
ENERGY-EFFICIENT GRAPH-BASED WAVELETS FOR DISTRIBUTED CODING IN
WIRELESS SENSOR NETWORKS

Godwin Shen, Sundeep Pattem and Antonio Ortega

Ming Hsieh Department of Electrical Engineering
University of Southern California

godwinsh@usc.edu, pattem@usc.edu, ortega@sipi.usc.edu

ABSTRACT

This work presents a class of unidirectional lifting-based wavelet

transforms for an arbitrary communication graph in a wireless sen-

sor network. These transforms are unidirectional in the sense that

they are computed as data is forwarded towards the sink on a routing

tree. We derive a set of conditions under which a lifting transform

is unidirectional, then find the full set of those transforms. Among

this set, we construct a unidirectional transform that allows nodes to

transform their own data using data forwarded to them from their de-

scendants in the tree and data broadcasted to them from their neigh-

bors not in the tree. This provides a higher quality data representa-

tion than existing methods for a fixed communication cost.

Index Terms— Data Compression, Wavelet Transforms, Wire-

less Sensor Networks

1. INTRODUCTION

Wireless sensor networks (WSN) have garnered much attention

given the low-cost of sensor devices (nodes) and their potential for

distributed and autonomous operation. One of the main challenges

WSN face is that sensor devices are often battery-powered, and so

are severely energy-constrained. In order to achieve energy-efficient

data gathering in WSNs it is important to study how to effectively

exploit spatial data correlation to lower total power consumption.

We consider scenarios where a set of samples is captured by sensors

in the network. Then, sensors cooperate to transmit this set of sam-

ples to a single sink node. The goal is to minimize the total power

consumption in the network needed to achieve a given quality for

the reconstruction of this set of samples achievable at the sink.

In-network compression (e.g., [1, 2, 3, 4]) can lead to overall

lower communication costs and power consumption: sensor nodes

compress data they receive from other nodes as they relay it to the

sink. This raises the question of how best to organize data gathering

through the network. If there was no in-network compression and

an equal number of bits were used for each sample, then it would

be best to simply gather data through a shortest path routing tree in

order to minimize total power consumption. However when using

in-network compression it will be necessary to search for the best

combination of routing and compression [1, 4]. Radio power lev-

els for each sensor determine which pairs of sensors are in direct

communication with each other. We will define an undirected graph

where each edge represents one of these communication links and

we will focus on designing strategies for data transfer (how data is

routed in the graph) and data processing (how sensors compressed

data) that can optimize overall power consumption.

This work was supported in part by NASA under grant AIST-05-0081.

In this work we focus on distributed signal transforms, which

can be efficient tools for in-network compression. Our work is based

on two observations. First, performance of these transforms depends

on how well they exploit local correlation, i.e., for maximal spa-

tial de-correlation data sampled in a node should be transformed

along with data from all, or most, of its neighboring nodes. How-

ever, performing a transform incurs communications cost, since data

needs to be exchanged across nodes. For example, the 2D wavelet

in [2] de-correlates data using a lifting transform [5] constructed on a

graph such as the one we consider here. Nodes are partitioned (split)

into even and odd sets by choosing odd nodes that give maximal

de-correlation. Then data is filtered across these sets. In terms of

de-correlation, this transform is efficient since each odd (even) node

transforms its own data using data from all of its even (odd) neigh-

bors. However, this transform is inefficient in terms of the overall

number of communications since even nodes must first transmit raw

data to odd neighbors, then wait for odd neighbors to transmit trans-

form coefficients back to them and then compute their own trans-

form coefficients and forward them to the sink. This produces sig-

nificant communication overhead since many nodes are transmitting

data twice (and possibly data is transmitted “away” from the sink).

