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ABSTRACT

We consider the bit allocation problem in multiview video cod-
ing (MVC). A dependent coding technique using trellis expansion
and the Viterbi algorithm (VA) is proposed, which takes into ac-
count dependencies across time and views. We note that, typically,
optimal quantizer choices have the following properties: i) quanti-
zation choices tend to be similar for frames that are consecutive (in
time or in view), ii) better quantization tends to be used for frames
closer to the root of the dependency tree. We propose a search al-
gorithm to speed up the optimization of quantization choices. Our
results indicate significant gains can be achieved by an appropriate
selection of bit allocation across frames.

1. INTRODUCTION

Multiview video refers to sets of video sequences providing dif-
ferent perspectives of a common scene or object, and which have
been captured simultaneously by several cameras at different lo-
cations. This is illustrated in Fig. 1, where each rectangle rep-
resents a frame captured at a given time and by a given camera.
A straightforward approach for compression is simulcast coding
(SC), where standard video coding technique are applied to com-
press each view independently. This approach exploits tempo-
ral correlation, but does not take advantage of correlation across
views. Inter-view coding (IVC) can be applied to further improve
coding efficiency. For example, as illustrated in Fig. 1, we can
select to insert intra-coded frames at the same time instant in all
views. Then IVC can be applied to these frames (which in the se-
quel we will call “anchor” frames). Reconstructed anchor frames
will then be used for inter-frame coding within each view. In
this work, we use block-based predictive techniques for inter-view
coding similar to the motion compensated predictive coding tech-
niques used in MPEG-2, H.264/AVC, etc. Any such predictive
coding techniques (across frames in a view, or across views) lead
to dependencies, as quantization choices for one frame affect the
achievable rate-distortion points for those frames that depend on
it [3]. Note that different types of coding dependencies arise. In
the SC case of Fig. 2(a), each view is coded independently, so only
temporal dependency within each view can be observed. Instead,
Figs. 2(b) and 2(c) represent cases where the set of anchor frames
are encoded in IPPP or IBBP modes. This introduces additional
dependencies across views. For example, when encoding frame
V2T2, reconstructed frame V2T1 is used as a reference, and in
turn V2T1 uses frame V1T1 as a reference (see Fig. 1).

Note that while the problem of dependent bit allocation has
been considered in several contexts, including standard video [2–
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Fig. 1. Diagram for Multiview Video Coding. N is the number of
view and M is the anchor frame interval.

4, 6] and stereo image coding [7], we believe its potential impact
in multiview video coding has not been considered yet. Our work
extends the frame-wise dependent bit allocation techniques of [3]
(using a trellis representation and the VA) to a multiview video
coding scenario where interview coding is used. This leads to
a complex 2-D dependency problem, where the total number of
video frames and candidate quantization choices involved can be
very large. Moreover, a suboptimal choice of quantizer for a given
frame may affect many other frames (if the frame in question is
close to the root of the dependency tree). This suggests that a
proper quantizer allocation may be more important in an MVC
environment than for standard video. Indeed, our initial motiva-
tion to consider this problem came from the observation that in
an H.264/AVC encoder we modified for MVC coding results were
very sensitive to bit allocation (see results in this paper and in [1]).

In order to reduce the complexity of search in our MVC en-
vironment, we make use of the monotonicity property observed
in [3]. To further reduce complexity, we show that the number of
solutions to be searched can be reduced by considering only can-
didate solutions such that anchor and non-anchor frames are al-
located similar quantizers. Our experimental results demonstrate
that our proposed scheme outperforms both simulcast coding and
MVC using a fixed quantization parameter (QP).

