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ABSTRACT

We address the design and optimization of an energy-efficient
lifting-based 2D transform for wireless sensor networks with ir-
regular spatial sampling. The 2D transform is designed to allow for
unidirectional computation found in existing path-wise transforms,
thereby eliminating costly backward transmissions often required
by existing 2D transforms, while simultaneously achieving greater
data decorrelation than those path-wise transforms. We also propose
a framework for optimizing the 2D transform via an extension of
standard dynamic programming (DP) algorithms, where a selection
is made among alternative coding schemes (e.g., different number
of levels in the wavelet decomposition). A recursive DP formulation
is provided and an algorithm is given that finds the minimum cost
coding scheme assignment for our proposed 2D transform.

Index Terms— Data Compression, Dynamic Programming,
Wavelet Transforms, Wireless Sensor Networks

1. INTRODUCTION

In recent years, low-cost, densely deployed Wireless Sensor Net-
works (WSN) have been studied for applications such as instrumen-
tation and actuation of standard household systems or for monitoring
of complex environments [1]. Because these are typically battery
powered devices, it is important to find power-efficient techniques
for data gathering and transmission.

In this paper, we focus on in-network compression techniques,
where data collected at individual nodes is aggregated and com-
pressed as it “flows” towards a fusion center or sink, along a series of
pre-established paths. These approaches exploit spatial correlations
in the data in order to reduce the overall number of bits needed to rep-
resent a snapshot of information sensed in the network. Obviously,
the goal is to achieve overall power savings. Thus, these systems
have to be evaluated by considering not only the “final” transmission
costs (which depend on the number of bits needed to represent com-
pressed data) but also the cost involved in generating a compressed
representation (e.g., additional “local” data transmissions needed for
compression or the cost of computation at the nodes.)

Techniques for in-network data compression include the dis-
tributed KLT [2], wavelet based methods [3, 4, 5, 6, 7, 8, 9], and net-
worked Slepian-Wolf coding [10]. These techniques may all involve
some “local” communication overhead, i.e., neighboring nodes have
to exchange information so as to be able to compute the distributed
transform. For example in the distributed KLT or wavelet-based
methods each transform coefficient is computed based on informa-
tion from multiple nodes and so the nodes need to exchange data
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(e.g., a finely quantized version of their measurements) before the
actual transform coefficients can be computed. Note that even net-
worked Slepian-Wolf coding techniques [10] would require some
communication overhead, since the correlation structure of the sen-
sor data is assumed to be known, which would at least require some
initialization and periodic updates (where nodes would exchange
measurements to estimate the correlation.)

We consider, in the context of wavelet-based approaches [3, 4,
9], a fundamental trade-off, namely, that of deciding the number of
levels of decomposition to be used: more levels of decomposition
leads to potential improvements in compression performance, but at
the cost of additional local communication (i.e., more levels leads to
longer spatial filters, so that input data from more nodes is needed
to generate a single output.) Wavelet transforms are widely used to
compress regularly sampled 2D images and thus their application to
compress sensor data, which can be seen as samples of a 2D field,
is a natural extension. For example, an early proposal by Servetto
[6] was based on the assumption that sensors are located in a regular
grid. But, as illustrated in [7], these regular grid assumptions will
not hold in general.

This has motivated researchers to investigage transforms that op-
erate with irregular 2D node placements. Wagner et al [7] propose to
apply a lifting transform along a tesselation of the nodes. While this
2D transform can operate over arbitrary node deployments, a major
drawback of this method is that it does not directly consider the cost
involved in computing the transform, in particular the abovemen-
tioned local communication costs. More specifically, this method
requires backward data transmissions that flow away from the sink,
so that compression performance is good in terms of overall rate,
but the transmission costs can be high. As an alternative, there have
been proposals to use 1D wavelet transforms along the routing paths
in the sensor network, in a way that explicitly considers the cost
of computing a transform and transporting transformed data to the
sink [3, 9]. These methods compute the transform in a unidirec-
tional manner, i.e., the transform is computed as data flows towards
the sink, thereby eliminating the overhead introduced in [7, 8], and,
again unlike [7, 8], they also provide techniques for optimizing the
number of levels of decomposition in order to exploit the tradeoff
between local communications and overall compression rates. The
main drawback of the approaches in [3, 9] is that they are essentially
1D transforms and, consequently, do not exploit the 2D spatial cor-
relation that exists in general 2D networks. For example, in [3], 1D
transforms are performed and simple ad hoc techniques are used to
combine the information obtained from two or more merging paths
along a route to the sink, so that the overall signal representation is
not critically sampled 1.

