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ABSTRACT
In this paper, block diagonal linear discriminant analysis

(BDLDA) is improved and applied to gene expression data. BDLDA
is a classification tool with embedded feature selection, that has
demonstrated good performance on simulated data. However, by
using cross validation in training, BDLDA is time consuming, thus
not an appropriate algorithm for gene expression data, which has a
large number of features and relatively small number of samples. In
our algorithm, estimated error rate is used as a measure to choose
the best model. The algorithm is optimized by repeating the model
construction procedure with previously selected features removed,
which leads to increased classification robustness. Our algorithm
is tested using 10 fold cross validation. In most simulated and real
data, our method outperforms the state-of-the-art techniques, show-
ing promise for its use in microarray classification problems. The
resulting block structure allows to identify discriminating correlated
genes, which is potentially useful in cancer research.

Index Terms— Microarray, LDA, Block Diagonal, Feature Se-
lection

1. INTRODUCTION

RNA microarray technology allows researchers to analyze patterns
of gene expression simultaneously recorded in a single experiment.
Different gene expression patterns among patients or different tis-
sues can be used for diagnosis or prognosis in cancer research. These
datasets have a large number of gene expression values per experi-
ment (several thousands to tens of thousands, even millions), and a
relatively small number of experiments (a few dozen).

Traditional linear discriminant analysis (LDA) [1, 2] cannot
be applied to gene expression data, because of the singularity of
the within-class scatter matrix due to the small sample size. Thus,
for these data sets some form of feature selection will always be
needed. A number of solutions based on LDA have been proposed
to tackle this challenge. One solution is to assume a diagonal covari-
ance matrix, which essentially ignores potential correlation between
different features. Examples include diagonal linear discriminant
analysis (DLDA) [3] or nearest shrunken centroid (NSC) [4], as well
as sequential DLDA (SeqDLDA) [5], a modified DLDA technique
that incorporates embedded feature selection. Alternative solutions
use regularization methods to impose a structure on the covariance
matrix, e.g., shrunken centroid regularized discriminant analysis
(SCRDA) [6], where a diagonal regularization matrix is employed.
But SCRDA has the same problem as DLDA in that it does not
perform well in data with correlations (as will be illustrated by our
experiments). While it would be possible to consider more com-
plex classification tools (e.g., support vector machines [7], neural

networks [8] and random forests [9]), these tend to not perform as
well as simpler LDA-based approaches, e.g., SCRDA, when ap-
plied to gene expression data. One likely reason is that these more
complex models cannot be accurately learned by limited data. Thus
we have a bias-variance trade-off problem: lower variance seen in
simple classification methods compensates for the additional bias
they introduce [2].

In order to improve performance in the presence of feature
correlation (while staying within the general LDA framework), in
this paper we focus on block diagonal linear discriminant analysis
(BDLDA), first proposed in [10]. Cancer research tends to assume
that only a few genes are associated with the disease, and thus
BDLDA restricts the maximum number of features to be selected in
the model. However, even with limited number of features, reliably
estimating all correlations is difficult with small sample size. To re-
duce the parameters estimated while keeping important correlations
between features, BDLDA imposes a block diagonal structure on the
covariance matrix. A greedy algorithm is applied to find features to
add into candidate models with different block diagonal structures.
Cross validation is used to select the best model among all candidate
models. Unlike DLDA or NSC, BDLDA performs classification
with embedded feature selection, while considering correlations be-
tween features. In [10], BDLDA was shown to outperform DLDA
on simulated data with sparse covariance structure (e.g., Toeplitz
or block diagonal). While these results were promising, feature se-
lection using cross-validation made it impractical for large datasets,
e.g., gene expression data.

In this paper, we improve feature selection in BDLDA by using
estimated an error rate to select the best model among all candi-
date models. The estimated error rate is derived from LDA and can
be obtained for each candidate block diagonal covariance structure.
Within BDLDA direct computation of these error rates is possible
even when using a very small number of training samples, because
the block diagonal structure is limited to use only small blocks. This
error rate metric allows us to avoid cross validation for model selec-
tion, and enables BDLDA to be computationally practical even when
working on large datasets. In this paper we apply BDLDA to real
gene expression data for the first time, with very competitive results.
Other improvements with respect to the original BDLDA approach
include a repeated feature subset selection (RFSS) technique and a
prescreening procedure. With RFSS, that is repeating model con-
struction with previously selected features removed, the algorithm
chooses more discriminating features that are independent from pre-
vious models. This is useful for gene expression data, because genes
belonging to the same pathway tend to be have sparse correlations.
The prescreening procedure eliminates features that are not signifi-
cantly different between two classes, which accelerates model search



and improves performance by removing noise. In Section 3, test
results are presented, that show our improved version of BDLDA
works particularly well on simulated data with correlated features
and outperforms the other three algorithms in real data.

