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ABSTRACT

Block-based motion and disparity compensation are popular tech-
niques to exploit correlation between video frames. Block sizes used
for compensation can be chosen to achieve a good trade-off between
signaling overhead and prediction accuracy. However, motion field
boundaries correspond to objects having arbitrary shapes; this limits
the accuracy of block-based compensation, even when small block
sizes are chosen. In this paper we seek to enable compensation based
on arbitrarily-shaped regions, while preserving an essentially block-
based compensation architecture. To do so, we propose tools for
implicit block-segmentation and predictor selection. Given two can-
didate block predictors, segmentation is applied to the difference of
predictors. Then a weighted sum of predictors in each segment is
selected for prediction. Simulation results show improvements in
rate-distortion (RD) performance, as compared to the standard quad
tree approach in H.264/AVC.

Index Terms— Video coding, motion search, hierarchical quad-
tree, H.264/AVC, segmentation

1. INTRODUCTION

Exploiting inter-frame correlation via motion estimation and com-
pensation is key in achieving high video compression efficiency.
Block-based motion compensation provides a good balance between
prediction accuracy and rate overhead. Clearly, blocks of pixels are
not guaranteed to have uniform displacement across frames. For
video sequences this is the case if an object boundary exists in a
block and pixels which belong to different objects move in different
ways. In stereo or multi-view sequences objects in different depths
have different disparities and occlusion effects. This makes disparity
search difficult and reduces coding efficiency in cross-view predic-
tion.

Numerous approaches have been proposed to provide more ac-
curate motion compensation by providing different prediction for
different regions in a macroblock. Examples include techniques used
in H.264/AVC video coding standards [1] or the hierarchical quad-
tree (QT) approach [2]. In these methods a macroblock is split into
smaller blocks and the best match for each block is searched. As
the number of blocks in a macroblock increases, overhead increases
and distortion between original and the match decreases. Therefore,
there is a minimum rate-distortion point and the best block mode
is decided by Lagrangian tool. To increase the matching capabil-
ity by square or rectangular block shape in QT, geometry based ap-
proach (GEO) is proposed in [3,4]. A block is split into two smaller
blocks called wedges by a line described by slope and translation
parameters. The best parameters and matching wedges are searched
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Fig. 1. Example of block matching by segmentation

together. Although GEO captures object boundaries better than quad
tree, it is still limited to be a straight line. In [5], an object based mo-
tion segmentation method is proposed to solve the occlusion prob-
lem. To capture different motions in a block, motion vectors from
neighboring blocks are copied after block segmentation. To avoid
transmitting segmentation information, previously encoded frames
at (t — 1) and (¢t — 2) are used to estimate segmentation for the
current frame at (¢).

In this work, we present a framework for implicit block segmen-
tation to increase prediction quality. Implicit block segmentation is
obtained based on the predictors from previously encoded frames as
in [5]. However, segmentation is applied to the difference of two
predictors, rather than directly to the predictor itself. Also, unlike
in [5] motion vectors are explicitly transmitted to signal the location
of chosen predictors and the encoder searches for the best combi-
nation of predictors. We use 16 X 16 macroblocks, which are as-
sumed to be relatively small relative to typical objects in the scene,
so that in many cases at most two objects move with different dis-
placements at the boundaries [5]. Although distortion can be reduced
as the number of predictors increases, the overhead required for mo-
tion/disparity vectors and for identifying the selected predictor for
each segment also increases with the number of predictors. While
the number of predictors can be optimally chosen based on R-D cost
similarly to hierarchical quad-tree, in this work for simplicity we
choose the maximum number of predictors to be two.

In Section 2, details of block segmentation and its implementa-
tion within an H.264/AVC architecture are described. In Section 3,
simulation results for temporal and cross-view sequences are shown.
In Section 4, conclusion follows.

2. BLOCK BASED SEGMENTATION

Fig. 1 shows an example of block motion compensation between
current and reference frame. In the current block, we have two ob-
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Fig. 2. Definition of predictor difference pg in Fig. 1.

jects which are separated by a smooth boundary. Let us assume that
the correct matches of each object can be found as a base predic-
tor (po) and a enhancement predictor (p1) as shown in the reference
frame. In Fig. 2, we depict the difference between the two predic-
tors, pq = Ppo — p1. In region 1 of py, the absolute difference of
pixel values is small because po and p; come from the same object
and both pp and p; will estimate original with small error. There-
fore, the difference in residual error when using the two predictors
(i.e., |Z — po| — |z — p1]) will tend to be small. In regions 2 and
3 of pa, p1 and po, respectively, provide the best match. Thus, the
absolute difference between the two predictors will tend to be large,
and we similarly would expect that the differences in residual error
after prediction will be large.

