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ABSTRACT

In this paper we study the computation error tolerance properties
of motion estimation algorithms. We are motivated by two sce-
narios where hardware systems may introduce computation errors.
First, we consider hardware faults such as those arising in a typi-
cal fabrication process. Second, we consider “soft” errors due to
voltage scaling, which can arise when operating at a lower voltage
than specified for the system. Current practice is to discard all faulty
systems. However there is an increasing interest in tools that can
identify faulty systems which provide acceptable performance. We
show that motion estimation (ME) algorithms exhibit significant er-
ror tolerance in these two scenarios. We propose simple error models
and use these to provide insights into what features in these ME al-
gorithms lead to increased error tolerance. Our comparison of the
full search ME and a state of the art fast ME approach in the context
of H.264/AVC shows that while both techniques are error tolerant,
the faster algorithm is in fact more robust to computation errors.

Index Terms— Error tolerant compression, Motion estimation,
Computational error tolerance, Stuck-at fault, Soft errors

1. INTRODUCTION

The progress of VLSI technology towards deep sub-micron feature
sizes, e.g., sub-100 nanometer technologies, is resulting in a growing
impact of hardware defects and fabrication process variability. Our
work is motivated by two scenarios where this trend leads to im-
perfect hardware systems. For both cases we study the computation
error tolerance properties of motion estimation algorithms.

First, we consider hardware defects that lead to faults at cir-
cuit interconnects. These can potentially lead to “hard” errors, since
some of the functionality in the design is permanently impaired. Tra-
ditionally, systems having these kinds of faults would be discarded
after testing. Defect tolerance techniques at the design and manu-
facturing stages have been widely studied and used in practice [1].
However, our focus is on system-level error tolerance (ET) [2], which
accepts systems exhibiting errors at their outputs, as long as these re-
sult in only slight degradation in performance, e.g., in terms of cod-
ing efficiency. After appropriate testing, any imperfect system that
is deemed as providing acceptable quality can be considered usable,
thus increasing the effective yield of the fabrication process.

Second, we consider “soft” errors produced by voltage scaling.
This second class of errors may arise when a circuit operates at a
voltage lower than originally specified. Due to variability in the fab-
rication process, each version of a fabricated system may require
a slightly different voltage to guarantee error-free operation. This
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can be addressed by “binning” together systems with similar voltage
needs and attaching to each of these batches a different voltage spec-
ification. Our motivation in exploring error tolerance in this context
is that, for certain applications, such as video coding, these systems
may be able to operate at voltages below those originally specified,
leading to lower power consumption (and thus longer battery life).

Note that we are not considering fault tolerance techniques which
aim at achieving the same performance with a faulty system as would
be achieved with a fault-free system. Instead, we consider systems
that produce errors at their outputs (e.g., the motion vectors of the
faulty system can be different from those of the fault-free one) and
evaluate the impact of these errors on overall performance (e.g., cod-
ing efficiency). Our previous work [3] showed that certain range of
deterministic faults within the motion estimation subsystem lead to
acceptable quality degradation. We also proposed a novel ET based
testing strategy for such a system. Other recent work [4] has shown
that testing for acceptability can be done with reasonable complex-
ity, which in some cases is comparable to that required for standard
testing that aims at classifying systems into perfect and imperfect.
In this paper we focus on the behavior of different ME algorithms in
the presence of errors. We further extend our earlier work of [3] to
consider soft errors.

The ME process comprises a strategy to search for the motion
displacement offset, i.e., the motion vector (MV), and a matching
cost metric computation, such as the sum of absolute differences
(SAD) or the sum of squared differences (SSD). The search strategy
aims at selecting a set of candidate MVs and then proceeds to com-
pute the cost metric for the candidates. Finally, it selects the one with
the minimum cost. After the encoder selects the MV that minimizes
the cost metric, it encodes the difference block (prediction residual)
between the original and motion compensated blocks. Each residual
block is transformed, quantized, and entropy coded.