The remainder of this paper is organized as follows. Section 2
presents the design and improvement of our algorithm. Section 3
gives the experimental results to compare against those in [5], [4]
and [6]. Section 4 concludes the paper.

2. ALGORITHM DESCRIPTION

2.1. Model Selection Metric

We start by deriving the estimated error rate of LDA, which will be
used as a model selection metric in Section 2.2. LDA assumes that
both class A and class B have multivariate Gaussian distribution with
means mA and mB and a common covariance matrix K, fA(x) ∼
N(mA, K), fB(x) ∼ N(mB, K). The discriminant function is

g(x) = wtx− b

{
≥ 0 ⇒ class A
< 0 ⇒ class B (1)

where x is the feature vector of the sample to classify, w is a vector
orthogonal to the hyperplane, and b defines the decision boundary
g(x) = 0.

For each model in BDLDA, the mean vectors mA, mB , the
covariance matrix K, and the prior class probabilities πA, πB are
replaced by the maximum likelihood estimators m̂A, m̂B , K̂, π̂A

and π̂B . m̂A, m̂B and K̂ are computed corresponding to the fea-
tures in the model. ŵ is the direction that maximizes variance be-
tween/within ratio:

JK̂(ŵ) =
(d̂tŵ)2

ŵtK̂ŵ
(2)

ŵ = arg max
w

JK̂(w) = K̂
−1

d̂ d̂ = m̂A − m̂B (3)

In the general LDA case, if the dataset has more features than sam-
ples, K̂ is not invertible. In BDLDA, we restrict the block sizes to
be smaller than sample size, which makes K̂ invertible.

Given the training data, the estimated probability of error of a
model in BDLDA is

P̂e|T = πAφ(−
1
2
d̂tK̂−1d̂ + ln( πA

πB
)√

d̂tK̂−1d̂
)

+πBφ(−
1
2
d̂tK̂−1d̂− ln( πA

πB
)√

d̂tK̂−1d̂
) (4)

where φ is the cdf of standard normal distribution. d̂ and K̂ are the
corresponding mean difference and covariance matrix of the model
in BDLDA. T denotes the training dataset.

2.2. Model Construction and Feature Selection

Enumerating models with all possible features and structures of K̂
and d̂ is obviously impractical due to computation and memory lim-
itation. In [10], a block diagonal structure is imposed on the covari-
ance matrix, with the dimensions of both subblocks and the result-
ing covariance matrix kept small. An example of resulting candidate
models is shown in Figure 1, where each arrow denotes adding a
feature to the model and forming a new model. The feature can start
a new subblock (solid line in Figure 1) or be combined with the cur-
rent subblock (dashed line in Figure 1). The feature that generates

the largest J in (2) among all candidate features is selected. For
simplicity, it is assumed the sizes of subblocks are nonincreasing,
because through exhaustive search for features, the features added
first are considered of better classification power than those selected
later. Thus their correlations are considered more important.

J in (2) is the maximized projected class mean divided by pro-
jected variance in the feature space. J increases with the number of
features and has no upper limit. Such increase is sometimes due to
increasing number of features and does not necessarily improve per-
formance, thus using J by itself for model selection would make the
selection undesirable. In order to compare all models with different
number of features, [10] uses cross validation. Cross validation is an
unbiased method, which does not make any assumptions on the data.
Despite its advantages, it is time consuming, making it impractical
to select model in large data. Instead in our paper, we propose to use
the estimated error rate in (4) for each covariance metric K̂ as a way
to compare different candidate structures. The covariance structure
with smallest P̂e will be selected at each step in the sequential search
shown in Figure 1. Unlike J (2), P̂e lies in the range of 0 to 1 for
all models. If the data has a Gaussian distribution and means and
covariance matrix can be estimated, P̂e is a good measure of each
model’s performance. In Section 3, experiments on simulated data
has demonstrated this advantage. Moreover, in experiments on real
gene expression data, which is not strictly Gaussian distributed, the
measure still generates better results than algorithms tested in this
work.

Fig. 1. Sequential generation of candidate covariance matrix models
for BDLDA. Starting with an empty list, we add one feature at a time
(namely, the one that maximizes J). The best of all these models is
selected using P̂e.