2. 2-D DEPENDENT BIT ALLOCATION

In what follows, distortion (D) is measured as frame-wise mean
square error (MSE). QP, q, rate, R, distortion, D, and Lagrangian
cost J of the anchor frame in view i, are represented as qi, Ri, Di,
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Fig. 2. MVC example where the number of views is 4. The number in parenthesis is the order of encoding in the trellis expansion.

and Ji, respectively. We denote q̄i the quantization choice for the
non-anchor frames in view i (in what follows we will assume the
same quantizer is used for all non-anchor frames in a view). R̄i,
D̄i, and J̄i will denote the total rate, distortion and Lagrangian
cost for all non-anchor frames in view i. In our notation q < q′

means that quantizer q is finer, i.e., better quality, than q
′
.

In [3], a solution to the dependent bit allocation problem was
proposed based on a trellis expansion and the VA. Our problem,
which includes dependency across views, can be seen as an ex-
tension of this 1-D problem. A constrained 2-D dependent coding
problem can then be formulated as follows (for the 2-view case):

min
q1,q2,q̄1,q̄2

[D1(q1) + D̄1(q1, q̄1) + D2(q1, q2) + D̄2(q1, q2, q̄2)]

such that

R1(q1) + R̄1(q1, q̄1) + R2(q1, q2) + R2(q1, q2, q̄2) ≤ Rbudget.

(1)

This problem can be solved by considering an unconstrained prob-
lem with Lagrange multiplier λ ≥ 0 and cost J = D + λR [5]:

min
q1,q2,q̄1,q̄2

[J1(q1)+ J̄1(q1, q̄1)+J2(q1, q2)+ J̄2(q1, q2, q̄2)] (2)

where,

J1(q1) = D1(q1) + λR1(q1) (3a)

J̄1(q1, q̄1) = D̄1(q1, q̄1) + λR̄1(q1, q̄1) (3b)
J2(q1, q2) = D2(q1, q2) + λR2(q1, q2) (3c)

J̄2(q1, q2, q̄2) = D̄2(q1, q2, q̄2) + λR̄2(q1, q2, q̄2) (3d)

In a system with N views, assume that our bit allocation re-
quires evaluating, on average, na coding choices for each anchor
frame, and nb for each set of non-anchor frames in a view. Then
the bit allocation complexity will be O(nbn

N
a ). We achieve a re-

duction in complexity based on two methods (to be explained in
detail in the following sections). First, as in [3], we exploit the
monotonicity property of dependent coding to helps us reduce na.
Second, we choose the non-anchor frame quantizers to be coarser
than the quantizers chosen for the corresponding anchor frame,
i.e., q̄i ≥ qi, for the i-th view, so that a lower nb can be used.

2.1. Monotonicity

The monotonicity property observed in [3] for a temporal depen-
dency scenario states that, for two dependent frames (the second
frame is motion predicted from the first one), we usually have:

J2(q1, q2) ≤ J2(q
′
1, q2) for q1 ≤ q′1, (4)

i.e., for a given quantizer, q2, applied to the predicted frame, finer
quantization of the predictor tends to lead to better RD character-
istics for the predicted frame. This property usually holds when
the frames in (4) are anchor frames. Similar properties can also be
observed for the dependency within a view

J̄1(q1, q̄1) ≤ J̄1(q
′
1, q̄1) for q1 ≤ q′1, (5)

as well as when various levels of dependencies, across both views
and time, are present, so that, for example:

J̄2(q1, q2, q̄2) ≤ J̄2(q
′
1, q2, q̄2) for q1 ≤ q′1 (6a)

J̄2(q1, q2, q̄2) ≤ J̄2(q1, q
′
2, q̄2) for q2 ≤ q′2 (6b)

From these monotonicity properties, the following lemma can be
derived.

Lemma 1: If

J1(q1) + J̄1(q1, q̄1) < J1(q
′
1) + J̄1(q

′
1, q̄1) for q1 < q′1 (7)

then q′1 is not in the optimal path set and can be pruned out.
Lemma 1 above and the corresponding lemmas (1 and 2) in [3]

are used in the pruning steps in our proposed algorithm. This
algorithm is based on an IPPP anchor frame coding scheme as
shown in Fig. 2(b). For the trellis expansion in anchor and non-
anchor frames, refer to Figs. 3 and 4. In the following algorithm,
qi
1 = {q1, q2, ..., qi} is an anchor frame quantizer allocation for

views 1 through i. Ji(q
i−1
1 , qi) is the cost for a surviving anchor

frame quantizer allocation qi−1
1 and anchor frame quantizer qi in

view i. J̄i(q
i
1, q̄i) is the cost for anchor frame quantizer allocation

qi
1 and non-anchor frame quantizer q̄i in view i. J(qi

1, q̄
i
1) is the

total cost with quantizer allocation qi
1 and q̄i

1 for views 1 through
i.