There are several types of hardware architectures [3] for com-
puting a ME matching metric, with different levels of parallelism.
We will refer to them as matching metric computation (MMC) ar-
chitectures. Most MMC architectures can be viewed as arrays of
cascaded adders and represented as a binary tree graph, where each
inner node represents an adder, a leaf node represents absolute dif-
ference or squared difference computation, and an edge connecting
two inner nodes represent a data bus. For simplicity we use absolute
difference, and therefore SAD, throughout this paper although our
analysis could apply equally to other distortion metrics. Refer to [3]
for a more detailed description of these architectures and associated
testing.

In this paper we consider i) faults in the interconnect data bus
(edge) and ii) soft errors in the adders (inner nodes) within a MMC
architecture. We model interconnect faults with the single stuck-at
(SSA) fault model, a well-known structural fault model which as-
sumes that the design contains a fault that will cause a line in the cir-
cuit to behave as if it is permanently stuck at a logic value 0 (stuck-at



0) or 1 (stuck-at 1). The SSA fault model covers 80-90% of the pos-
sible manufacturing defects in CMOS circuits [5], such as missing
features, source-drain shorts, diffusion contaminants, and metalliza-
tion shorts, oxide pinholes, etc.

With the assumption that ripple carry adders are used for SAD
computation, we model the soft error related failures caused by the
input voltage change to ripple carry adders. Soft errors are intro-
duced due to deep submicron (DSM) noise and voltage scaling which
cause probabilistic and input-dependent errors in multimedia sys-
tems [6, 7]. We focus on voltage scaling as it may arise in situations
where energy-efficient processing is required [8].

We estimate the impact of these two types of errors on the accu-
racy of the metric computation, and their overall impact on ME per-
formance. In Section 2 we briefly describe models for both stuck-
at faults and soft errors. In Section 3 we will present a model for
measuring the impact of both SSA faults and soft errors. This will
provide some insight into the properties of ME that minimize the im-
pact of faults. Finally, experimental results comparing several ME
algorithms in terms of error tolerance will be given in Section 4.

2. MODELS FOR SSA FAULTS AND SOFT ERRORS

Faults or soft errors in a MMC architecture can lead to errors in the
computed SAD values. We will refer to this as a distortion compu-
tation (DC) error and denote its magnitude as∆ = SAD′ − SAD

whereSAD′ is the computed SAD value with DC error. In gen-
eral ∆ is a function of the input sequence and the characteristics
of the fault or error (e.g., fault location for a SSA fault or volt-
age input for a soft error). Note that DC errors do not necessar-
ily lead to ME errors, which is the case where the MV selected
(MVf ) is not equal to the best MV (MVmin). We say a block
suffers a ME error ifMVf 6= MVmin. Since ME errors do not
occur for all blocks, we also define and consider the block ME er-
ror rate (PE = prob(MVf 6= MVmin)) which represents how
often these ME errors occur, and the block ME error significance
(SE = SADf − minSAD, whereSADf andminSAD are the
SAD values corresponding toMVf andMVmin respectively).SE

represents the additional error energy in the residual block due to an
error in motion estimation.

SSA faults in a MMC architecture can be fully characterized by
three attributes, a) the fault type (SSA0 or SSA1), b) the bit position
p of the faulty data line, which ranges from 0 to 15 depending on
the MMC architecture, and c) the position of that data bus. The last
attribute can be parameterized as a ratioα of the number of leaf
nodes connected towards a faulty edge (data bus) to the total number
of leaf nodes. Since SSA0 and SSA1 faults at the same position
produce identical results in bothPE andSE [9], only p andα have
to be considered to describe a fault. If the input to a faulty position
(p, α) is 0 for SSA1 (1 for SSA0), then the input is shifted by2p,
resulting in∆ = 2p (−2p for SSA0). Otherwise the output SAD
remains unchanged (∆ = 0).

A ME error occurs in theSSA fault case if and only if, a)∆ =
2p for MVmin and 0 forMVf for SSA1 case, or∆ = 0 for MVmin

and−2p for MVf for SSA0 case. b)0 < SE ≤ 2p. Note that
PE andSE depend highly on the fault position (p, α) with a certain
variation due to the input sequence characteristics. This is further
discussed in Section 3.1.