2.3. Algorithm Improvement

Repeated feature subset selection (RFSS) is applied to reduce the



impact of previously selected features. RFSS repeats the model con-
struction and feature selection N times. At the start, a model with
a predefined maximum number of features (MaxFeature in Ta-
ble 1) is selected. Then model construction and feature selection
is performed again, with the features selected during the first itera-
tion removed from the set of candidate features. This procedure is
repeated N times, each time a feature selection iteration does not
consider features already selected in previous iterations. Then the N
models are combined by vector concatenating N means and block
diagonally concatenating N covariance matrices. The feature sets in
all N models are different and uncorrelated. The model construction
is performed N times or stops when there are not enough candidate
features. This improvement enables the algorithm to find more dis-
criminating features without being influenced by previously selected
models. The complete algorithm is described in Table 1.

Algorithm: Model Construction with RFSS
S = ∅, T = all candidate features, M = ∅,
F = 0, L = 0
1. Construct the first model by adding feature i,
i = arg maxi∈T

di
σi

S = S + {i}, T = T − {i}, M = M+ {Model 1},
F = 1, L = 1
2. For models with feature size F

(1) Add a feature as an independent subblock.
The new feature is selected by i = arg maxi∈T J given in Eq. (2)
S = S + {i}, T = T − {i}, M = M+ {Model j},
F = F + 1, L = 1
(2) Add a feature to the last subblock if
F < MaxGrow
and F + 1 does not exceed any previous subblocks
The new feature is selected by i = arg maxi∈T J given in Eq. (2)
S = S + {i}, T = T − {i}, M = M+ {Model j},
F = F + 1, L = L + 1

3. Repeat Step 2 until the MaxFeature is reached.
4. Select among M the model with minimum Pe given in Eq. (4)
5. Remove S and repeat steps 1-4 N times
6. Combine N selected models
S is the set of selected features. T is the set of candidate features.
M is the set of candidate models. F is the number of features in
the the model. L is the number of features in the last subblock.
MaxGrow is the largest size of a subblock. MaxFeature is the
largest number of features in the models.

Table 1. Model construction and feature selection

Prescreening is based on the observation that features with the
same means and variances are not discriminating in BDLDA. Some
of them may be noise and interfere with classification. Remov-
ing these features can improve performance and reduce computa-
tion time. A prescreening of all the features is applied before the
model construction in Table 1. The separation of two classes on
feature i is represented by | di

σi
|. di = mAi − mBi and σ2

i =
1

Ks
(
∑

k∈ClassA(xki − mAi)
2 +

∑
k∈ClassB(xki − mBi)

2) + c,
where xki is the ith feature of sample k, Ks is the total number of
samples, mAi is the mean of feature i that belongs to class A and
similarly for mBi, and c is a regularization value.

Only features with | di
σi
| above a threshold will be taken into the

algorithm. In simulated data, we use 1
3
maxi(| di

σi
|) as the threshold.

To avoid the impact of outliers in real data, instead of using the top
ranking | di

σi
|, the average of 10 largest | di

σi
| is used, that is, the thresh-

old is one third of the average of 10 largest | di
σi
|. The prescreening

procedure can also be applied to other classification tools.

3. EXPERIMENTAL RESULTS

3.1. Simulated Data

Our algorithm is tested on both simulated data and real data. The
results are compared with SeqDLDA [5], NSC [4] and SCRDA [6].
The test results shown in Table 2 and Table 3 are obtained by doing
10 fold cross validation 50 times. The first two datasets are also used
in [6]. The error rates of SCRDA in [6] are presented as a matrix
according to two tuning parameters. The smallest error rate among
all parameter pairs is shown in Table 2 and Table 3.

3.1.1. Block diagonal covariance matrix

The distributions of two classes are N(µA, K) and N(µB, K)
with total number of features P = 10000, µA = (000 · · · 00︸ ︷︷ ︸

10000

), and

µB = (0.5 · · · 0.5︸ ︷︷ ︸
200

00 · · · 00︸ ︷︷ ︸
9800

). The block diagonal structure of K is

shown in (5). Each subblock has an autoregressive structure, which
is a symmetric Toeplitz matrix with the first row (1 ρ · · · ρ98 ρ99).
The subblock size is 100×100 and there are a total of 100 subblocks.
It is assumed the autocorrelation within each subblock is |ρ| = 0.9
and we set alternating signs for each subblock. 220 samples are gen-
erated. The average error rates and standard deviations are shown in
Table 2.

K =



Kρ 0 0
. . .

. . .
. . .

0 K−ρ 0 0
. . .

. . .

0 0 Kρ 0
. . .

. . .
. . . 0 0 K−ρ 0

. . .
. . .