Algorithm 1:

1. For view i > 1, generate the Lagrangian cost of the anchor
frame: Ji(q

i−1
1 , qi), for all surviving quantizer allocations

qi−1
1 , and for all choices of qi. The anchor frame of view 1

is coded independently and has a cost J1(q1).

2. For view i, generate the non-anchor frame cost: J̄i(q
i
1, q̄i)

for q̄i for all surviving allocations qi−1
1 , and all anchor frame

quantizers qi,such that q̄i ≥ qi.

3. Find minimum non-anchor frame cost J̄i(q
i
1, q̄i) for each

qi
1.

4. Compute total cost J(qi
1, q̄

i
1) = J(qi−1

1 , q̄i−1
1 )+Ji(q

i−1
1 , qi)+

J̄i(q
i
1, q̄i) for each anchor frame quantizer qi.

5. Use pruning condition of Lemma 1 to eliminate suboptimal
paths up to view i.
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6. With every surviving path, q1, q2, ..., qi, proceed to view
i + 1 and go to Step 1.

Note that for each anchor frame quantizer in each surviving
allocation qi

1, there is a corresponding non-anchor frame quantizer
with minimum cost, which is shown as thick red line in Fig. 4.

The above algorithm can be easily modified for either IBBP or
IBP coding of anchor frames. An additional step required to search
for a solution under IBP coding of anchor frames would be to pop-
ulate branches between I and P1 with costs JB1(qI , qP1, qB1) and
J̄B1(qI , qP1, qB1, q̄B1).

2.2. Reduced Search Range

Even though complexity is reduced by taking advantage of the
monotonicity property, further reductions are achievable by con-
sidering the relationship between q and q̄ in an optimal solution.
According to our experiments, optimal bit allocations are such that
there exists a strong correlation between q and q̄. This is shown in
Fig. 5, where we plot, for different values of λ, the pair of quanti-
zation values for anchor and non-anchor frames that minimize the
Lagrangian cost for the given λ. The exact slope in Fig. 5 depends
in general on the number of non-anchor frames and how the an-
chor frame is encoded. In what follows we provide an analysis
that supports the type of relationship between quantizers that we
observe in optimal solutions.

Let Q1 and Q2 be the quantization choices made for the an-
chor frame in a view and the non-anchor frames in the same view,

respectively, where smaller Q means finer quantization. The La-
grangian cost J for that view is then

J = D1(Q1) + D2(Q1, Q2) + λ(R1(Q1) + R2(Q1, Q2)).
(8)

In order to better understand the properties of the optimal solution
we take derivatives of J with respect to Q1 and Q2, and set them
to zero:

∂J

∂Q1
=

∂D1

∂Q1
+

∂D2

∂Q1
+ λ(

∂R1

∂Q1
+

∂R2

∂Q1
) = 0 (9)

∂J

∂Q2
= 0 ⇔ λ = −∂D2

∂Q2
/
∂R2

∂Q2
= −a2

b2
, (10)

where ai = ∂Di/∂Qi and bi = ∂Ri/∂Qi. Then, from (9) and
(10),

a1b2 − a2b1 = a2
∂R2

∂Q1
− ∂D2

∂Q1
b2 (11)

a1

b1
− a2

b2
= − 1

b1
(
∂D2

∂Q1
+ λ

∂R2

∂Q1
) (12)

Note that, by the monotonicity property, if Q1 increases while Q2

remains constant then both D2 and R2 will tend to increase. Thus,
∂D2
∂Q1

≥ 0 and ∂R2
∂Q1

≥ 0. Because ai ≥ 0 and bi ≤ 0, from (12)

a1

b1
≥ a2

b2
⇔ |∆D1

∆R1
| ≤ |∆D2

∆R2
|, (13)

in words, at optimality, the slope of operating point in the R1−D1

characteristic is smaller than the slope of the operating in the R2−
D2 characteristics. Note that to derive (13) we only had to make
one assumption, namely that the monotonicity property holds.

