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ABSTRACT

We develop energy-efficient, adaptive distributed transforms for

data gathering in wireless sensor networks. In particular, we con-

sider a class of unidirectional transforms that are computed as data

is forwarded to the sink along a given routing tree and develop a

tree-based Karhunen-Loève Transform (KLT) that is optimal in that

it achieves maximum data de-correlation among this class of trans-

forms. As an alternative to this KLT (which incurs communication

overhead in order to learn second order data statistics), we propose

a backward adaptive filter optimization algorithm for distributed

wavelet transforms that i) achieves near optimal performance and ii)

has no communication overhead in learning statistics.

Index Terms— Adaptive Filters, Data Compression, Wavelet

Transforms, Wireless Sensor Networks

1. INTRODUCTION

Wireless sensor devices (sensor nodes) are extremely power limited,

especially since most sensor nodes are battery powered. Thus in

order to extend the lifetime of a Wireless Sensor Network (WSN)

it is important to develop efficient algorithms for data gathering, so

that data can be delivered to a sink or base station with high quality

while requiring minimal power consumption at the nodes.

In this context, in-network distributed transforms, e.g., [1, 2, 3,

4] and references therein, have long been considered an attractive

tool since they exploit the fact that data being gathered has to be

routed over multiple hops from sensor to sensor and spatial data cor-

relation exists across sensors. These transforms exploit existing spa-

tial correlation in data in order to reduce the number of bits to be

transmitted as data is routed towards the sink.

Our previous work [3, 5] has shown that i) the choice of a routing

tree is important, as it affects both the transport costs and the num-

ber of bits required to represent the data, and ii) it is more efficient

to compute the transform without any “backward” communications,

i.e., so that all operations are performed as data flows to the sink, a

principle we call unidirectional computation. Specifically, the trans-

form in [5] is constructed on a routing tree such that each node uses

data from its children and parent to transform its own. Thus, a trans-

mission schedule is defined to allow each node to collect data from

its descendants before it processes and forwards its own data. This

eliminates “backward” communications.

Given that typically sensors are not necessarily placed on a reg-

ular grid, it is useful to consider transforms that can adapt to spe-

cific characteristics of the networks. Broadly speaking two types

of network-adaptive transforms have been proposed in the literature:
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those that are “data-dependent”, i.e., exploit statistical correlations in

the data, and those that are “structure-dependent”, i.e., are based on

“structural” information about the network (e.g., relative distances

between nodes). A recent example of a data-dependent transform

is the distributed Karhunen-Loève Transform (KLT) [2], which can

be easily applied to WSN. This transform is useful for compression

since a KLT achieves maximum data de-correlation [6]. However,

the resulting transform is not unidirectional. Instead the network

must be separated into clusters, cluster-heads designated in each

cluster, then nodes forward data to their cluster-heads that in turn

compute the transform and forward coefficients to the sink. This is

inefficient since many nodes will need to transmit data away from

the sink. This method also incurs a learning cost to discover and

disseminate the correlation structure.

Examples of the second type of network-adaptive transforms in-

clude those that use structural information in the network to design

fixed (non-data adaptive) transforms. Thus, there is no learning cost.

In the wavelet transform proposed in [4] using wavelet lifting [7],

relative location information is used to design prediction filters at

nodes that give more weight to data from closer neighbors and less to

neighbors further away. However, unidirectional computation is not

guaranteed for this transform since the transform is not developed

along routing paths. The unidirectional wavelet transform proposed

in [5, 8] exploits spatial correlation across neighbors in a routing tree

by using prediction filters that employ simple averages.

For coding purposes, in order to maximize overall performance

it is important to maximize the amount of data de-correlation.

Structure-dependent approaches are only efficient in this sense when

the correlation in the data is also structure-dependent, e.g., corre-

lation is proportional to distance. Ideally, we want to construct

unidirectional transforms that can be adapted to the underlying data

in a distributed manner with no learning cost.