1The transform can be made critically sampled by simply forcing the rout-
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In this paper, we seek to combine the main advantages of these
existing methods. As in [7, 8], we define a critically sampled 2D
transform by extending the techniques in [3]. These new 2D trans-
forms are computed in a unidirectional manner, eliminating the
backward transmissions required in [7, 8], and can be developed on
arbitrary routing trees, facilitating joint decisions on compression
and routing. We also develop an algorithm that can choose the op-
timal coding scheme assignment for such a 2D transform in order
to exploit the tradeoff seen in [3, 9]. To the best of our knowledge,
no technique has been developed that can optimize encoding for a
unidirectional 2D transform for a given routing tree in an irregular
2D node deployment. Path-wise approaches were suggested in [3]
but are essentially 1D optimizations that do not directly extend to
our 2D transform.

The remainder of this paper is organized as follows. Section 2
presents the design and unidirectional computation of our proposed
transform. Section 3 gives a general overview of our proposed op-
timization framework. Section 4 provides experimental results to
compare our proposed method against those in [3, 7]. Section 5 con-
cludes the paper.

2. UNIDIRECTIONAL 2D TRANSFORMS USING LIFTING

Our goal in this section is to design a distributed 2D transform us-
ing lifting that is critically sampled to avoid the overhead in [3] and
computable in a unidirectional manner in order to lower transmis-
sion costs. Consider a sensor field with N nodes, where data xn is
captured by node n ∈ I = {1, 2, . . . , N}. Let T be a tree repre-
senting data routing through the network, with the root of the tree
corresponding to the sink (indexed by N + 1) , and each leaf node
representing the first sensor in a given path towards the sink. Let Cn

and ρn denote the set of children and the parent of sensor n in T , re-
spectively. We shall enumerate the children of n as cn,m = Cn(m),
wherem ∈ Kn = {1, 2, . . . , Mn} andMn = |Cn| is the number of
children of node n. Let depth(n) be the depth of node n in T , with
depth(N + 1) = 0.

2.1. Lifting Transform Design

A lifting transform [11] can be performed once we define disjoint
sets of prediction and update nodes at each level of decomposition
j, denoted Pj and Uj , respectively. Denote pn,j and um,j the pre-
diction and update operators at nodes n ∈ Pj and m ∈ Uj , respec-
tively. Then following the standard lifting techniques for j = 1, we
will have that the detail dm(m ∈ P1) and smooth, sn(n ∈ U1),
coefficients can be computed as:

dm = xm+
X

k∈U1

pm,1(k)xk and sn = xn+
X

k∈P1

um,1(k)dk,

where pn,1(n) = um,1(m) = 1.
For a 1-level transform, we split the nodes into prediction and

update sets according to their depth (i.e., the set of prediction nodes
will include all nodes of odd depth, with update nodes being those
of even depth) with respect to the root of the tree (the sink) which
has depth zero. Thus all one-hop neighbors of an even (odd) node
in T will be odd (even) nodes. In order facilitate computation of
the transform as data is being transported along T , we choose local-
ized operators so that non-zero weights are assigned only to one-hop
neighbors (in T ) of a given node, i.e., pn,1(k) = 0 and un,1(k) = 0
for k /∈ Cn,1 ∪ {ρn,1}. Note that, in general, nodes that are close to

ing to avoid path merges, but that leads to worse overall performance [3]

each other in T will also be close in physical distance (so that local
transport costs are kept low) and will also tend to produce data that is
more correlated than nodes further away in the tree. Thus, restricting
the transform to the one-hop neighbors is also reasonable in terms of
exploiting signal correlation for compression.

Figure 1 gives an example of the tree used to split nodes for 2-
levels. By extension to j-levels, Tj will consist of nodes of even
depth in Tj−1 with an edge between two nodes in Tj only if they are
2-hops apart in Tj−1. Then we can apply the same split method for
each Tj . Using this construction, we denote the children and parent
nodes of n ∈ Tj as Cn,j and ρn,j . Note that j-levels can be used
only if

¨
max(depth)/2j

˝
≥ 1. Also note that only T is used for

routing, all other trees are for splitting purposes only.

1-level of decomposition 2-levels of decomposition

VERSUS

Fig. 1. Trees used for splitting. Black center node is the sink

To facilitate the extension of the algorithms in [3] to our setting,
we propose the following filters for j-levels. For a node n ∈ Pj ,
we generate a prediction by averaging data in neighboring nodes,
i.e., pn,j(m) = − 1

|Cn,j |+1
for each m ∈ Cn,j ∪ {ρn,j}. For a

node m ∈ Uj , we similarly perform smoothing by using the detail
coefficients of its neighbors, i.e., um,j(k) = 1

2(|Cm,j |+1)
for each

k ∈ Cm,j ∪ {ρm,j}. Note that for 1D paths, these filters simplify to
the 5/3 CDF lifting filters from which our intuitive design is derived.
Our transform can also be extended to use filter design methods simi-
lar to those in [7] so that filters are adapted to relative node positions.
This may be a topic for future work.