Soft errors can be modeled using techniques proposed in [6].
A ripple carry adder operating at an input voltage (V dd) below the
normal operation range, generates soft errors [6] whose values are a
function ofV dd and the adder inputs. In the context of SAD compu-
tation we assume that all adders operate under the sameV dd. There-

fore, the DC error in the final SAD value,∆, depends on theV dd

value and the intermediate values of the SAD computation, whose
probability density function (pdf) can be modeled as a function of
final SAD, using the methods proposed in [10]. Thus,∆ can be also
represented as a function ofV dd and final SAD value. While the DC
error∆ due to a SSA fault has a value of either 0 or±2p such that
only an input SAD in the range[minSAD, minSAD + 2p] could
result in a ME error,∆ in the soft error case can take any arbitrary
discrete value (in multiples of2V dd) within the range[−SAD, 0]
which allowsany input SAD value to lead to a ME error.

3. FAULT EFFECT MODELING

3.1. Stuck-at Fault Effect Modeling

To analyze the error tolerance of different ME algorithms in the pres-
ence of SSA faults, we introduce a simplified model to describe ME
algorithms. We assume that ME algorithms differ in the structure
of the set of candidates within which they search for the best MV.
For a given block, each ME algorithm operates on a different num-
ber of candidatesN , a different coverage of SAD values∆SAD

(defined as the difference between the largest SAD value in the can-
didate set and the minimum SAD,minSAD, corresponding to the
best MV), and a different SAD distribution,PSAD, within the range
[minSAD, minSAD + ∆SAD].
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Fig. 1. Probability distribution of SADs

Figure 1 illustrates our model whereerror regions anderror-free
regions represent the range of final SAD values that will or will not
suffer DC errors by a SSA1 fault with parameters (p, α). This is an
approximation to the actual error behavior. It is possible for a DC
error to occur forany final SAD value ifα 6= 1, but this is triggered
only for certain combinations of intermediate SAD computations.
Our simplified model is based on the assumption thatα closely ap-
proximates the ratio of the intermediate SAD value accumulated up
to the faulty data bus to the final SAD value (this would be a correct
assumption if pixel errors followed a spatially uniform distribution.)
Additional details on this model can be found in [9].PminSAD is
the pdf ofminSAD for a given video sequence, which will be dif-
ferent, for example, for low and high motion scenes. Finally, we de-
notePmin,R the distribution of theminimum SAD value in a given
regionR, which will be a function of the distribution of SAD val-
ues in the regionR. PSAD1 andPSAD2 in Figure 1 represent two
different ME algorithms, with respective SAD ranges,∆SAD1 and
∆SAD2, such that∆SAD1 < ∆SAD2, and∆SAD2 > 2p.

With this model, as shown in Figure 1, ifminSAD is in the
error free region there will be no DC error, resulting in no ME er-
ror even though the system is faulty. IfminSAD is in the error
region a DC error will occur. A ME error will then occur if there is
a MV candidate whose SAD value is in the intervalIf correspond-
ing to the shaded area. Since DC errors add2p to minSAD, a
suboptimal motion vectorMVf will be selected instead ofMVmin

iff i) it belongs to theerror free region and ii) its SAD,SADf , is



such thatSADf < minSAD + 2p. We denote byIf the in-
terval containing SAD values meeting these two conditions. Thus
SE = |SADf − minSAD| ≤ ∆SAD when∆SAD < 2p, other-
wiseSE ≤ 2p. If multiple candidates have SAD values withinIf ,
the one with the minimum SAD is selected.

We can represent the probability of ME errorPE for a given
block, if ∆SAD < 2p, as

PE =
∆SADX

i=1

∞X
k=0

PminSAD(
(2k + 1)2p

a
− i)

∆SADX
j=i+1

Pmin,If
(j),

which can be written as:
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∆SADX
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The expected value of SAD difference (D(MVf ) − D(MVmin)),
which can be used to predict the coding efficiency loss, can be rep-
resented as,
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which can be approximated by

Ē ≈
∆SADX

i=1

∞X
k=0

PminSAD(
(2k + 1)2p

a
− i) · (i − 1) + c,

wherec is a small constant which increases withN . Similar expres-
sions can be obtained for∆SAD > 2p. This model was experimen-
tally verified.