The main goal of this work is to develop distributed unidirec-

tional transforms that use spatial data statistics to maximize the

amount of data de-correlation with little to no learning cost. This

raises one natural question, i.e., how to best use statistics to de-

correlate data in the network. Since we wish to minimize the cost

of training we require that each node in the network adapt its own

coding strategy based only on the data it can observe. Thus, as-

suming that data is routed to a base station via a routing tree, a

given node can only observe its own measurements and those of its

descendants in the tree. In the first part of this paper, we assume that

each node knows the second order data statistics corresponding to

all its descendants in the routing tree. Based on this we develop a

tree-based KLT that is computed as data is routed towards the sink.

This transform gives the best possible representation when we do

not allow any backward communications (e.g., we do not allow the



sink to transmit back to the nodes complete second order statistics

for the whole network). No such KLT has been proposed to the best

of our knowledge. Note that a significant amount of learning must

be done to produce a reliable estimate of the necessary statistics.

As a pratical alternative, we consider unidirectional tranforms

that use spatial prediction filters to de-correlate data and adapt these

filters to data statistics over time in a distributed manner with vir-

tually no learning cost. Techniques that adapt the filters used in

wavelet decompositions using lifting have been proposed for image

processing applications. In [9], both the length of each prediction

filter and the filter coefficients are adapted to data by solving a least

squares problem. However, when applying this idea to a WSN the

sink must know the coefficients and lengths of the filters that nodes

use in order to invert the transform and so nodes must transmit these

values along with the data, resulting in some communication over-

head. The method in [10] adapts filters with no learning cost by

using an adaptive filter run over consecutive predicted pixels with a

fixed weight vector applied to a fixed set of neighbors. Since nodes

in a WSN will generally have a different number of neighbors, a

fixed weight vector cannot be applied. Instead, we use prediction

filters that can be applied to an arbitrary set of neighbors and use

adaptive filtering to tailor these filters to data statistics at each node

(over time) using data from the node and its neighbors. Thus, we can

achieve distributed filter adaptation with virtually no learning cost.

This paper is organized as follows. Section 2 describes the tree-

based KLT. Section 3 provides an algorithm to estimate the optimal

lifting filters with no learning cost. Section 4 evaluates the perfor-

mance of the proposed algorithms. Section 5 concludes the work.

2. TREE-BASED KLT

It is well known that the KLT can maximally de-correlate any signal

for which the second order correlation structure is known. The obvi-

ous advantage of such a transform is improved coefficient encoding.

In order to use the KLT for distributed compression in WSN, the

ideal scenario would be to first compute the correlation matrix of the

entire network and then whiten the measurements of each node using

the KLT. However, this requires a great deal of inter-node commu-

nication since each node must exchange data with every other node.

The distributed KLT [2] is designed specifically for implementation

on a WSN, but requires many backward transmissions and so can

be inefficient when considering total communication cost. To avoid

such backward transmissions, we only consider unidirectional trans-

forms. Thus, nodes must transmit data towards the sink along a rout-

ing tree in the order specified by some transmission schedule. For

example, we may schedule transmissions so that a node will only

transmit once it receives data from all of its descendants. This means

that data correlation can only be exploited on the sub-trees formed at

each node along routing paths. By applying a KLT to the measure-

ments collected up to each node, we can maximally de-correlate the

data of that node’s sub-tree. Thus, this tree-based KLT (T-KLT) is

the best among all unidirectional transforms in terms of maximizing

data de-correlation. It also serves as an upper bound on the perfor-

mance of any distributed, unidirectional transform.

The following notation will be used in the mathematical formu-

lation. For a given node n in an N node network with routing tree

T = (V, ET ), x(n) is its measurement and Subtree(n) is the set of

nodes in the sub-tree below n including node n itself. Moreover x[n]
is the data vector containing all measurements from Subtree(n). Kn

is the correlation matrix of the nodes in Subtree(n) and child(n)
is the vector containing all 1-hop children of node n. Finally, let

depth(n) denote the number of hops from node n to the sink.