For each region several scenarios are possible. In the area where
|Pa| is small, because the two predictors are similar we have that ei-
ther 1) both predictors provide a good match or ii) the residual error is
large with respect to both predictor and choosing one of the predic-
tors over the other will not lead to significant improvements. Instead,
in areas where |pq| is large, either i) only one of the two predictors
provides a good match, or ii) a combination of both predictors may
lead to a better matching performance. Clearly, choosing the “right”
predictor among the two available choices is more important for re-
gions where [pg| is large; it is in these regions where signaling a
predictor choice can lead to a more significant gain in prediction
performance.

For the original macroblock signal Z, QT and GEO find the best
predictor for each segment respectively. Therefore, although the cor-
rect matches for each object are given as po and p1, neither QT nor
GEO finds correct match without significant prediction error in re-
gion b in Fig. 1 because object boundary is not aligned by a straight
line.

2.1. Implicit Block Segmentation (IBS)

Assume two predictors are available for a given macroblock (i.e.,
two 16 x 16 blocks from neighboring frames). These two predictors
have been chosen by the encoder and their position will be signaled
to the decoder. The optimal segmentation for the purpose of predic-
tion would be such that each pixel in the original macroblock is as-
signed to whichever predictor, pg or p1, provides the best approxima-
tion. However this cannot be done implicitly (without sending side
information) since the decision depends on the original block itself.
Based on our previous observations about the expected gain depend-
ing on the differences between predictors, we apply segmentation to
the block of predictor differences, ps. Due to the noisy character-
istics of predictor differences, edge based segmentation methods do
not detect simple boundaries efficiently in 16 x 16 macroblocks. In
this work, 1-D K-means clustering [6] is used as a basic segmenta-
tion algorithm. Ny centroids are initialized at the uniform distance
between maximum and minimum value of p4. Maximum run is set
to 20. After K-means clustering, disconnected pixels exist which
belong to the same segment because spatial connectivity is not con-
sidered in 1-D K-means clustering. A two step post-processing is
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Fig. 3. Post-processing after segmentation with segment index.
First, disconnected segment 2 is classified as different segment in-
creasing the number of segment N from 3 to 4. Second, segment 4
is merged into segment 1 decreasing N to 3 again.

applied to take spatial information into account. First, using con-
nected component labeling [7], disconnected pixels assigned to the
same segment are classified into different segments. Second, to pre-
vent noisy segments, if the number of pixels in a segment is smaller
than Ny, it is merged into the neighboring segment that has the
minimum segment-mean difference with current segment. Fig. 3 de-
picts this post-processing. Note that the number of segments de-
pends on the disparities between base and enhancement predictors.
In this work, No and NN, is set to be 2 and 10, experimentally.

For each segment k in pg, the optimal predictor &5 can be cal-
culated as a weighted sum of base and enhancement predictors when
original Z is known. If scalar weights o and () are applied to all
pixels in segment k of po and p1, sum of squared difference (SSD)
for the segment £ is

SSDy, = ||Zk — @x])* = ||Tr — (abok + Brbre)l]” (1)

Po,r and P specifies the pixels of pg and p; belonging to segment
k. By setting to zero the gradient of eq. (1) with a, + O = 1,
optimal weights can be found as
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ap = —(PLk 2k) pa
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Because the optimal «ay, is calculated using information from the
block to be encoded, the chosen value has to be signaled. For
16 x 16 blocks, this signaling overhead may not be justified
given the overal reductions in residual error. In order to limit
the overhead, in this work, weights are selected from a prede-
fined set W = {(1,0),(0,1),(3,3)}. corresponding to using
{po, P1, %(ﬁo + p1)} for prediction, respectively. Thus a weight
index with only three values {0, 1,2} has to be signaled'. In sum-
mary, prediction for the block to be encoded is achieved by signaling
the two predictors, po and pi, and the weights to be used for each
segment, wy. The segmentation itself is generated by encoder and
decoder in the same manner from the decoded predictors, so that
there is no need for side information to be sent.

Since prediction is performed by combining two predictors us-
ing our proposed IBS technique, there is no guarantee that one could
obtain the best matching pair of predictors by search for each predic-
tor individually using standard residual energy metrics based on the

INote that it is easy to extend this framework by including additional
weights in W. With binary arithmetic coding or variable length coding of
weight indices, a given weight will be chosen only if it leads to gains in an
RD sense.



whole 16 x 16 block. In theory one would have to search for pairs
of predictors, i.e., for each base predictor candidate, it would be nec-
essary to search all candidate enhancement predictors and choose
the best one by computing the prediction residue after segmentation
and combined base/enhancement prediction. This is illustrated in
Fig. 4. This general approach would have significant complexity. In-
stead, we start by obtaining the top M base predictors using standard
blockwise metrics. Then we perform a joint search for enhancement
predictors for only those M base predictors. The cost functions for
each step are described next.

2.2. Implementation within an H.264/AVC architecture

Implicit block segmentation is implemented in H.264/AVC reference
codec - JSVM 8.4. Current inter block modes are extended inserting
INTER16x16_IBS between INTER16x16 and INTER16 x
8. RD optimization tool in H.264/AVC is applied to choose the best
mode for each macroblock.

