF) [7], and sparse Bayesian learning (SBL) [10]. In
practice some of them are severely limited due to the high coher-
ence of the wavelet footprint basis, i.e., footprints that correspond to
two contiguous discontinuities are highly collinear. Thus, the sec-
ond new contribution of this paper is to show that sparse Bayesian
learning does not exhibit this problem and thus is better suited for
this type of dictionary.

Our evaluation is based on a benchmark dataset and performance
metrics, proposed by [1] for this particular application, and simulates
array-CGH observations with known copy number changes. Com-
pared to other methods to solve this problem the performance of our
proposed algorithm is comparable to the best one, DNAcopy [11],
but the complexity of our method is significantly lower.

The paper is structured as follows. Section 2 introduces wavelet
footprints and develops a basis expansion for piecewise constant sig-
nals. Section 3 formulates the copy number change detection prob-
lem as a denoising problem. Section 4 proposes SBL for estimating
the footprint coefficients. Section 5 presents experimental results
and compares to other existing techniques. Finally, the paper con-
cludes summarizing the major contributions and discussing possible
extensions.

2. WAVELET FOOTPRINT REPRESENTATION FOR
PIECE-WISE CONSTANT SIGNALS

Wavelet footprints [6] have been proposed as a tool to design over-
complete dictionaries for representing piece-wise polynomial sig-
nals. The basic idea is that each kind of discontinuity in these signals
produces a distinctive set of coefficients in the wavelet domain and
that a signal can be characterized by these discontinuities. The foot-
print is a scale space vector formed by gathering all the wavelets that
characterize a discontinuity of a particular kind and location. Then,
this set of footprints form an overcomplete dictionary that leads to a
representation for these signals that is significantly sparser than what
is achievable with a standard wavelet representation.

For piece-wise constant signals and Haar wavelets [6], the wavelet
footprint dictionary is formed by a set of vectors, where each vector
fk is a simple step function with one discontinuity between k − 1
and k,

�M
m=1 fk (m) = 0, and ‖fk‖ 2 = 1 for k = 1, ..., (M − 1).

We have used these properties to extend the dictionary in [6] to
signals of arbitrary length M (not necessarily a power of 2):

fk (m) =

��
�

−
�

M−k
kN

m < k�
k

M(M−k)
m ≥ k

(2)

where k = 1, ..., (M − 1), m = 0, ..., (M − 1), and f0 (m) = 1√
M

is defined to be the DC component.
It is easy to see that this dictionary is indeed a basis, since F =

[f0, f1, ..., fM−1] is a square invertible matrix. With this notation
the footprint representation of a piece-wise linear signal x can be
compactly defined as:

x = Fw w = F−1x (3)

One of the most appealing properties of this representation is that it
is proved to be maximally sparse for piece-wise constant signals [6].
That is, for any given signal x with exactly K given discontinuities,
only K+1 coefficients (w components different than 0) are required
to perfectly reconstruct the signal. A simpler proof than the one
in [6] is obtained by building first the dual basis, and showing that
w (m) = 0 if and only if x(m) − x (m − 1) = 0, and therefore
there is a one-to-one mapping between the k-th w component and
the jump of the discontinuity between k − 1 and k.

3. DENOISING WITH WAVELET FOOTPRINTS

The compact representation developed in the previous section is very
useful to estimate x from a degraded observation y generated as in
(1). If only very few copy number changes K << M are present,
then x = Fw has a very sparse representation in the wavelet foot-
print basis, while the noise ε spreads to all w components. Under
this scenario, the problem is formulated as finding x̂ = Fŵ that is
closest to the observed y subject to that less than K components of
ŵ are different than 0 . More formally:

ŵ = arg min
w

‖y − Fw‖2
2 − λ ‖w‖0 (4)

where

‖x‖p
p =

M�
m=1

|xn|p ‖w‖p→0 =

M�
m=1

I (wn �= 0) (5)

with p = 2 being the Euclidean norm, and p = 0 is a measure of
sparsity (number of components different than 0). The square-norm
is the most widely used metric to measure goodness of fit [7, 8, 9,
10] , and by increasing (decreasing) the parameter λ a solution with
higher (lower) sparsity is obtained.

Since the imposed constraints ‖w‖0 are not linear, computing
the minimizing solution of (4) would require to solve

�
M
k

�
least

squares problems. This approach is intractable for chromosome lengths
M and number of discontinuities K that are typical for our applica-
tion. Thus, either, i) a greedy optimization strategy is used (e.g.
MP[8], OMP[9]), or ii) the sparsity conditions have to be relaxed
(e.g. MOF[7], BP[7], SBL [10]).

