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ABSTRACT
In our previous work, we observed an “aliasing” phenomenon for
functions defined on bipartite graphs which is analogous to aliasing
occurring in the downsampling of regular 1-dimensional signals. We
exploited these concepts to design critically sampled two-channel
wavelet filterbanks for any bipartite graph. For arbitrary graphs, we
proposed a bipartite subgraph decomposition scheme to decompose
the graph into edge-disjoint bipartite subgraphs and apply filtering
and downsampling separately on each subgraph. This leads to the
design of multi-dimensional separable filterbanks on graphs. In this
paper, we study these bipartite decompositions in more detail. In par-
ticular, we describe the meaning of dimensionality in the subgraph
decomposition of arbitrary graphs and define some graph based met-
rics based on this understanding. Subsequently, we propose a heuris-
tics based algorithm for bipartite subgraph decomposition and com-
pare it with other non-optimized algorithms. The results show both
qualitative and quantitative improvements in the decomposed bipar-
tite subgraphs with the proposed heuristics.

Index Terms— Nyquist theorem, bipartite graphs, subsampling

1. INTRODUCTION

Graphs provide a very flexible model for representing data in many
domains such as networks, computer vision, and high dimensional
data-clouds. The data on these graphs can be visualized as a finite
collection of samples termed as graph-signals. The formulation of
datasets as graph-signals has been subject to a lot of study recently.
For example, the eigen-vectors {ul}l=1,2,...N of the undirected
graph Laplacian matrix provide a Fourier-like interpretation of
graph-signals [1]. The graph Fourier transform (GFT), denoted
as f̄ , for any signal f ∈ RN on graph G has been defined as
f̄(l) =< ul , f >=

∑N
i=1 f(i)ul(i), where f̄(l) can be inter-

preted as spectral coefficients of a graph-signal at spectral frequency
λl. Based on this formulation, Hammond et al [1] defined spectral
graph wavelet transforms which are determined by the choice of
a continuous bandpass function g(λ) in the spectral domain. The
multi-channel wavelet transform is constructed from the choice of a
low pass kernel h(λ) and J band-pass kernels {g(t1λ), ..., g(tJλ)}.
Further, Crovella et al [2] have designed wavelet like functions
on graphs which are localized in space and time. Wang et al [3]
have proposed graph dependent basis functions for sensor network
graphs, which implement an invertible 2-channel like filter-bank.
Maggioni and Coifman [4] introduced “diffusion wavelets” as the
localized basis functions of the eigenspaces of the dyadic powers of
a diffusion operator. A common drawback of all of these filterbank
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designs is that they are not critically sampled. For example, in [1], a
J-scale decomposition of graph-signal of size N outputs transform
coefficients of size (J + 1) × N . Therefore the filterbanks require
downsampling. Critically sampled lifting based wavelet filterbanks
for graphs have been proposed in [5, 6]. However the design requires
splitting the vertex set of the graph into two disjoint sets and the links
between nodes in the same set are not utilized by the transform. In
our previous work in [7], we showed that downsampling in bipartite
graphs leads to a spectral folding phenomenon which is analogous
to aliasing in regular signal domain. We utilized this property in
[8] to propose two channel critically sampled wavelet filterbanks on
bipartite graphs. In particular, we design graph-QMF filterbanks,
analogous to quadrature mirror filterbanks in the regular signal
domain, for any bipartite graphs. These filterbanks cancel aliasing
occurring due to downsampling and we define necessary and suf-
ficient conditions for these filterbanks to be perfect-reconstruction
and orthogonal. In a general setting, we interpret arbitrary graphs as
multi-dimensional bipartite graph and propose an edge-disjoint de-
composition of the graph into K-bipartite subgraphs. We then apply
filtering and downsampling separately to each bipartite subgraph,
thus leading to multi-dimensional separable filterbanks.