2.2. Unidirectional Transform Computation

At j-levels of decomposition, the lifting transform in Section 2.1 is
computed by first applying the prediction filter on even nodes (in Tj)
to generate each dm,j , then applying the update filter on the detail
coefficients to generate each sn,j . Also notice that sn,0 = xn for all
n ∈ I. So for everym ∈ Pj :

dm,j = sm,j−1 +
X

k∈Cm,j

pm,j(k)sk,j−1 + pm,j(ρm,j)sρm,j ,j−1

(1)
and given every dm,j , for each n ∈ Uj we have:

sn,j = sn,j−1 +
X

m∈Cn,j

un,j(m)dm,j + un,j(ρn,j)dρn,j,j . (2)

This transform is invertible by construction (as all lifting structures)
and is also critically sampled, since there is only one wavelet co-
efficient per node, thereby eliminating the inefficiency of the path
merging technique in [3]. Defining the transform based on neigh-
borhood relations on the routing tree facilitates a unidirectional im-
plementation. Note that in (1) and (2) we explicitly separated terms
corresponding to children and parent nodes. Clearly, a unidirectional
approach would be such that a given node uses only data from its
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children, so there are no transmissions away from the sink (from a
parent to a child). As shown in [3] for the 1D case and a 1-level
decomposition, this can be achieved by allowing node n to compute
a “partial” wavelet coefficient using its own data and data from its
children. This partial coefficient is then forwarded to its parent ρn

where the computation is finalized.
Let dp(m) and sp(n) be the partial coefficient for each odd and

even node respectively. Assuming one level of decomposition, a
generalized partial coefficient algorithm works as follows. For each
m ∈ P , dp(m) = xm +

P
n∈Cm

pm(n)xn, where the data xn for
each child n is recovered from the partial sp(n) as xn = [sp(n) −P

m̄∈Cn
un(m̄)dm̄]. This is necessary since each child n ∈ Cm will

forward the partial sp(n) tom instead of the raw data xn (which re-
quires more bits). For each n ∈ U , do the following in this order. For
allm ∈ Cn complete previous partials i) dm = dp(m) + pm(n)xn

and ii) for each n̄ ∈ Cm, sn̄ = sp(n̄) + un̄(m)dm. Then, generate
sp(n) = xn +

P
m∈Cn

un(m)dm.
This algorithm provides transform computation as data flows

to the sink by computing coefficients over a small number of hops
rather than at a single node. This eliminates backward transmis-
sions, though it does incur some overhead since a few additional bits
are allocated to each partial to mitigate the effects of quantization
as in [5]. But from the partial coefficient computations above, it is
apparent that these few bits are only carried 1-hop for odd partials
and 2-hops for even partials, beyond which the coefficient is full and
those few bits are dropped. This is clearly less costly than backward
transmissions of full data/coefficients.

3. UNIDIRECTIONAL 2D TRANSFORM OPTIMIZATION

As discussed earlier, a mixture of coding schemes throughout the
network may be more energy-efficient than just one scheme, result-
ing in a tradeoff between more local transmission cost for lower fi-
nal transport cost [3, 9, 10]. In [4], a Dynamic Programming (DP)
framework was developed that finds optimal coding scheme assign-
ments in a path-wise manner. This guarantees optimality per path
but not necessarily 2D optimality. In any case, the optimization for-
mulation and algorithm in [4] does not directly extend to overlapping
1D paths so we must reformulate the problem for our transform.

Let S = {1, 2, . . . , J} index the set of coding schemes. For
our transform, each j ∈ S corresponds to a number of levels of
decomposition. Let Jj(n) be the optimal cost to arrive at coding
scheme j at node n from the children of n. Let tn

i,j be the cost to
transition from coding scheme i at node n to scheme j at ρn. Each
tn
i,j term captures each of the individual costs (i.e., transition and
computation costs) detailed in [5]. We can formulate our forward
DP problem as follows. For every node n ∈ I and for every j ∈ S:

Jj(n) = min
{im∈S:m∈Kn}

(
MnX
m=1

t
cn,m

im,j + Jim (cn,m)

)

The optimal costs must be found in a sequential manner and
this can be done as in Algorithm 1. For every node n, Algorithm 1
also stores the optimal levels of the children of n that correspond to
each Jj(n) as t(n, j) = (i∗1, i

∗
2 , . . . , i∗Mn

). Given the optimal costs,
define I1 = {m ∈ I : depth(m) = 1}. For every n ∈ I1 compute
j∗n = argminj∈S [Jj(n)]. Each j∗n gives the optimal scheme for
each depth one node and can therefore be used in conjuction with the
t(m, j) vectors of the descendants of n to assign the optimal scheme
to those descendants, all of which provide the optimal network.