Then, our second observation is that it is best to design trans-

forms with low communications cost, by requiring nodes to trans-

mit data just once1 and to do so in the direction of the sink. Trans-

forms have been proposed that only require a node to transmit data

once. This is achieved by computing the transform as data is for-

warded to the sink along a given routing tree. We say that such

transforms have unidirectional operation. The wavelet transform

proposed in [1] has unidirectional operation since each node only

transforms its own data using data from neighbors along a 1D rout-

ing path to the sink. The tree-based 2D wavelet transform proposed

in [3, 4] is constructed on an arbitrary routing tree, resulting in a

critically sampled transform (one coefficient per node) that exploits

correlation across routing paths and also has unidirectional opera-

tion. These transforms are more efficient than that of [2], but nodes

only exploit correlation using data from their neighbors in the rout-

ing tree, whereas in [2] correlation is exploited using data from all

neighbors. In this paper, we develop transform designs that enable

more correlation to be exploited across more neighbors (as in [2]),

while preserving unidirectional operation as in [3, 4].

Note that both communication cost and the transform itself de-

pend on how data is routed to the sink. Thus we assume that we have

a routing tree describing how data from each node flows to the sink.

Moreover, since each node transmits its sensed data just once, the

time at which transmission occurs determines how this sample can

1More precisely, each node communicates once for each data sample it
captures, but also relays data from other nodes

be used by other nodes for compression. Thus if a node i schedules

to communicate its sample after a neighbor j has already transmit-

ted its own, then node j may not be able to use information from i
for coding. Therefore, in addition to the routing tree, we define a

transmission schedule that determines the time at which each node

is supposed to transmit a sample.

Assuming a fixed communication graph, routing tree, and trans-

mission schedule, the main goal of this work is to find (i) all feasible

transforms with unidirectional operation, and (ii) ways to select the

best transform. To do so, in Section 2 we first establish conditions

under which a lifting transform has unidirectional operation. We

also find sub-graphs on which these transforms exist. In Section 3,

we construct a unidirectional lifting transform on these sub-graphs

and provide a unidirectional computation algorithm. This provides

a unidirectional transform on a graph that is more general than that

proposed in [1, 3, 4] and also exploits more of the existing correla-

tion using data received over links not used for routing, as in [2]. The

performance improvements that this transform provides are demon-

strated in Section 4. These transforms also have more general rele-

vance since they can be applied to any type of data on any graph.

2. UNIDIRECTIONAL TRANSFORMS ON GRAPHS

Let G = (V, E) be an undirected communication graph of a WSN

with N nodes indexed by n ∈ I = {1, 2, . . . , N}, with the sink

node having index N + 1 and where each edge (m, n) ∈ E denotes

a communication link from node m to node n. Let T = (V, ET) be

a routing tree in G along which data, denoted by x(n), flows towards

the sink . Let depth(n) be the number of hops from n to the sink on T
and let ρn denote the parent of n, Cn the set of children of n and Dn

the descendants of n in T . Also let An denote the set of nodes that

n routes data through to the sink excluding the sink, i.e., ancestors

of n. We define a transform as a set of linear operations on data x
specified by the computations y(n) = αn

0 x(n)+
PM

i=1
αn

i x(ni) for

each node n with some set Nn = {n1, n2, . . . , nM}. In addition, let

yp(n) = αn
0 x(n)+

PMp

j=1 αn
ij

x(nij
) denote the “partial” coefficient

of n for some N p
n = {ni1 , ni2 , . . . , niMp

} ⊂ Nn.

Our goal is to find transforms that have unidirectional operation.

To do so, the data a node can use in the transform depends on the

order in which nodes transmit data. This is illustrated in Fig. 1. For

example, node 2 can use x(6), x(7) and x(12) to compute y(2),

e.g., N2 = {6, 7, 12}, since 6, 7 and 12 transmit before 2. Data

x(n) can also be processed at any node m ∈ An, i.e., n’s parent

or grandparent, using x(m). For instance, node 5 has neighbors

N5 = {1, 11} so it can generate yp(5) = α5
0+α5

2x(11) and forward

yp(5) and x(11) to node 1. Once node 1 receives yp(5) it completes

the computation as y(5) = yp(5) + α5
1x(1). Note that not all data

can be used, i.e., x(5) cannot be used to process x(10) since node 5

transmits after node 10. To make these ideas more precise, we now

define a transmission schedule and unidirectional operation.