If the number of candidates in full search range is Ny, there
are NJ%S candidates for INT ER16 x 16_I BS when full search is
applied to pairs of base and enhancement predictors. This is signifi-
cantly higher than the number of search locations in the hierarchical
QT, NorNys, where Ngr is the number of QT block modes and
Ngr < Nys. Instead of testing all candidates in search range for
base predictor, a limited set of candidates is collected from the best
matches of INTER16 x 16, INTER16 x 8, INTERS8 x 16,
INTERS x 8 and original block segments. If original macroblock
is segmented into N, regions after post-processing, No-g4 best
matches for the segment are found during INTER16 X 16 mo-
tion search. Because duplicate candidates are removed, (Norg + 9)
is the maximum number of base predictor candidates.

To select the best predictor pair (po,p1) for INTER16 x
16_IBS, three different error metrics are used. For each base pre-
dictor candidate, the best complementary enhancement predictor
is searched within search range as in Fig. 4. The first error metric
is sum of absolute difference (SAD) used to decide the weight in-
dex wy, for the segment k. SAD of segment k is calculated for all
weights in W and the weight index with minimum SAD is chosen.
Second, in the selection of the best enhancement predictor for given
base predictor, a simplified R-D cost, J, is defined as;

Minw, {SAD} + VANB + VAMYV cost (1)

N is the number of segments in p4, B is the number of bits
for weight index per segment defined as B = log2|W| and
MYV cost(p1) is the motion vector cost of enhancement predictor
P1. MV cost(-) and X follows the definition of H.264/AVC.

For M base predictor candidates, equal numbers of matching
enhancement predictors are found. Finally, RD cost of M base and
enhancement predictor pairs are calculated and compared with RD
costs of other block modes in H.264/AVC (RD mode decision). En-
coded information in INTER16 x 16_1 BS includes reference in-
dices and motion vectors for base and enhancement predictors as
well as the weight indices for each segment. Weight indices are
encoded by variable length code in R-D mode decision and binary
arithmetic code in bit stream coding.

In Fig. 5, an example of predictor difference between base and
enhancement predictor is shown, with its corresponding segment in-
formation. Predictor difference shown in Fig. 5 (a) is scaled to show
the difference clearly. Note that the segmentation shown in Fig. 5 (b)
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Fig. 5. (a) Predictor difference of base and enhancement predictor
(b) segmentation from predictor difference and chosen weight index

captures large predictor differences efficiently. Selected weight in-
dices show that the top right part of the block uses enhancement
predictor, while elsewhere the base predictor is used. Prediction us-
ing by IBS achieves 30% SSD reduction as compared with the best
predictor by quad-tree in Fig. 5.

3. SIMULATION RESULTS

Both multi-view video (MERL _Ballroom, 320(w)x240(h)) and stan-
dard video sequences (Foreman, 352(w)x288(h)) are tested. In
MERL _Ballroom, each anchor has 8 views coded IPPP PPPP and 2
anchors at different time stamps (0, 10) are tested. In Foreman, 15
frames are coded as IPPP. Encoding conditions of ‘H.264/AVC’ and
‘H.264/AVC+IBS’ are the same except that in ‘H.264/AVC+IBS’,
INTERI16 x 16_IBS is tested as an additional inter block mode.
QP20,24,29 are used with 32 search range with quarter-pel and
CABAC enabled. As can be seen in Fig. 6, 0.1-0.2 dB gains are
achieved in MERL_Ballroom and 0.2-0.4 dB gains from Foreman.
Note that gains by IBS increase with the number of references.

In Table 1, average distortions and bits are shown when IBS is
the best mode during mode decision. Prediction quality improves by
IBS as can be seen in the reduction of S$SDyreq. This is translated
into reduction in residual coding bits while SSD in reconstructed
frame, SS Dyecon, does not change significantly. Note that typically
the bits needed signal motion vectors are reduced because only two
predictors are used in IBS (while a QT approach could use more than
two vectors). Extra bits are needed to signal weights when using
IBS.

Gains are not encouraging in MERL_Ballroom. Firstly, due to
the noisy background of MERL_ Ballroom, predictor difference re-
sults in noisy segments, which increases signaling bits for weight
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Fig. 6. Comparison of "H.264/AVC’ and "'H.264/AVC+IBS’

Table 1. Comparison of data by QT and IBS from MERL _Ballroom
and Foreman) with QP 20. Data is averaged for the macroblocks
where IBS is the best mode from 14 P-frames in each sequence.
A — B means ’best data by QT” — ’best data by IBS’. SSDpred
is the sum of squared difference between the original and predic-
tor. Bitmy, Bitres and Bit,, are bits for motion/disparity vectors,
residual and weight indices respectively.

niques to allow searching for pairs of predictors.
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