Algorithm 1 Compute Optimal Costs
1: for k = max(depth) : −1 : 1 do
2: Ik = {m ∈ I : depth(m) = k}
3: for each n ∈ Ik do
4: for each j ∈ Sn do
5: Compute Jj(n) and t(n, j) = (i∗1, i

∗
2 , . . . , i∗Mn

)
6: end for
7: end for
8: end for

4. RESULTS AND DISCUSSION

For our performance evaluations, we compare against the path-wise
transform with heuristic path merging strategy in [3] and the 2D
transform in [7]. The transform in [7] splits nodes along a Delau-
nay tesselation, so their resulting transform neighbors are not always
neighbors along a good routing tree T (as in our transform). This tes-
selation invokes a particular routing tree and an order in that tree, but
that order may not be efficient since some backward transmissions
will be needed. This is not an issue for our transform since data is
always transmitted along a good routing tree T towards the sink. In
any case, for that in [7], once a node receives all of its neighbors
data/coefficients it computes its transform coefficient, quantizes it,
and transmits it along the shortest path routing tree to the sink.

We consider two different network topologies that exhibit very
different performance. The input data was generated using a second
order AR model with poles and zeros chosen to provide a relatively
smooth field. Figure 2 shows the optimal network topology for 200
nodes randomly deployed throughout a 600×600 grid and the asso-
ciated performance curves. Figure 3 shows the same for a 2-cluster
network with 100 nodes. For our transform, we only consider trans-
form and routing along a shortest path routing tree.
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Fig. 2. Energy consumption comparison shown on the right. Optimal levels
of decomposition for a uniform network shown on the left. Red x’s denote
1-level nodes and green circles denote 2-level nodes.

For both networks, our optimal transform is significantly better
than those in [3, 7]. As expected, our optimal transform is also su-
perior to using either our 1-level or 2-level transform throughout the
network. The performance of the 1-level transform is comparable
to that of the optimal transform, mainly because so few nodes use
2-levels.

While the transform in [7] exploits 2D spatial correlation more
effectively than ours, the cost is still higher. Their transform cost
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Fig. 3. Energy consumption comparison shown on the right. Optimal levels
of decomposition for a uniform network shown on the left. Red x’s denote
1-level nodes and green circles denote 2-level nodes.

is even worse than the raw data cost in some cases, a result corrob-
orated in [8] (a follow-up of [7]). This is not as prominent in the
2-cluster network since the nodes in the top cluster are very close to-
gether, thereby increasing overall coding efficiency. Backward trans-
missions are also reduced since nodes in the top cluster do not have
nodes in the bottom cluster as transform neighbors. This is not the
case for the uniform network since nodes are not as tightly spaced.

In both networks, our transform is superior to those in [3, 7]
since the unidirectional computation eliminates costly backward
transmissions without sacrificing critical sampling and 2D data de-
correlation. The same is true if we consider the average cost of each
network for a fixed distortion. Figure 4 shows the cost averaged
over 30 different uniform and 2-cluster networks for each number of
nodes. Clearly, all considered versions of our transform outperform
that of [7] in both cases. The optimal transform is also always the
best.
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5. CONCLUSIONS

We have developed a 2D transform that can be computed in a uni-
directional manner along an arbitrary routing tree. This allows the
transform to exploit 2D spatial correlation beyond existing path-wise
transforms without incurring the overhead of more general 2D trans-

forms. The transform is also flexible enough to accomodate arbi-
trary 2D node deployments while maintaining simplicity of design
and implementation. An optimization framework was also proposed
that exploits the tradeoff between higher local cost for more com-
plex coding in exchange for lower final transport cost. Simulation
results have established the superiority of our proposed method over
existing methods in terms of transform computation cost and coef-
ficient transport cost. These improvements are mainly the result of
the unidirectional computation of our 2D transform, which strongly
suggests the need to permit unidirectional transform computation
when designing distributed transforms for sensor networks so that
the amount of savings gained from greater data correlation is not
offset by excessively high local communication costs.
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