Assumeα andp are given and consider how̄E varies as a func-
tion of the ME algorithm. If∆SAD > 2p, Ē is determined pre-
dominantly by2p. On the other hand, if∆SAD < 2p, the error is
bounded by a function that depends primarily on∆SAD (i.e., the
worst case is to replace the best match by the worst match among the
candidate vectors, which introduces a∆SAD error). Clearlyp and
α are both hardware related and do not depend on the ME algorithm.
Thus, if our goal is to choose an ME algorithm that reduces the im-
pact of faults, we should choose one such that typical sets of MV
candidates are as close as possible to the optimal value (i.e.,∆SAD

small). Note that if∆SAD is sufficiently small, the error introduced
when2p < ∆SAD will depend onp but will also be small. In con-
clusion, we should favor ME with small∆SAD, which can (as will
be verified experimentally) limit the degradation due to faults, even
whenp is large.

The above model provides important insight into what features
of ME algorithms lead to increased error tolerance. However a better
model would be needed to provide accurate estimation of the degra-
dation in coding efficiency due to a given SSA fault. This would
require additional information regarding the variation from block to
block of the ME parameters (i.e.N , ∆SAD, PSAD), as well as tak-
ing into consideration other coding issues. Our more recent work [9]
provides such model and can be used as part of the decision strategy
for accepting a given faulty chip.

3.2. Soft Error Analysis

While in the previous section we have provided a generic model for
evaluating the error tolerance properties of ME algorithms given a
SSA fault, for the soft error case we directly compare three repre-
sentative ME algorithms for the same purpose. More specifically, the
full search (FS), three step search (TSS) [11], and enhanced predic-
tive zonal search (EPZS) [12] algorithms are considered. FS exhaus-
tively searches all candidates within the search window, thus has the

largest number of candidates (NFS) and SAD range (∆SADFS).
TSS is a heuristic algorithm and can be seen as a sub-sampling of
the FS SAD space. It successively evaluates sparsely distributed
candidates and tries to follow the direction of minimum distortion
for locating the smallest SAD. Although the number of candidates
(NTSS) for TSS reduces significantly, its SAD range∆SADTSS

remains relatively large. On the other hand, EPZS, a state of the
art ME algorithm, considers a combination of optimized predictors,
adaptive thresholding, and refinements to locate the minimum distor-
tion location. Unlike TSS, both number of candidatesNEPZS and
the SAD range∆SADEPZS tend to be quite small. These proper-
ties are illustrated in Figure 2, which shows the distribution of the
SADs for all candidates of a given block, sorted by magnitude.
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Fig. 2. Comparison of three search algorithms

DenoteSAD′
i the computed SAD value with a soft error for a

candidatei. Then, the overall error rate for a given ME algorithm
with a number of candidatesN can be represented as:

PE = 1 −

NY
k=1

Pr(minSAD
′ ≤ SAD

′
k)

Considering that both TSS and EPZS can be seen as subsets of FS in
terms of the candidates examined, the above equation suggests that
thePE of both of these algorithms is smaller than that of FS. That
is, FS is more error prone than either of these algorithms.

Let us also denoteP i = Pr(SAD′
i < minSAD) andP̂ i as

the probability ofSAD′
i being the minimum among all SAD values

for a given ME algorithm. We can safely assume that the probability
of having multiple candidates with a computed SAD value smaller
thanminSAD is very small, which allows us to approximatêP i as:

P̂
i ≈ Pr(SAD

′
i ≤ minSAD; SAD

′
k ≥ minSAD,∀k 6= i)

Therefore, the probabilitieŝP r
FS andP̂ r

FME of a candidater having
the minimum SAD for FS and a fast ME (e.g. TSS or EPZS) respec-
tively, resulting in a ME error of magnitudeSADr−minSAD, and
assuming thatr is examined by both algorithms, can be computed as:

P̂
r
FS ≈ P

r

NF SY
k=1,k 6=r

(1−P
k) , P̂

r
FME ≈ P

r

NF S ,k∈IF MEY
k=1,k 6=r

(1−P
k)

whereIFME is the set of candidates examined by the fast ME. We
observe thatP r

FS ≤ P r
FME . However, as can also be seen from Fig-

ure 2, apart from FS examining considerably more candidates than
the fast ME, its candidates are also far more densely distributed. That
is, the likelihood of having multiple other candidatesm with SADm

close toSADr for FS is high, such thatP m
FS ≈ P r

FS . Therefore the
probability that any one of those candidates nearr for FS has smaller
SAD thanminSAD tends to be higher than that of the fast ME. This
leads to a larger meanME error (E, thus worse coding efficiency)
for FS than a fast ME. Therefore, we can draw a conclusion that for
soft errors a higherN leads to greater degradation.

Soft errors are also bounded by the maximum SAD value of the
ME algorithm. Although EPZS would evaluate a similar or smaller



number of candidates compared to TSS, since∆SADEPZS is usu-
ally significantly smaller than∆SADTSS , it is expected that the
error induced by using EPZS, especially for sequences where MV
prediction is most effective, will be less significant.

In summary, for the soft error case, the number of candidatesN

is shown to be critical in determining error tolerance, i.e. a smaller
N would usually lead to higher tolerance. While a smaller∆SAD

can also contribute to error tolerance to certain extent, its impact is
not as significant as that ofN .

4. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate our fault/soft error impact measurement models, various
sequences were tested with a series of fault and soft error parame-
ters using a H.264/MPEG-4 AVC baseline encoder and the FS, TSS,
and EPZS algorithms. Only 16x16 block partitions and a single ref-
erence were considered for ME. We have used a search window of
±32 resulting inNFS = 4225 andNTSS = 41. NEPZS , however,
varies depending on the sequence and fault characterists but on aver-
age for Foreman sequence, it was 8.8. Figures 3 and 4 depict the RD
performance for the CIF resolutionForeman sequence for stuck-at
faults and soft errors, respectively. Other sequences tested showed
similar results.

Note that most SSA faults produce imperceptible degradation.
In fact more than 90% of SSA fault locations lead to less than 1%
bitrate increase with some variation depending on the ME and MMC
architecture. To more clearly demonstrate the effect of faults in dif-
ferent ME algorithms we have selected fault parameters which re-
sult in significant quality degradation. Further simulation results
can be found in [9]. From figure 3 it can be seen thatp is the pri-
mary factor determining the level of error significance. However,
for the samep, the algorithms tested demonstrate significant differ-
ences. Further evaluation of the value of∆SAD for the three ME
algorithms demonstrates that∆SADFS = 1.5 × ∆SADTSS =
9.75×∆SADEPZS . These numbers support our earlier conclusion
that∆SAD is the primary factor affecting robustness.

As for soft errors, the number ofTFA (time for one full adder
operation) per clock cycle is commonly used [6] to simulate soft er-
rors, since it directly indicates theV dd level. Given that 16 or higher
TFA per cycle result in no error, we have selected values of 9 and
11TFA in our simulations. It can be observed from figure 4 that per-
formance of both EPZS and TSS is not very much affected by such
errors. On the other hand, performance using FS is considerably de-
graded. This also supports our earlier conclusion thatN plays a key
role in determining error tolerance for soft errors.

5. CONCLUSION

In this paper we have investigated the computation error tolerance
properties of ME algorithms and presented simple error models that
provide insights into what features lead to increased error tolerance
for both SSA faults and soft errors. Further analysis of fast ME al-
gorithms, such as TSS and EPZS, suggests that error robustness de-
pends on the number and quality of the candidates tested by each al-
gorithm. However, we have observed that the number of candidates
is more important for soft errors, while their quality is the primary
consideration in the SSA case. This suggests different strategies to
design error tolerant ME algorithms for hard or soft error scenarios.
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