2.1. Unidirectional T-KLT

The unidirectional T-KLT algorithm has two phases. In the training

phase, we find the whitening and coloring matrices as detailed in

Algorithm 1. For a given correlation matrix Kn for each node n

we compute the matrix En of eigenvectors that diagonalizes it, i.e.,

ET
nKnEn = Σn, where Σn is the diagonal matrix of eigenvalues

of Kn. The whitening matrix for this node in the non-singular case is

Σ
−1/2
n ET

n and the corresponding coloring matrix is EnΣ
1/2
n These

are denoted as Hn and Gn respectively. If Kn is singular with

rank m < |Subtree(n)|, we take Ẽm (Σ̃m) as the m eigenvectors

(diagonal matrix of eigenvalues) corresponding to the m non-zero

eigenvalues in Σn. The whitening matrix is then Σ̃
−1/2
m ẼT

m and

the coloring matrix is found using the singular value decomposition

of Σ̃
−1/2
m ẼT

m. So for each node n, we compute Hn for n using

Kn and GCn(k) using KCn(k) for every child Cn(k) of n. As we

shall discuss in the next subsection, this requires a lot of inter-node

communication and increases the cost of operation.

The second phase is forwarding. Encoded coefficients W are

forwarded from leaf nodes all the way up to the sink node as ex-

plained in Algorithm 2. For example node n receives encoded coef-

ficients WCn(k) from each of its child Cn(k) and reconstructs orig-

inal data x[Cn(k)] using the corresponding coloring matrix. It then

combines data from all children nodes with its own measurement

x(n). This combined x[n] is then whitened using Hn and sent to

next hop node in routing tree.

Algorithm 1 Tree-KLT Training Algorithm

1: for k = max(depth) : −1 : 1 do

2: Ik = {m ∈ V : depth(m) = k}
3: for each n ∈ Ik do

4: Compute Kn = En ∗ Σn ∗ET

n

5: Hn = Σ
−1/2
n ∗ET

n

6: Compute Cn = child(n)
7: Compute nC = size(Cn)

8: for each k = 1 to nC do

9: Compute KCn
= ECn

∗ΣCn
∗ET

Cn

10: GCn(k) = ECn
∗Σ

1/2
Cn

11: end for

12: end for

13: end for

2.2. Learning Cost for T-KLT

Training could be done by forwarding raw measurements to the sink

for a certain period of time. During this period each node trains its

correlation matrix based on the measurements it receives from its

sub-tree. The training phase could also be done by an online esti-

mation of correlation matrices at each node and forwarding those

matrices to the next hop node along with the transformed coeffi-

cients. In either case there is some time-lag before each node can

efficiently start de-correlating data. In the latter case there is an ad-

ditional overhead of sending correlation matrices that rapidly grow

in size near the sink. Moreover the cost of training grows quadrat-

ically with the increase in the size of the network, i.e., in order to

estimate an N × N correlation matrix we require at least N obser-

vations of an N dimensional data vector. Thus the advantages of

forwarding un-correlated data to the sink are eclipsed by the cost of

training. In addition, the algorithm undergoes transform and inverse

transform at each node in the routing path and so it also suffers from

the propagation of quantization error.



