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ABSTRACT

In this paper, we consider compensation of focus mismatchesfor
frames that are encoded with inter-view bi-prediction (B-frames) in
multiview coding (MVC). We start with an analysis of a multiview
system with focus mismatches, to demonstrate that a B-framemay
suffer from different types of mismatches with respect to the frames
from different views used as references. As compared to our previ-
ous work for inter-view P-frames, filter estimation for B-frames has
to consider not only the depth-dependency of focus mismatches, but
also i) the possibility that the two predictors, from different direc-
tions, exhibit different types of prediction mismatches, and ii) the
effect of bi-predictive search on the generation of filteredreferences.
We show that, designing filters only for the averaged bi-predictor
could lead to a suboptimal solution when combined with conven-
tional bi-predictive search schemes. Instead, we propose afilter de-
sign approach that independently estimates depth-relatedfilters for
the two references used for prediction. Simulation resultsshows that
for views coded with inter-view bi-prediction, the proposed method
provides up to 0.7dB gain over current H.264/AVC in the sequences
we tested.

Index Terms— multiview video coding, bi-prediction, focus
mismatches, adaptive filtering, disparity compensation

1. INTRODUCTION

In multiview video systems, multiple cameras are utilized to simulta-
neously capture scenes from different viewpoints. Due to differences
in camera settings and/or shooting positions, frames from different
views are prone to suffer from mismatches other than simple dis-
placement. When encoding across-views (inter-view coding), the
efficiency of block-based disparity compensated prediction can suf-
fer the presence of these non-translational mismatches.

Previously, we proposed a depth-related adaptive reference fil-
tering (ARF) approach [1, 2] to compensate for focus mismatch in
multiview systems, which results in blurriness/sharpnessdiscrep-
ancy among different views. In the proposed coding scheme, after an
initial disparity search, a frameS is partitioned into regionsS1, S2,
... Sk corresponding to different depth levels (where classification
is based on block-wise disparity vectors (DVs)). For each region
(depth level)Si, a parametric 2D spatial filterψi is estimated by
minimizing the mean-squared prediction error betweenSi and the
corresponding block-wise predictors found in the initial search. The
resulting filters are applied to the reference frame to create filtered

∗Further author information: Send correspondence to polinlai@usc.edu

references. Finally in the encoding stage, each block inS selects
the predictor (filtered or unfiltered) that provides the lowest rate-
distortion cost (RD-cost), thus ensuring highest coding efficiency.
This method was developed for inter-view P-frames, for which a sin-
gle reference frame is used, taken from one of the neighboring views
(IPPP for coding V0∼V3 for example).

In this paper, we extend compensation of focus mismatches to
B-frames, where predictive coding is performed by using reference
frames from two reference lists (e.g., frames from the left and right
views in List 0 and List 1, respectively). A straightforwardextension
of ARF to B-frames can be achieved by designing depth-dependent
filtersψiBi that minimize the prediction error between current blocks
and the chosen bi-predictors, which will be obtained by averaging
two reference blocks, one from each reference list. Note that such
an extension would be analogous to that selected for bi-prediction
in adaptive interpolation filtering (AIF) [3], in which for agiven
interpolation position, only one filter is designed and is applied to
generate interpolated pixel values for references in both List 0 and 1.

After implementing this straightforward ARF approach, we ob-
served experimentally that coding performance showed no signifi-
cant improvements; in particular, as compared to previous ARF for
P-frames, filtered frames were not chosen as often in bi-prediction
scenarios. In this paper, we analyze the causes of the differences in
performance between P-frames (for which ARF provides significant
gains) and B-frames. We propose alternative filter design techniques
that allow us to obtain substantial gains for the bi-predictive case as
well. The key observation is that with the above described approach,
joint filter design is followed by conventionalindependent search for
predictors in each list. Because of this mismatch between filter de-
sign and search, the gain with respect to un-filtered bi-prediction is
minimal. As an alternative, we propose a simple independentfilter
design that leads to increased gains of up to 0.3dB as compared
to the straightforward filter design for the averaged predictors. As
a result, we achieve coding gains up to 0.7dB gain over current
H.264/AVC in the sequences we tested.