In this paper we study the desired properties of these bipartite
subgraph decompositions. Unlike regular signals, where the filtering
and downsampling is done along the geometrical directions (hori-
zontal, vertical etc) of the underlying regular lattice,the graphs do
not have a notion of directionality. We describe dimensionality in
graphs as separability of neighborhood sets and propose metrics to
quantitatively measure the separations. Subsequently, we propose a
greedy heuristic to optimize these metrics and compare the result-
ing decompositions with other non-optimized schemes. The rest of
the paper is organized as follows: in Section 2 we describe criti-
cally sampled two-channel wavelet filterbanks on arbitrary graphs.
The implementation requires a bipartite subgraph decomposition of
the given graph. Therefore, in 3 we describe the desired properties
of these subgraph decompositions and propose a greedy heuristic
to find subgraphs with desired properties. In section 4 we compare
proposed algorithm with existing schemes. We conclude the paper
in Section 5.

2. TWO-CHANNEL FILTERBANKS ON GRAPHS

A two-channel wavelet filterbank on a graph G, characterized by
filtering operations {Hi,Gi}i=0,1 and downsampling operations
βL(n) and βH(n) as shown in Figure 1, provides a decomposition
of graph-signal f into a lowpass (approximation) graph-signal flow
and a highpass (details) graph-signal component fhigh. The trans-
forms Hi,Gi of the two channels are graph transforms containing



Fig. 1. Block diagram of a two-channel wavelet filterbank on graph.

spatially localized filters. The downsampling function βH on the
graph G = (V,E) is defined as choosing a subset H ⊂ V such that
all samples of the graph signal f , corresponding to indices not in H ,
are discarded, i.e.

βH(n) =

{
1 if n ∈ H
−1 if n /∈ H (1)

A subsequent upsampling operation with βH projects the downsam-
pled signal back to original RN space by inserting zeros in place
of discarded samples in Hc. In matrix form, we define a diagonal
downsampling matrix JβH = diag{βH(n)}. The overall ‘down-
sample then upsample’(DU ) operation can then be algebraically
represented as fdu(n) = 1/2(f(n) + βH(n)f(n)) and in matrix
form as fdu = 1/2(I + JβH )f .

2.1. Filterbanks on Bipartite Graphs

In our recent work in [7, 8], we observe that for bipartite graphs
G = (L,H,E)2 choosing the selection set to be either L or H pro-
duces a spectral folding phenomenon in the DU signal fdu which
which is analogous to the “aliasing” effect observed in DU oper-
ations in regular signal domain. Extending this idea on the two-
channel graph filterbank in bipartite graph case, the downsampling
functions in Figure 1 are chosen as β = βL and βH = −β. Thus
the nodes in L only retain the output of transform H0 and nodes in
H retain the output of transform H1 only and the overall output is
critically sampled (i.e., |L| + |H| = N ). The output signals after
filtering andDU operation in the lowpass and highpass channels are
given as 1/2(I+Jβ)H0f and 1/2(I−Jβ)H1f . The overall output
f̂ of the filterbank is the sum of outputs of the two channels, i.e.,
f̂ = f̂low + f̂high = Tf , where T is the overall transfer function of
the filterbank given as:

T =
1

2
G0(I + Jβ)H0 +

1

2
G1(I− Jβ)H1

=
1

2
(G0H0 + G1H1)︸ ︷︷ ︸

A

+
1

2
(G0JβH0 −G1JβH1)︸ ︷︷ ︸

B

(2)

In (2),A is the transfer function of the filterbank without theDU op-
eration andB arises primarily due to theDU operations. For perfect
reconstruction, T should be equal to identity which means term A
should be a scalar multiple of identity and termB should cancel out.
In [8], we state necessary and sufficient conditions for a two-channel
graph filter-bank on bipartite graphs to provide aliasing-cancellation,
perfect reconstruction and orthogonal set of basis (orthogonality).

2A bipartite graph G = (L,H,E) is a graph whose vertices can be di-
vided into two disjoint sets L and H , such that every link connects a vertex
in L to one in H .

Consequently we propose a solution similar to quadrature mirror fil-
ters (QMF) in regular signal domain, termed as graph-QMF, which
satisfies all of the above conditions.