Algorithm 2 Tree-KLT Forwarding Algorithm

1: for k = max(depth) : −1 : 1 do

2: Ik = {m ∈ V : depth(m) = k}
3: for each n ∈ Ik do

4: Compute Cn = child(n)
5: Compute nC = size(Cn))

6: for each m = 1 to nC do

7: Receive WCn(m) from mth child of node n

8: x[Cn(m)]. = GCn(m) ∗ WCn(m)

9: x[n] = [x(n),x[Cn(1)], ..., x[Cn(nC)]
10: Wn = Hn ∗ x[n]
11: Transmit Wn to next hop

12: end for

13: end for

14: end for

3. DISTRIBUTED FILTER OPTIMIZATION

As a practical alternative to the T-KLT, we propose a method for

adaptively changing the predictive filtering operations used within

standard coding schemes. This adaptation is performed in a dis-

tributed manner with virtually no learning cost. We first discuss how

to find optimal spatial prediction filters, particularly, ones that min-

imize the energy in each residual prediction error. Suppose we are

given an arbitrary encoding scheme that uses a prediction step to

de-correlate data (such as DPCM or a lifting transform). For each

predicted node n, we want to find a linear estimate of x(n), given by

x̂(n) =
P

i∈Nn
pn(i)x(i) for some set of neighbors Nn, that mini-

mizes the residual prediction error d(n) = x(n)−x̂(n). The optimal

solution for each predicted node n is the vector p∗
n that minimizes

E[d2(n)], e.g., the Wiener-Hopf solution [11], and is a function of

the correlation RX(i, j) = E[x(i)x(j)] between nodes i, j ∈ Nn.

As discussed in Section 2.2, estimation of these statistics is

costly in terms of delay, computation and communication. Alter-

natively, we can use adaptive filters to estimate the optimal spatial

prediction filters over time with no learning cost since they i) con-

verge to the optimal filters for stationary data, ii) do not require

estimates of data statistics and iii) are such that the filtering done at

one node can be replicated at any other node (e.g., the sink) given

only the residual prediction errors and the same initial prediction

filters. As such, we can apply an adaptive filter at each node to es-

timate the optimal prediction filters. Note that no information need

be sent to the sink, but it still takes time for the filters to adapt to the

data well enough to produce good predictions. Thus, there will be a

small learning cost for nodes to initially “train” their filters and also

to “re-train” their filters when data statistics change (i.e., the overall

encoding rate will be higher during training periods, during which

filters have not yet converged to a state that matches current data

statistics.)

There is a variety of adaptive filters we can choose from, but

for each method the step-size parameter µ often must be chosen

based on some data dependent parameters to ensure filter conver-

gence. Since we generally will not have prior knowledge of those

data dependent parameters, the most suitable choice for this applica-

tion is a normalized least mean squares adaptive filter since µ need

not be specified but is instead adapted as the filter is adapted.

Some additional notation is now established. Suppose each node

measures data at times t1, t2, . . . , tM . Denote by x(n, m) the data

at node n taken at time step tm. The linear prediction coefficient

matrix (N × M ) for node n is given by pn, where column i, i.e.,

pn(:, i), is the prediction vector at the i-th time step at node n. Using

the formulation in [11], we have the following adaptive filter at each

prediction node n run over time from m = 1 up to m = M :

• x̂(n, m) = pT
n (Nn, m)x(Nn, m)

• d(n, m) = x(n, m) − x̂(n, m)

• pn(Nn, m + 1) = pn(Nn, m) + µ
x(Nn,m)d(n,m)

xT (Nn,m)x(Nn,m)

This technique can be easily applied to the unidirectional lift-

ing transform in [8]. In this transform, at each level in the wavelet

decomposition nodes are split into even and odd sets, P and U , re-

spectively, along some tree T . Then, for each node n ∈ P the pre-

diction filter pn(:, m) is applied to data from its neighbors to form a

prediction x̂(n, m) and the detail coefficient d(n, m) = x(n,m) −
x̂(n, m) is computed and forwarded to the sink. Similarly, for each

n ∈ U , an update filter is applied to data at n using detail coefficients

from Nn to generate smooth coefficient s(n, m).