Definition 1 (Transmission Schedule). A transmission schedule is

a function t : I → {1, 2, . . . , Mslot}, such that i) t(n) = j when

node n transmits in the j-th time slot2 and ii) n transmits data before

node m whenever t(n) < t(m).

2Note that these time slots are not necessarily of equal length; they simply
allow us to describe the order in which communications proceed in the net-
work; before time t(n), node n is listening to other nodes, and at time t(n)
node n starts transmitting its own data, along with data from its descendants
in the routing tree.

11
12

5 6

1 2

3

8

4

10

9

13

7

11
12

5 6

1 2

3

8

4

10

9

13

7

Forwarding Link

Broadcast Link

Sensor Node

Sink Node

After removing
forbidden links

Transmission Slots

Time Slot Node(s)

 1 9,11,12

 2 7,10,13

 3 4,5,6,8

 4 2,3

 5 1

Fig. 1. Toy example to illustrate the theory. Solid arrows indicate “for-

warding” links over which data is routed to the sink, dashed arrows indicate

“broadcast” links and nodes transmit in the order of the time slot specified.

Definition 2 (Unidirectional Operation). Let Bn = {k : t(k) <
t(n), (k, n) ∈ E} be the set of one-hop neighbors of n that transmit

before n does. We say a transform has unidirectional operation on a

routing tree T under transmission schedule t if, for each node n, (i)

data is only forwarded along T according to the schedule specified

by t, i.e., from n to ρn in slot t(n), and (ii) n only transmits the

coefficients of its descendants and either x(n) or yp(n) or y(n).

This definition allows each node n to use data from any m ∈ Bn

to transform its own data x(n). Node n can also use data from some

node m ∈ An since either x(n) or yp(n) will be available at m. We

simply delay that processing of x(n), a principle we call “delayed

processing”. In particular, one of three things happens when n for-

wards x(n) or yp(n) to ρn: ρn either i) completes the computation

of y(n) or ii) generates or updates yp(n) or iii) does nothing. If n
forwards y(n), ρn also does nothing. This leads to Proposition 1

which provides conditions for unidirectional operation.

Proposition 1. Let T be a routing tree in a graph G with trans-

mission schedule t. Then a transform has unidirectional operation

whenever y(n) = α0x(n) +
P|Nn|

i=1
αix(ni) for Nn ⊂ Bn ∪ An

chosen so that n need not forward data from any m ∈ Bn −Dn.

For a lifting transform, at each level of decomposition, nodes

are first partitioned into even and odd sets, E and O respectively,

with E ∩ O = ∅. Each odd node n generates detail coefficient d(n)
using data from its even neighbors. Then, each even node m gener-

ates smooth coefficient s(n) using coefficients of its odd neighbors.

The conditions for a unidirectional lifting transform are presented in

Proposition 2. This follows from Definition 2 and Proposition 1.

Proposition 2. Let T be a routing tree in a graph G with trans-

mission schedule t. Let E and O denote the even and odd sets of a

lifting transform on nodes of G. This lifting transform is unidirec-

tional on T using schedule t if, for all nodes n, (i) n only forwards

coefficients from itself and its descendants, (ii) if n ∈ O, d(n) =

x(n) +
P|Ñn|

i=1
pix(i) for Ñn = (Bn ∪ Cn ∪ {ρn}) ∩ E , and (iii) if

n ∈ E , s(n) = x(n) +
P|Ñn|

i=1
uid(i) for Ñn = (Cn ∪ {ρn}) ∩ O.

A unidirectional multi-level lifting transform is also guaranteed

if we apply some split method at each level j > 1 to get even and

odd sets Ej and Oj , then re-apply Proposition 2 to the sets Ej and

Oj on only the smooth coefficients of Ej−1.

If we examine the allowable edges for each n, i.e., En =
{(m, n) : m ∈ Bn ∪ {ρn}}, we see that the sub-graph G′ =
(V,∪n∈IEn) can be used to define every lifting transform that

satisfies Proposition 2. This is formalized in Proposition 3.