. . .
. . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .


10000×10000

(5)

3.1.2. Diagonal covariance matrix

The distributions of two classes are N(µA, K) and N(µB, K)
with total number of features P = 10000, µA = (000 · · · 00︸ ︷︷ ︸

10000

), and

µB = (0.5 · · · 0.5︸ ︷︷ ︸
100

00 · · · 00︸ ︷︷ ︸
9900

). We assume that features are indepen-

dent so that the covariance can be written, K = IP , where IP is
the P × P identity matrix. 220 samples are generated. The results
are shown in Table 2.

3.1.3. Toeplitz covariance matrix

The distributions of two classes are N(µA, K) and N(µB, K)
with total number of features P = 1000. The difference of means
are assumed to be fading exponentially. µA = (000 · · · 00︸ ︷︷ ︸

1000

). µBj =

e−γj , (j = 1, 2 · · · 1000). γ = 0.05. It is assumed K is the fol-
lowing Toeplitz matrix with the first row (1 −1

2
2
5

0 · · · 0). 120
samples are generated. The results are shown in Table 2.



Table 2. Average Error Rate (Standard Deviation) for Simulated
Data

Block Diagonal Diagonal Toeplitz
covariance covariance covariance

BDLDA 0.36% 3.57% 4.51%
(0.19%) (1.09%) (1.02%)

SeqDLDA 19.64% 2.57% 8.97%
(1.5%) 0.83% (1.71%)

NSC 18.15% 6.89% 10.82%
(1.34%) (1.12%) (1.74%)

SCRDA 9.45% 1.97% 10.2%
(1.23%) (0.62%) (1.37%)

N=5, MaxGrow=3, MaxFeature=20

3.2. Real Data

We test our algorithm on two-class cancer data publicly available
online: colon cancer (62 samples, 2000 features) [11] and prostate
cancer(102 samples, 6033 features) [12]. The neuroblastoma dataset
(102 samples, 44298 features) consists of samples from Neuroblas-
toma stage 4 with MYCN not amplified obtained at diagnosis. 10
fold cross validation is done 50 times on each dataset. The average
error rates and standard deviations are shown in Table 3.

Table 3. Average Error Rate (Standard Deviation) for Real Data
Colon Prostate Neuro-
Cancer Cancer blastoma

BDLDA 10.06% 5.21% 10.61%
(1.15%) (0.85%) (1.29%)

SeqDLDA 12.06% 5.53% 13.87%
(1.87%) (0.9%) (2.41%)

NSC 10.31% 7.65% 17.98%
(1.02%) (0.42%) (1.67%)

SCRDA 11.41% 5.41% 14.22%
(1.69%) (0.89%) (1.39%)

N=5, MaxGrow=3, MaxFeature=20

3.3. Discussion

In simulated data with block diagonal covariance matrix and Toeplitz
covariance matrix, our algorithm (BDLDA) performs much better
than all other three methods. Data with diagonal covariance matrix
is the only case that BDLDA does not show much advantage. Se-
qDLDA and SCRDA have slightly lower error rate. But the margin
is much smaller than in other two simulated datasets. This result is
consistent with the block diagonal assumption BDLDA makes for
the covariance matrix. Its ability to find the best discriminating co-
variance structure makes it promising for datasets with correlations.
It is also able to achieve reasonably good classification when the co-
variance is diagonal. Due to this advantage, BDLDA can be a com-
petitive algorithm for gene expression data, because genes belonging
to the same pathway are likely to be co-expressed. This advantage
of BDLDA is demonstrated in the real data.

In all three real datasets, BDLDA has the lowest error rates.
Among them, Neuroblastoma, with more than 40,000 features, is
considered the most challenging. Our algorithm reduced the error
rate by more than 2%, compared to the second best algorithm, Se-
qDLDA.

4. CONCLUSIONS

This paper proposes a classification algorithm applied to microarray
expression data. The subset of features and their covariance struc-
ture are selected during classification. Block diagonal structure is
imposed on the covariance matrix with predefined sizes of matri-
ces and subblocks. Estimated error rate is used to select the best
model. RFSS and prescreening are used to improve the algorithm.
Our method outperforms SeqDLDA [5], NSC [4] and SCRDA [6] in
most simulated data and all real data used in our tests. BDLDA with
the feature selection strategy proposed in this paper is very promis-
ing to handle datasets with small number of training samples, a very
large number of features and an unknown sparse correlation struc-
ture. The method is especially useful for microarray data, where
sparse correlations will occur among correlated genes that belong to
the same biological pathway.
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