Minor modifications of the algorithms in [8] are needed to main-

tain unidirectional computation. In particular, under this unidirec-

tional transform, each odd node uses data from its parent and chil-

dren for prediction but only receives data from its children. This is

problematic since an adaptive filter can only be run when all data it

uses is available. To address this issue, we simply require that each

n ∈ P forward raw data one hop to its parent, at which point all data

used to adapt pn is available. Also, each n ∈ U must forward raw

data two hops to avoid repeatedly de-coding and re-encoding coeffi-

cients. This results in essentially the same local communication cost

as that in [8]. The sink can reverse this processing by inverting the

smooth coefficients to get x(n, m) for each n ∈ U , and then can run

the adaptive filter for each l ∈ O using d(l, m) to find the predic-

tion filter used at each time step m, at which point it can invert the

prediction step to recover x(l,m) for each l ∈ O.

We can also apply these adaptive filters to a simple tree-

based DPCM (T-DPCM). As data is forwarded to the sink, each

node n will have access to its children’s data and so can pre-

dict its own data x(n, m) with data from its children then en-

code and forward the difference. Hence, we compute x̂(n, m) =
P

k∈Cn
pn(k, m)x(k), then encode and forward the difference

d(n, m) = x(n, m) − x̂(n, m). As in the wavelet encoding case,

each node will also forward raw data one step for the reasons dis-

cussed above. The prediction vectors pn(:, m) are then adapted

over time using the formulation given above and the sink would

reconstruct the original data in a manner similar to that done for the

wavelet transforms.

4. EXPERIMENTAL RESULTS

The tree-based wavelet transform [8] is used to compare the

“structure-dependent” filter designs of [4, 8] against our distributed

optimization method. We also compare these against the T-KLT

and T-DPCM with adaptive filters. The adaptive filters are run over

time using data collected at each node and at neighboring nodes.

The sequential entropy coding scheme in [12] is used to encode the

transform coefficients of each node. Energy consumption is mod-

eled as in [13], where the cost to transmit k bits a distance D is equal

to C = cpkD2 Joules with cp a constant of proportionality. Further-

more, in those models the energy consumed in receiving k bits and

performing computations is negligible compared to transmission

costs and so we assume zero cost for reception and computation.

For our experiment, we use a set of empirical data taken from

19 sensors from a habitat monitoring deployment [14] on the Great

Duck Island. The routing topology is shown in Figure 1(a). The

performance curves in Figure 2 compare the trade-off between total



energy consumption (in Joules) and reconstruction quality, i.e., SNR,

for each method. T-DPCM with adaptive filters has the worst perfor-

mance because most nodes only use data from at most one neighbor

to de-correlate their own data. In the case of the wavelets, each node

uses data from its parent and children. The average prediction filters

of [8] obviously have the worst performance among wavelet-based

approaches. The planar prediction filters of [4] outperform the aver-

age filters and the distributed filter optimization scheme we propose

here is second only to the T-KLT. However, in practice there will

be significant learning costs that we do not account for here. Also

note that the T-KLT suffers from quantization error propagation, i.e.,

more distortion at lower costs (coarser quantization), unlike the other

methods. Due to a lack of space, we have omitted results for the ar-

tificial data used in [5, 8]. The relative performance is very similar

for that data, except that the T-KLT does much better than our opti-

mization scheme since that data is actually spatially stationary.

We also examine the transient behavior of our filter optimization

scheme. Figure 1(b) shows SNR values of the reconstructed data at

each measurement time with comparable energy consumption for

the T-KLT and our method. Our proposed method converges to SNR

values similar to the T-KLT in about 40 iterations and so converges

to near optimal performance with very little learning cost.
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5. CONCLUSIONS

Optimal unidirectional transforms have been developed for WSN.

A tree-based KLT is presented that achieves the maximum de-

correlation among all possible unidirectional transforms on a rout-

ing tree but incurs significant learning overhead to estimate the

necessary statistics. As an alternative, we also proposed a filter op-

timization method for lifting transforms and T-DPCM that achieves

performance close to the T-KLT with virtually no learning cost.
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