Matching pursuits methods (MP, OMP) are greedy and only guar-
anteed to converge to the optimal solution if the dictionary is indeed
an orthogonal basis or only one vector in the dictionary is used for
the representation. In basis pursuit the ‖w‖0 norm is replaced by a
‖w‖1 norm, and now the problem can be solved by convex program-
ming and is guaranteed to converge, but the solution is only guar-
anteed to be the same as in ‖w‖0 case if the dictionary coherence
is below some bound [12]. These limitations of matching pursuit
and basis pursuit methods are particularly problematic in the case
of wavelet footprint dictionaries, since footprints that correspond to
contiguous discontinuities are highly collinear. The coherence C in-
deed approaches 1 (i.e. the worst case) as M increases:

C = max
k �=j

〈fk, fj〉 〈fk, fj〉 =
�

k(M−j)
(M−k)j

if k < j (6)

One of our contributions is to observe that sparse Bayesian learning
does not exhibit this problem and thus is better suited for this type of
dictionaries.

4. WAVELET FOOTPRINTS AND SBL

The optimization problem defined in (4) can be formulated from a
Bayesian estimation point of view, as was done in [10] for the case of
overcomplete dictionaries. If a normal likelihood model is assumed
for the observations p (y|w) ∼ N �Fw,σ2I

�
, and an appropriate

prior is used for the weights p (w) ∼ exp(−‖w‖p
p), then ŵ in (4) is

indeed the maximum a posteriori (MAP) estimate:

ŵMAP = arg max
w

p (w|y)

= arg max
w

p (y|w) p (w)

= arg min
w

− log p (y|w) − log p (w) (7)



In SBL [10, 13], the prior distribution for the weights is specified
as a hierarchical prior:

p (w|α) =

M−1�
k=0

N �wk|0, α−1
k

�
(8)

where the α is a vector of hyperparameters that are distributed ac-
cording to a gamma distribution:

p (α) =
M−1�
k=0

Γ (αk|a, b) (9)

This prior is very useful for the following reasons [10, 13]. First,
given the hyperparameters α, the posterior weight distribution (10) is
normal, and the weights are estimated as the posterior mean ŵ = µ.

p
�
w|y, α, σ2� = N (w|µ, Σ) (10)

Σ =
�
σ−2F ′F + diag(α)

�−1
µ = σ−2ΣF ′y (11)

Second, by treating the weights w as hidden variables, the maximum
likelihood estimation for the hyperparameters α can be obtained by
the EM algorithm:

E Step : Ew|y,α(l),σ2

�
w2

i

�
= Σii + µ2

i (12)

M Step : α
(l+1)
i = 1+2a

Σii+µ2
i +2b

(13)

Finally, the unconditional prior p (w) =
	

p (w|α) p (α) dα is a
multivariate t-student distribution and approximates ‖w‖0 better than
the l1 norm used in BP, as shown in Figure 1.

The sparsity of the solution obtained by SBL is studied in detail,
and compared to BP, in [10] for the case of arbitrary dictionaries.
Their results and Figure 1 demonstrate SBL as a better measure of
sparseness than BP as compared to ‖w‖0. This is even more impor-
tant in the case of highly coherent dictionaries such as the wavelet
footprint that we use here (2), where the bounds in BP performance
[12] do not apply. Consider, as an example, the case where the noise-
free signal has only one discontinuity at i, such that wi = 2 (ap-
proximation A), but where the noise levels are such that wi−1 = 1
and wi = 1 (approximation B) provide better MSE fit to the noisy
data. Then in a BP framework, both approximations lead to the same
sparseness within BP, since |2| = |1| + |1|. Thus, BP would se-
lect approximation B, as it has better MSE approximation cost and
the same sparseness. In contrast, in SBL the cost of approxima-
tion B will be twice as much as that of approximation A, so that
the sparser approximation (A) is more likely to be selected. Note
that these kinds of situations would not arise if the dictionary had
lower coherence[12]. Because coherence is high, it is possible for
approximations A and B to be comparable in terms MSE; indeed, in
our example, the two solutions will be different in only two samples,
namely i and i − 1.

The EM algorithm is guaranteed to improve the solution after
each step and will always converge [10], but it may converge to a lo-
cal minimum instead of the global minimum. However, these local
minima are indeed always sparse, Theorem 2 in [10]. Nevertheless,
the corresponding weights w can be individually thresholded to es-
cape from a local minimum. An automatic procedure to select the
threshold which controls for the expected false discovery rate of the
discovered breakpoints has been employed, details can be found in
[14].

The noise σ2 can also be jointly estimated by the EM algorithm
as in [10]. However, since each chromosome in the genome is ana-
lyzed independently, and σ2 is assumed to be the same for all chro-
mosomes, it is more robust to estimate σ2 for all the genome before
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Fig. 1. SBL and BP sparsity metrics compared to the desired
(quasi)norm-0. Each curve is the corresponding sparsity measure
for a vector with K = 1, . . . , 5 equal coefficients different than 0;
w1,...,K = r and wK+1,...,M = 0.

applying the EM algorithm in each chromosome. In this paper, σ2 is
estimated as in [6].