The remainder of this paper is organized as follows: In Sec-
tion 2, we provide an analysis of focus mismatch in inter-view bi-
prediction scenario. The proposed filter estimation methodis pre-
sented in Section 3, along with discussion of the interaction between
filter design and bi-predictive search. Simulation resultsare pre-
sented in Section 4. Finally, we conclude this work in Section 5.
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Fig. 1. An example of focus mismatches in multiview bi-prediction, with Z∗

V 1 = 1.9m,Z∗

V 2 = 2.0m, andZ∗

V 3 = 2.3m. We consider image
sensor type 1/2” (H×W = 6.4mm×4.8mm) with a resolution of 640×480 pixels, i.e. the spacing between pixels is 0.01mm (Nyquist rate
100/2 = 50 cycles/mm). In polar system,q =

√
502 + 502 ≈ 70.71, which corresponds toΩ = π in (b) and (c).

2. INTER-VIEW BI-PREDICTION WITH
FOCUS MISMATCHES

A digital camera is typically modeled as an imaging system consist-
ing of a lens with focal lengthf , an aperture with diametera, and a
“film” made up with an array of image sensors. The plane containing
the film is referred as the “image plane”. The distance between the
image plane and the lens is called the “image place distance”, which
we denote asd. According to geometrical optics, a visible point will
produce a point projection (perfectly focused) on the imageplane
only if it is at a particular depthZ∗ that satisfies:

1

Z∗

+
1

d
=

1

f
⇒ Z∗ =

d · f
d− f

(1)

With a fixed zoom set byf , we can focus on a specified distance
Z∗ by fine tuningd (d ≥ f ). Operating in a very narrow range, a
slight change ind can cause relatively large variation inZ∗. This
can be achieved by using autofocus (AF), or by manually adjusting
the focus ring. For points at other distances, the corresponding pro-
jections on the image plane will be uniform circles with diameterβ,
which can be derived as [4]:

β =
af (|Z − Z∗|)
Z (Z∗ − f)

(2)

It can be seen from (2), that the characteristics of the camera
will be affected by parametersa, d, f , and the object depthZ. Now
let us consider an example with three cameras V1, V2, and V3, in a
multiview system: Assume they have the same focal length setting
f (same zoom), and their aperture settings are also identical: a =
f/8. However, the fine tuning of theirZ∗ was not done perfectly
(Z∗

V 1 6= Z∗

V 2 6= Z∗

V 3), resulting in differences of theirβ values as
functions ofZ. Fig.1 shows such an example with heterogeneous
settings. To illustrate the effect of the differences inβ, we plot the
optical transfer function (OTF), which is the frequency transform of
the point spread function (PSF) specified byβ. That is, in the polar
coordinates system [5]:

PSF(r) =

{

4/(πβ2), if r2 ≤ (β/2)2

0, otherwise
→ OTF(q) =

2J1(πβq)

πβq
(3)

In (3), J1 is the Bessel function of the first kind of order 1.
Fig.1(b) and (c) show the differences in the corresponding OTF. If
we encode V2 with bi-prediction by putting V1 in List 0 and V3 in

List 1 as references, for image portions correspond to visible regions
atZ = 1.2m, we need to perform lowpass on V1 and enhancement
on V3 in order to match V2. On the other hand, for visible regions at
Z = 4m, the corresponding image portions in V1 need to be slightly
“sharpened” while V3 has to undergo a significant amount of low-
pass filtering. As for the averaged predictor1

2
(V 1 + V 3) (dotted

line) in Fig.1(c), a lowpass filter is required to bring down the curve
to that of V2.

If V1 V2 V3 are arranged on a 1-D horizontal line from left to
right with equal spacingb between each other, with their image plane
distanced being very similar, it can be derived [6] that an object
at depthZ will result in a disparityδZ = d

Z
(−b) from V1 to V2

and also from V2 to V3. Without direct measurement of depth, we
can exploit disparity vectors as estimation of scene depth to identify
image portions corresponding to different depth levels andto achieve
depth-dependent filter design [1, 2]. In Section 3, we will discuss
adaptive filtering methods using the three-view we just discussed.