Proposition 3. Let T be a routing tree in a graph G with trans-

mission schedule t. For each n ∈ I, let En = {(m, n) : m ∈
Bn ∪ {ρn}}. Let E′ = ∪n∈IEn. Then a unidirectional lifting

transform satisfies Proposition 2 only if it is defined on the sub-graph

G′ = (V, E′). We say that G′ contains all such lifting transforms.

Proof. Suppose a lifting transform, with even and odd sets E and O
respectively, satisfies Proposition 2. Define Ñn as in Proposition 2

using E and O. Each odd node n will only use data from l ∈ Bn ∪
Cn ∪ {ρn} and clearly (l, n) ∈ E′ for each l. Each even node m
only uses data from k ∈ Cm ∪ {ρm} and (k, m) ∈ E′ for each k.

Therefore, this transform can be constructed on G′ = (V, E′).

3. LIFTING TRANSFORM CONSTRUCTION

We achieved our first goal in Section 2. We now study our other

goal by proposing a new unidirectional lifting transform. To define a

lifting transform we must decide on a splitting rule and filter design

strategy. Proposition 3 specifies the set of possible unidirectional

lifting transforms. Note that G′ contains the lifting transform pro-

posed in [3] since it is constructed exactly on T but it does not nec-

essarily contain the lifting transform in [2] since it is not necessarily

unidirectional. However, it will contain unidirectional transforms

close to that in [2]. Thus, constructing a transform on G′ will com-

bine the benefits of these transforms and eliminate their deficiencies.

3.1. Split Design

We split nodes on the sub-graph G′ using a slight modification of

the strategy in [2]. In this construction, all nodes are initially unas-

signed. In a lifting transform, data at odd nodes is predicted using

data from even neighbors and residual prediction errors are used to

represent their data. Thus, odd nodes are chosen first based on the

number of neighbors of each node since using more data tends to

produce better predictions (and smaller errors). Thus, we first as-

sign the node in G′ with the most neighbors as odd, then assign its

neighbors as evens. Then among the remaining unassigned nodes

we assign the node in G′ with the most neighbors as odd, assign its

neighbors as evens, then repeat until all nodes are assigned. This

method produces a very uneven split since there are always fewer

odds than evens. To enforce a more flexible assignment of parity,

we do this until all nodes are assigned, then run this procedure again

using only the evens until a certain number of odds is reached. Over

L levels of decomposition on G′, this produces disjoint sets of odd

and even nodes, Oj and Ej , respectively, for j = 1, 2, . . . , L.

We then apply Proposition 2 to achieve unidirectional opera-

tion. This forces nodes to distinguish between “broadcast” links,

over which data is only used for transform, and “forwarding” links,

over which data is used for both transform and routing. In this

case, broadcast links for n ∈ O are the (m,n) ∈ E′ such that

m ∈ (Bn ∩ E)− Cn and forwarding links are the (m, n) ∈ E′ such

that m ∈ Cn ∪ {ρn} (with Bn, Cn and ρn defined as in Section 2).

The “transform” neighbors of n are Nn = (Bn ∪ Cn ∪ {ρn}) ∩ E
for n ∈ O. Moreover, it is clear that there are no broadcast links

for n ∈ E and the forwarding links are the (m, n) ∈ E′ such that

m ∈ Cn ∪ {ρn}. Also, Nn = (Cn ∪ {ρn}) ∩ O for n ∈ E .

3.2. Filter Design and Computation

Define linear prediction operators pn,j and update operators um,j at

nodes n ∈ Oj and m ∈ Ej , respectively. These filters can be de-

signed in a variety of ways. For instance, the prediction and update

filters of [3] use simple averaging and smoothing filters and the fil-

ters in [2] use prediction filters that can perfectly de-correlate piece-

wise planar data and update filters that keep the average value of the

transform coefficients the same at every level of decomposition. We

adopt the latter design since it produces better predictions.