2.2. Filterbanks on Arbitrary Graphs

Not all graphs are bipartite. In order to apply our filterbank design
to an arbitrary graph, G = (V,E), we proposed in [8], a separa-
ble downsampling and filtering approach, where our previously de-
signed two-channel filterbanks are applied in a “cascaded” manner,
by filtering along a series of K bipartite subgraphs of the original
graph. This is illustrated in Figure 3. The bipartite subgraphs cover
the same vertex set: Li ∪Hi = V , i = 1, 2, ...K, and each edge in
G belongs to exactly one bipartite graph. In this approach, a stage
of filtering along one “dimension” corresponds to filtering using only
those edges that belong to the corresponding bipartite subgraph. Fur-
ther, in order to guarantee invertibility for structures such as those of
Figure 3, given the chosen 2-colorings (Hi, Li), the edge assignment
is performed iteratively based on the order of the subgraphs. That
is, edges for subgraph 1 are chosen first, then those for subgraph 2
are selected, and so on. An example of decomposition scheme is
Harary’s algorithm used in [8], which provides a decomposition into
dlog2Ke bipartite subgraphs of a K-colorable graph. For example,
images can be viewed as graph-signals on 4-connected lattice-graph
and the links in the image-grid can be decomposed into horizontal
and vertical bipartite subgraphs as shown in Figure 2(a). Note that,

= +

(a) Image Graph Decomposition

(b) General Bipartite Subgraph Decomposition

Fig. 2. Bipartite subgraph decomposition scheme.

by construction G1 = G − B1 = (V, E − E1) contains now two
disjoint graphs, since all edges between L1 andH1 were assigned to
E1. Thus, at the second stage in Figure 3, B2 is composed of two
disjoint graphs B2(L1) and B2(H1), which each will be processed
independently by one of the two filterbanks at the second stage. This
is also illustrated in Figure 2(b).

L H L H

Fig. 3. Separable multi-dimensional filterbank on graphs.



3. BIPARTITE SUBGRAPH DECOMPOSITION

Regular signals possess directionality, for example, aK-dimensional
regular signal can be visualized as defined on a k-dimensional
regular lattice-grid which in-turn can be visualized as a Carte-
sian product of K, 1-dimensional lattice-grids. This implies that
any point in the lattice can be indexed as n = (n1, n2, ..., nK)
where nk ∈ {1, 2, ..Nk}. Arbitrary graphs, unlike regular signals,
can not be decomposed into Cartesian product of bipartite sub-
graphs. However like regular signals, arbitrary graphs have k-hop
neighborhoods Nk(n) at each node n (in terms of shortest-hop
distance). For regular lattice grids these neighborhoods can be de-
composed into disjoint neighborhood sets along each direction, i.e.,
Nk(n) =

⋃K
r=1Nk(nr). Due to this property the regular signal

filters, implemented in each direction (i.e. on the disjoint neighbor-
hoods), filter uncorrelated information about the signal. We extend
this property to arbitrary graph and propose a desirable property of
bipartite subgraph decompositions G =

⋃
p Bp to be that the k-hop

neighborhoods N p
k (n) defined on each subgraph Bp are maximally

disjoint for all k and for all n. The problem is then to find minimum
such bipartite subgraph decomposition.

Before finding the solution, we define some metrics which mea-
sure the neighborhood separation in bipartite subgraphs. For this, we
define k-hop adjacency matrix as Ai,k so that Ai,k(n,m) represents
the number of paths from node n to node m of length up to k. The
diagonal entries of Ai,k are set to zero. Using matrix Ai,k, we mea-
sure separability in the k-hop neighborhoods of bipartite subgraphs
Bi by computing the correlation between nth rows of adjacency ma-
trices Ai,k at each node n. The k-hop neighborhood set correlation
NSC(k) between two bipartite subgraphs is the average correlation
between the k-hop neighborhoods defined as:

NSC(k) =
1

N

N∑
n=1

∑
mA1,k(n,m)A2,k(n,m)√∑

mA1,k(n,m)2
∑
mA2,k(n,m)2

(3)

A low value of NSC would imply mutually disjoint neighborhoods
in the decomposed bipartite subgraphs. At a global scale, the eigen-
vectors of bipartite subgraph Laplacian matrices which form the
graph-Fourier basis should also be decorrelated with each other.
The correlation between the lth eigen-vectors u1,l and u2,l on two
bipartite subgraphs can be measured by their inner-product. There-
fore, we define spectral basis correlation SBC between bipartite
subgraphs B1 and B2 to be the Euclidean norm of inner-products
between the corresponding eigenvectors:

SBC =

√√√√ N∑
l=1

(ut1,lu2,l)
2 (4)

We next present a heuristic algorithm to find good subgraph decom-
positions in arbitrary graphs.