3. ADAPTIVE REFERENCE FILTERING AND
BI-PREDICTIVE DISPARITY SEARCH

From the analytical results, to compensate for focus mismatches, an
adaptive filtering approach can be developed by partitioning images
into regions at different depth levels and designing filtersto mini-
mize the prediction error for each level. We again propose touti-
lize a two-pass coding scheme with an initial search (the first coding
pass) to obtain the block-wise disparity vectors (DVs) and predic-
tors, for disparity-based frame partition and for designing filters. In
what follows, we will discuss different filter estimation methods, es-
pecially emphasizing on their interaction with bi-predictive search
when filtered references are generated.

3.1. Filter design for averaged bi-predictor

In bi-prediction, the predictor for a given block is actually the aver-
age of two reference blocks, one from the reference frame in List 0
(RL0) and one from the reference frame in List 1 (RL1). A straight-
forward filter design approach, which minimizes the prediction error
between current blocks and the averaged predictors, can be summa-
rized as:

For pixels within a given depth leveli,



min
ψi

Bi

∑

x,y

(

Sx,y − ψiBi ∗
1

2
(RL0

x+dx0,y+dy0 +RL1
x+dx1,y+dy1)

)2

(4)

In (4), (x, y) is the pixel position within a frame,(dx0, dy0) and
(dx1, dy1) are the disparity vectors forRL0 andRL1 respectively,
and∗ denotes convolution. The frame-partition can be achieved by
classifying the DVs in either direction, or by taking both directions
as two input features for classification. Since for each depth-level the
filter is designed for the averaged predictors, it should be applied to
both List 0 and 1, thus filtered referencesψBi ∗RL0 andψBi ∗RL1

can be generated.
The limitation of the approach in (4) is that there is no guaran-

tee that searching for the best matching blocks inψBi ∗ RL0 and
ψBi ∗RL1 will lead to an optimal solution to the problem of finding
the two blocks in List 0 and List 1 that provide the best prediction
after averagingand filtering. Clearly, this is also the case even if no
filtering is used [7]. However, our experiments indicate that the sub-
optimality of independently searching is exacerbated whenfiltering
is used.

Consider first the case of independent search, where for each
block, the encoderindependently searches for one best predictor
from references in List 0 and one from references in List 1. The bi-
predictor is formed by simply averaging the two without performing
any additional search. As for the example in Fig.1(c), during the
search within List 0, due to the effect of the lowpass filterψBi, the
referenceψBi∗V1 is not preferred over V1, i.e. it is less likely to
be selected. Consequently, the improved predictor1

2
ψBi∗(V1+V3)

may not even be tested by the encoder.
As an alternative, in the iterative search [7], the search iscon-

ducted by, iteratively, fixing the obtained predictor from one side
(RL0/L1) to estimate the best predictor from the the other side
(RL1/L0). This can help alleviate the disadvantage in independent
search, as some joint estimation is made possible. However the iter-
ative process could still be trapped in local minimum. For example
in Fig.1(c), if the initial selected predictor from List 0 isV1 instead
of ψBi∗V1, the resulting predictor after iterations may not converge
to the optimal predictor1

2
ψBi∗(V1+V3).

One possible approach to resolve such problem is to modify bi-
predictive search as follows: For the search within each list, instead
of picking only a single “best” predictor, record the best matched
predictors from each reference (RL0, ψiBi ∗ RL0 . . . ; RL1, ψiBi ∗
RL1 . . . ). With different combinations of one predictor from each
side, multiple averaged predictors can then be evaluated. While
complexity is increased, for a given depth-levelk, still only 1

2
ψkBi ∗

(RL0 +RL1) corresponds to the focus compensated predictor.
In addition to the problems related to the search algorithm,if

the filters are designed jointly for averaged blocks there isno guar-
antee that after applying them to individual frames they will pro-
vide good approximations to the original frame (which explains why
filtered frames are rarely selected when (4) is used.) As an exam-
ple, consider Fig.1(c), after applying the lowpass filterψBi designed
for 1

2
(V1+V3), the new referenceψBi∗V1 will actually has stronger

mismatch to V2 as its frequency response is further brought down
from that of V1.