Given that the slope |∆D
∆R

| of a convex RD decreases as Q de-
creases (i.e., as the coding quality improves), we can conclude that
if R1−D1 and R2−D2 have similar shape, then from (13), at op-
timality Q2 > Q1. In our case of interest, Q2 is the quantizer used
to encode several non-anchor frames. In this case |∆D2

∆R2
| would be

the slope of the aggregate RD characteristic. While the absolute
values of R2 and D2 are likely to be larger than those for R1 and
D1 at a given Q, the shapes of the curves and corresponding slopes
can still be assumed to be similar. This approximation agrees well
with our observed experimental behavior and provides a tool for
complexity reductions.

2.3. Search Algorithm for Non-anchor Frames

Up to now, for simplicity, we have assumed that the same quantizer
is used for all non-anchor frames. We now propose a non-anchor
frame quantizer search algorithm, which operates for a given an-
chor frame quantizer, and to reduce complexity, uses the following
property (based on the discussion of the previous section): a frame
close to root of the dependency tree has more influence on cost
and therefore a better quantizer should be applied to it. Thus we
begin the search with the frame which is close to the root. In the
following algorithm, q̄ = {Q2, Q3, ..., QM}, is now the vector of
quantizers allocated to the non-anchor frames in a given view.

Algorithm 2:Dependent coding in each view

1. Given λ and the QP of anchor frame q, initialize q̄ =
{Q2, Q3, ..., QM} = {q0, q0, ..., q0}, where q0 ≤ q.

2. For frames i = 2, 3, ..., M ,
find αi = ∂J

∂Qi
= (
Pn

j=i

∂Dj

∂Qi
) + λ(

Pn
j=i

∂Rj

∂Qi
).
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3. - If αi < 0, Qi = Qi + 1. Increase Qj which is less than
Qi for j = {i + 1, ..., M}.
- If J̄ decreases update q̄. Proceed to the next frame.

4. Repeat step 2 - 3 until there is no update in Qi

In this algorithm αi is calculated for the current q̄. Then in
order to make αi closer to 0, we increase by 1 Qi if αi < 0.
Then, using the property motivated in the previous section, we also
increase Qj such that Qj < Qi for j > i.

3. RESULTS AND CONCLUSIONS

Using H.264/AVC reference codec, JM7.6, we encoded the Aquar-
ium multiview sequences from Tanimoto Lab using three different
coding schemes, i.e., SC in 2(a), MVC in 2(b) with fixed QP and
optimized QP by proposed Algorithm 1. In the experiment all non-
anchor frames in a view were assigned the same quantizer. Two
different coding conditions are used: First, all possible block sizes
can be used and intra coding is enabled (C1). Second, only 8x8
block size is used and intra coding is disabled except I frame (C2).
The first 7 frames of Views 1, 2, and 3 are used in the experiment.
As can be seen in Fig. 6, the proposed algorithm provides a gain
of 0.5 - 1dB as compared to MVC with fixed QP. In trellis expan-
sion, six quantizers are selected as candidates for anchor and only
three quantizers are selected for non-anchor frames using correla-
tion between anchor and non-anchor quantizer.

2-D bit allocation scheme with reduced complexity is pro-
posed. Complexity of data generation in trellis expansion is signif-
icant due to the dimensionality. We extend the monotonicity prop-
erty from [3] and use the fact that optimal solutions tend to show
correlation between quantizers of anchor and non-anchor frames.
Also non-anchor frame quantizer search algorithm is introduced.
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