3.1. Min-cut Weighted Max-Cut (MCWMC) algorithm

The nature and complexity of finding minimum bipartite subgraph
decomposition with maximally disjoint neighborhoods is not known.
We therefore, propose the following greedy heuristic to find bipartite
subgraphs with disjoint neighborhoods: given a graph G, let β is
chosen as the first downsampling function and it induces partition
(S1,S2) on graph G with sizes |S1| = N1 and |S2| = N2. Further
let e = ES1,S2 denotes the cut-set and B = (S1,S2, e) denotes the
bipartite subgraph corresponding to β. This decomposition can be
graphically represented as in Figure 4. The exclusion of B from G

changes the neighborhood structure of the resulting graph G1. Thus
in remaining graphG1, nodes in set S1 can not reach nodes in set S2
and vice-versa. We define the expected change in the neighborhood
size at each node given the cut e as:

E[∂N | e] = p(S1)|S2|+ p(S2)|S1| =
2N1N2

N
(5)

Clearly E[∂N ] is maximized if N1 ≈ N2 at each iteration. This

Fig. 4. Example of a bipartite graph-cut

problem is widely studied in graph-literature as the balanced-cut
problem in graphs. However finding balanced-cut iteratively be-
comes problematic as it leads to roughly log2(N) bipartite sub-
graphs for graph-size N . Further, in each bipartite graphs the nodes
which do not have edges in the cut-set e are disjoint and do not
take part in the transform. Therefore we would like to maximally
pack these edges into larger and fewer bipartite subgraphs, packing
edge-sets e in the order of their importance E[∂N | e]. In order
to do this we assign a weight we = E[∂N ]/|e| to each edge in
the cut-set e ∈ e in each iteration of balanced cut decomposition.
The weight signifies the importance of the edge in changing the
neighborhood structure of resulting decompositions. We perform
an iterative max-cut algorithm on the resulting min-cut weighted
graph which provides bipartite subgraphs with maximum packing
of the weighted edges. The algorithm is thus termed as the min-
cut weighted max-cut (MCWMC) algorithm and illustrated with an
example in Figure 5.

4. EXPERIMENTS

In order to evaluate the different schemes for bipartite subgraph de-
composition, we simulate random graphs by uniformly distributing
N = 100 nodes in a 2-D field and connecting nodes which are
within a fixed radius of each other.1 For MCWMC algorithm, we
use the balanced-cut algorithm proposed in [9] and the max-cut al-
gorithm in [10]. The outcome of proposed algorithm on a sample
graph is shown in Figure 5. For each graph G, we decompose the
graph iteratively into bipartite subgraphs up to two steps to obtain
bipartite subgraphs B1 and B2 respectively. To measure the edge-
packing in these two subgraphs, we define an edge-loss fraction
(ELF) which is the ratio between total number of edges in remaining
graph G2 = G − B1 − B2 and the total number of edges in G. We
then evaluate the metrics NSC and SBC for the two bipartite sub-
graphs obtained by using a) MCWMC algorithm b) Harary’s algo-
rithm proposed in [8] and c) a random decomposition (in which we
randomly assign downsampling functions to nodes). Table 1 sum-
marizes the comparison results for 100 instances of such random
graphs. A low value of ELF suggests that MCWMC algorithm packs
more edges in subgraphs B1 and B2 than other algorithms. Further
we observe that NSC(k), in general decreases for large k-hop neigh-
borhoods which makes sense since at each step of iterative decom-
position, the removal of a bipartite subgraph bisects the remaining
graph and thus reduces the long-hop connections between nodes.

1Note that, the 2-D embedding of graph is for illustration only. The
MCWMC algorithm only depends on the link-structure of the graph nodes.
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Fig. 5. Example of MCWMC algorithm steps. (a) original graph (b) converted to a min-cut weighted graph, thickness of an edge represents the weight of the
edge. (c) first bipartite subgraph using max-cut (d) second bipartite subgraph.