Let Nn,1 = Nn be the constrained set of neighbors defined in

Section 3.1 and define neighbors Nn,j for all n and j = 1, 2, . . . , L.

Then for each m ∈ Oj we compute detail coefficient dj(m) as:

dj(m) = sj−1(m) +
X

k∈Nm,j

pm,j(k)sj−1(k) (1)

and given every dj(m), for each n ∈ Ej , we get smooth coefficient

sj(n) computed as follows (note that s0(n) = x(n)):

sj(n) = sj−1(n) +
X

l∈Nn,j

un,j(l)dj(l). (2)

3.3. Unidirectional Computation Algorithm

For simplicity of presentation, let O = O1, E = E1, An = {ρn},

pn = pn,1 for each n ∈ O and um = um,1 for each m ∈ E .

Also let d(n) = d1(n) for n ∈ O and s(m) = s1(m) for m ∈ E .

Let this define a lifting transform satisfying Proposition 2. We now

describe how to compute the transform as data is routed towards the

sink. When an odd (even) node receives all data from evens (odds)

in previous time slots, it filters its own data with that data, processes

the coefficients of its descendants when necessary, then forwards its

coefficients and those of its descendants to the sink. Note that an

odd node n may receive data from some m /∈ Dn via broadcast. By

Proposition 2, it can use that data to filter its own but it must not

forward it to the sink. This is detailed in Algorithm 1.

Algorithm 1 Unidirectional Computation Algorithm

1: for m = 1 to Mslot do

2: Im = {n ∈ I : t(n) = m}
3: for all n ∈ Im ∩ E (evens in the m-th time slot) do

4: for all l ∈ Cn ∩O do

5: d(l) = dl + pl(n)x(n)
6: For all k ∈ Cl ∩ E , s(k) = s(k) + uk(l)d(l)
7: end for

8: s(n) = x(n) +
P

l∈Cn∩O un(l)d(l)
9: end for

10: for all n ∈ Im ∩ O (odds in the m-th time slot) do

11: d(n) = x(n) +
P

l∈Bl∩E pn(l)x̂(l)
12: for all l ∈ Cn ∩ E do

13: If l ∈ E and ρn ∈ O, s(l) = s(l) + ul(n)d(n)
14: end for

15: end for

16: end for

3.4. Discussion

This transform construction provides greater de-correlation than

in [3] and is unidirectional unlike in [2]. There is, however, an

intimate connection between T and t and the performance of the

transform. We propose the following transmission schedule, which

assigns nodes further from (closer to) the sink earlier (later) time

slots to provide a natural flow of data towards the sink. In other

words, nodes furthest from the sink first forward to their parents

in T , then nodes second furthest process their data and forward

to their parents, etcetera. Let Lm = {k : depth(k) = m} and

dmax = max(depth). We first uniquely assign |Ldmax | time slots

to the nodes in Ldmax , i.e., each n ∈ Ldmax is assigned a unique

time slot t(n) ∈ {1, 2, . . . , |Ldmax |}. For each set Lm, we assign

time slots to nodes in the same way, where each n ∈ Lm is assigned

a unique time slot t(n) ∈ {Nm + 1, Nm + 2, . . . , Nm + |Lm|},

with Nm =
Pdmax

i=m+1
|Li|. At each depth m, nodes with fewer

neighbors are assigned earlier time slots and those with more are

assigned later time slots. This allows nodes with many neighbors to

receive, and hence utilize, data over most of their available links in

G′. Note that, though joint optimization of compression and routing

was considered in our previous work [4], better overall performance

(in terms of cost, reconstruction quality and transmission delay)

may be achieved if compression is jointly optimized with routing

and transmission scheduling. This is a topic for future work.