Direct computation of (11) for an arbitrary dictionary F would
require O(M3) operations [10, 13]. However, we have found that
for our particular F in (2), (F ′F )

−1 is a symmetric tridiagonal ma-
trix; and this can be exploited to obtain the Σii and µi in each EM
step (12) in O(M) computations. This makes the computation of
each EM step very efficient, but the overall complexity of our SBL
algorithm depends on how many steps are required to converge. In
our experiments the convergence has always been reached in a con-
stant number of steps. But in the future, it would be desirable to
obtain an upper bound by analyzing how fast the objective function
decreases in each step.

5. EXPERIMENTAL RESULTS

5.1. Results with simulated data

In order to evaluate the proposed algorithm we have employed a
benchmark dataset developed by [1] that simulates real life array-
CGH observations with the advantage that the copy number change
points are known. Since for this specific application the most im-
portant objective is to accurately locate the copy number change, the
evaluation metrics that have been chosen are:

• Sensitivity: #discontinuities detected correctly
Total # of discontinuities present

• False Discovery Rate: #discontinuities detected incorrectly
Total #discontinuities detected

First, we compare different signal reconstruction techniques for
our wavelet footprint dictionary. In each method, a threshold can
be adjusted to allow for more or less discontinuities in the recon-
struction, and is represented by a point in a curve in Figure 2. This
figure shows that SBL outperforms matching pursuits methods (MP,
MMP, OMP) on all operating points. Note that, as discussed earlier,
the high coherence in the dictionary explains the relatively poor be-
havior of BP; optimizing the l1 norm does not lead necessarily to a
sparse solution in this case.

Second, we compare our proposed technique to other existing
methods for copy number detection (see Figure 3). The only other
technique that offers comparable but slightly lower performance than
our method is the DNAcopy.

The DNAcopy approach [11] is based on a recursive circular bi-
nary segmentation, where each segment is recursively broken into
two or three smaller segments. In each step, the problem is solved
by arranging the segment as a circle and finding the best positions
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Fig. 2. Receiver operational curves for sensitivity vs. false discovery
rate in detecting real copy number changes within a w = 2 sample
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Fig. 3. Median Sensitivity and FDR for detecting real copy number
changes within a w = 0...3 sample precision window in Willen-
brock dataset [1]. The first 3 methods were already analyzed in [1]
and the same results are reported. The result obtained by the new
proposed method has one of the best performances

for two breakpoints. The key differences compared to our algorithm
are that i) each step requires O(M2) computation, and ii) it follows
a greedy strategy that is not guaranteed to find the optimal solution.
Our SBL algorithm explores all possible solutions weighted by the
bayesian model, resulting on SBL having a better average perfor-
mance as indicated by the results. More recently, [15] proposed an
approximate method that recursively finds a copy number interval
with O(Mε−2) cost each time. This can be thought as a faster ver-
sion of DNAcopy with the cost of some additional degradation.

5.2. Results with a human neuroblastoma cell line

With real microarray data the exact location of the copy number
changes is not known, and the evaluation metrics employed in the
previous section cannot be used. Nevertheless, we experimented the
new algorithm with tumor samples (analyzed with the Affymetrix
500K mapping array set) with very encouraging results, as exempli-
fied in Figure 4. This is the result of analyzing a human neurob-
lastoma cell line (SK-N-BE2) known to have amplification of the
MYCN gene, located at 2p24.1. The first peak in the top plot corre-

sponds to this already known gain of MYCN, and the second one is
under investigation to determine candidate genes. The bottom plot
shows a gain of the q arm on chromosome 17, which commonly oc-
curs in high-risk neuroblastomas and cell lines.
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Fig. 4. Detection of two regions of chromosome 2 (top) and one re-
gion in chr 17 (bottom) with amplified copy number from of a neu-
roblastoma tumor cell line (SK-N-BE2) analyzed with an Affymetrix
500K mapping array set and our copy number detection technique.

6. CONCLUSIONS

In this paper a sparse representation for the genome copy number has
been developed using a wavelet footprints technique. SBL has been
shown to have better performance than other learning methods when
the representation dictionary is highly coherent as is the case for
wavelet footprints. Compared to other existing techniques for copy
number detection, the new developed technique has a very competi-
tive performance both in terms of FDR and sensitivity, as well as in
terms of computational complexity. Additionally, the threshold can
be automatically adjusted to control for the expected False Discov-
ery Rate [14].

Finally, in future work, we will work on analyzing the overall
computational complexity of the SBL algorithm; and if it is possible
to incorporate in our work and extend the interval finding strategies
in [15] to approximate directly the overall optimal segmentation so-
lution.
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