However we observe that the NSC(k) drops sharply with MCWMC
algorithm which implies that the neighborhood are better separated
than by using other schemes. At global scale, SBC is lowest for
MCWMC algorithm which means that the eigenvectors of the re-
sulting bipartite subgraph are also better decorrelated in case of pro-
posed algorithm. To see it more clearly, we measure similarity (i.e
inverse of shortest hoping distance) between all node pairs in differ-
ent subgraphs. With maximal neighborhood separation, we expect
any pair of nodes in the graph to have different similarities on dif-
ferent subgraphs. Figure 6 plots the histogram of absolute difference
in the similarities of node-pairs on different bipartite subgraphs. In

Method Random Harary MCWMC
ELF 0.249 0.225 0.14

NSC(2) 0.48 0.53 0.51
NSC(4) 0.50 0.54 0.51
NSC(6) 0.49 0.53 0.48
NSC(8) 0.47 0.51 0.45

NSC(10) 0.45 0.49 0.42
NSC(12) 0.43 0.48 0.39

SBC 0.60 0.61 0.55

Table 1. Comparison of bipartite subgraph decomposition schemes
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Fig. 6. Histogram of absolute difference in similarity between node-pairs in
two bipartite subgraphs

case of Harary’s decomposition the histogram is concentrated near
zero which means that most node-pairs are near similar on the two
subgraphs, whereas in the case of proposed MCWMC algorithm the
histogram is shifted to the right implying most node-pairs have dif-
ferent (non-zero) similarities on different bipartite subgraphs. This
further corroborates our claim that neighborhood are better separated
using the proposed decomposition scheme.

5. CONCLUSION AND FUTURE WORK

In this paper, we have explained the design of a critically sampled
multi-dimensional filterbanks for arbitrary graphs. According to the

original idea proposed in our recent work, a graph is first decom-
posed into a set of bipartite subgraphs, and filtering and downsam-
pling operations are then carried out in cascade on each bipartite
subgraph. In this work, we have proposed bipartite subgraph de-
compositions which provide dimensionality to the graph, similar to
the case of regular signals in higher dimensions, we explained that
dimensionality in graphs can be understood as neighborhood sepa-
rability and we defined some metrics to compare various bipartite
decompositions possible for any graph based on this understanding.
Further, we defined a heuristics algorithm which improves these met-
rics. In our future work, we aim to find the efficacy of these graph-
based filterbanks vis-à-vis standard wavelet filterbanks on different
graph-formulations of the 2D images.

6. REFERENCES

[1] D. K. Hammond, P. Vandergheynst, and R. Gribonval,
“Wavelets on graphs via spectral graph theory,” CoRR, pp.
–1–1, 2009.

[2] M. Crovella and E. Kolaczyk, “Graph wavelets for spatial traf-
fic analysis,” in INFOCOM 2003, Mar 2003, vol. 3, pp. 1848–
1857.

[3] W. Wang and K. Ramchandran, “Random multiresolution rep-
resentations for arbitrary sensor network graphs,” in ICASSP,
May 2006, vol. 4, pp. IV–IV.

[4] R. Coifman and M. Maggioni, “Diffusion wavelets,” Applied
and Computational Harmonic Analysis, vol. 21, pp. 53–94,
2006.

[5] G. Shen and A. Ortega, “Transform-based distributed data
gathering,” Sig. Proc., IEEE Trans. on, vol. 58, no. 7, pp. 3802
–3815, july 2010.

[6] S. K. Narang and A. Ortega, “Lifting based wavelet transforms
on graphs,” (APSIPA ASC’ 09), Oct. 2009.

[7] S.K. Narang and A. Ortega, “Downsampling graphs using
spectral theory,” in ICASSP ’11., May 2011.

[8] S.K. Narang and Ortega A., “Perfect reconstruction two-
channel wavelet filter-banks for graph structured data,” IEEE
trans. on Sig. Proc., also avilable in arXiv:1106.3693v3.

[9] Shi J. and Malik J., “Normalized cuts and image segmenta-
tion,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, pp. 888–905, 1997.

[10] B. Aspvall and J. R. Gilbert, “Graph coloring using eigenvalue
decomposition,” Tech. Rep., Ithaca, NY, USA, 1983.