4. EXPERIMENTAL RESULTS

In this section we compare the tree-based wavelet in [3] with the uni-

directional lifting transform presented here. As discussed here and

as demonstrated in [3], the cost for using the transforms in [1, 2]

is higher than the tree based wavelet and so we omit it from our

comparisons. For both transforms, we use the predict and update

filter design proposed in [2]. We also compare against the use of

“delayed processing” for the tree-based wavelet. In particular, since

even (odd) depth nodes in the tree are even (odd) in the transform,

the grandchildren of each even node will also be even. Since such

grandchildren are even nodes themselves, their coefficients are low-

pass coefficients. Moreover, every node will have access to the coef-

ficients of its grandchildren. Thus, each even node can apply an ad-

ditional level of decomposition to the low-pass coefficients of their

grandchildren (i.e. more de-correlation) with no added cost. Nodes

of depth one can do the same for their even children. This transform

is still unidirectional since the coefficient of each even node (for the

first level of decomposition) will be completed at its grandparent.

We use an AR-2 model to generate (noise-free) simulation data

with high spatial correlation. A randomly generated 50 node net-

work is used with a graph obtained using a fixed radio range at each

node. The shortest path routing tree (SPT) is shown in Fig. 2(a). We

use the transmission schedule discussed in Section 3.4. The structure

of the transform presented here is shown in Fig. 2(b).

Performance comparisons are shown in Fig. 3, which plots en-

ergy consumption versus reconstruction quality (in terms of Sig-

nal to Quantization Noise Ratio). Energy consumption is modeled

as in [6]. Each point corresponds to a different quantization level

with sequential entropy coding applied to coefficients at each node.

The tree-based wavelet has worst performance, but improves sig-

nificantly when adding delayed processing. The transform proposed

here does best since it exploits more correlation and is unidirectional.

5. CONCLUSIONS

Given an arbitrary communication graph and a routing tree, we have

defined a set of conditions under which a lifting transform is unidi-

rectional. A sub-graph which contains all such transforms was also

found and a lifting transform was constructed that exploits most of

the correlation in the network by allowing nodes to use data they

are responsible for forwarding and data they receive via broadcast.

Experimental results show performance improvements with respect

to a lifting transform computed only along a routing tree. As future

work, we can consider other problems including selecting the tree,

transmission schedule and transform jointly for a given graph.

0 100 200 300 400 500 600
0

100

200

300

400

500

600
Routing Topology

(a) Transform on SPT

0 100 200 300 400 500 600
0

100

200

300

400

500

600
Alternative Labeling on SPT

(b) Transform on Graph

Fig. 2. Transform definition on SPT and on graph. Circles denote even

nodes and x’s denote odd nodes. The sink is shown in the center as a square.

Solid lines represent forwarding links. Dashed lines denote broadcast links.

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16
5

10

15

20

25

30

35

40

45

Total Energy Consumption (Joules)

S
N

R
 (

d
B

)

SNR versus Total Energy Consumption

Tree−Based
Tree−Based (DP)
Graph−Based

Fig. 3. Performance comparisons.

6. REFERENCES

[1] A. Ciancio, S. Pattem, A. Ortega, and B. Krishnamachari,

“Energy-efficient data representation and routing for wireless

sensor networks based on a distributed wavelet compression al-

gorithm,” in IPSN ’06, April 2006.

[2] R. Wagner, R. Baraniuk, S. Du, D.B. Johnson, and A. Cohen,

“An architecture for distributed wavelet analysis and processing

in sensor networks,” in IPSN ’06, April 2006.

[3] G. Shen and A. Ortega, “Optimized distributed 2D transforms

for irregularly sampled sensor network grids using wavelet lift-

ing,” in Proc. of ICASSP’08, April 2008.

[4] G. Shen and A. Ortega, “Joint routing and 2D transform opti-

mization for irregular sensor network grids using wavelet lift-

ing,” in IPSN ’08, April 2008.

[5] W. Sweldens, “The lifting scheme: A construction of second

generation wavelets,” Tech. report 1995:6, Industrial Mathemat-

ics Initiative, Department of Mathematics, University of South

Carolina, (ftp://ftp.math.sc.edu/pub/imi 95/imi95 6.ps), 1995.

[6] A. Wang and A. Chandraksan, “Energy-efficient DSPs for wire-

less sensor networks,” IEEE Signal Processing Magazine, vol.

19, no. 4, pp. 68–78, July 2002.