3.2. Filter design for predictors from each reference list

To overcome the drawbacks (limited coding choices, integration
with bi-predictive search) of the method in (4), we consideran al-
ternative filter design approach that independently estimates depth-
related filters for each reference list. After the first coding pass, we

partition the current frameS into SL0,1, SL0,2 · · · SL0,M based
on classification of(dx0, dy0). We also partition it intoSL1,1,
SL1,2 · · · SL1,N based on classification of(dx1, dy1). By record-
ing separately the pixel values of the reference blocks from List 0
and List 1 (instead of minimizing error with respect to the averaged
predictor), two sets of filters can be estimated as follows:

ΨL0 =

{

ψiL0

∣

∣

∣

∣

∣

min
ψi

L0

∑

x,y

(

SL0,i
x,y − ψiL0 ∗ RL0

x+dx0,y+dy0

)2

}

ΨL1 =

{

ψjL1

∣

∣

∣

∣

∣

min
ψ

j
L1

∑

x,y

(

SL1,j
x,y − ψjL1 ∗RL1

x+dx1,y+dy1

)2

}

(5)

This filter design method directly addresses the potentially dif-
ferent types of depth-dependent mismatches exhibited in reference
frames from List 0 and 1, such as the example depicted in Fig.1. In
(5), setΨL0 will containM filters andΨL1 will haveN filters. They
will be applied to List 0 and List 1 respectively to generate filtered
references. Note that in this approach, a given block inS will par-
ticipate in both filter estimations to minimize prediction errors with
respect to references in List 0 and 1. As compared to the method in
Section 3.1, the two sets filter design has the following advantages:

1. Better integration with conventional bi-predictive search
schemes: Since in both lists the focus compensated refer-
ences are generated, the search within each list is likely to
obtain better matched predictor. As a results, the averaged
bi-predictor would also be an improved one.

2. More coding options: For B-frame, a block can simply be
encoded using predictor from only one of the lists, if the rate-
distortion (RD) cost of doing so is smaller than using the av-
eraged bi-prediction. Based on (5), the filtered referencesin
each list provide better matched predictors that can be used
by themselves, leading to more options for encoder to per-
form RD optimization.

3. Potential speed up for pi-predictive search: Consider the ex-
ample as Fig.1 in which two filters are designed (for depth
1.2m and 4m) in each reference list (ψ1.2m

L0 ,ψ4m
L0 , andψ1.2m

L1 ,
ψ4m
L1 ). If we observe that a given block selectsψ4m

L0 ∗ RL0

after the search within List 0, it is reasonable to constrainthe
search in List 1 to the referenceψ4m

L1 ∗ RL1. From the an-
alytical results, the degradation in coding efficient should be
small as this is likely to be the best matched reference.

Thus, without modifying the bi-predictive search schemes and
increasing complexity, this method is preferred as compared to the
joint estimation in Section 3.1.

3.3. Hybrid filter design

Finally, we can consider applying both the methods as in Section 3.1
and 3.2, resulting in three sets of filters:ΨL0, ΨL1 andΨBi. The
first two will be applied to List 0 and 1 respectively. On the other
hand,ΨBi should be applied to both list.

While the references filtered by setsΨL0 andΨL1 can be readily
used, as discussed in Section 3.1, references generated by applying
ΨBi have to be treated with special consideration. In order to fully
exploit the advantage ofΨBi, the bi-prediction search scheme has to
be modified such that predictors1

2
ψiBi ∗ (RL0 + RL1) can still be

tested even ifψiBi ∗ RL0/L1 alone might not provide higher coding
efficiency. As a results, a properly implemented hybrid filter design



will have the highest complexity among the three methods discussed
in this Section 3, especially with more filtered references to search
over and the additional step to evaluate more combinations for bi-
predictors.

4. SIMULATION RESULTS

The proposed approaches are integrated with the JMVM 5.0, which
is a software implementation dedicated for multiview videocoding
based H.264/AVC. The classification of DV for frame-partition is
performed using a tool [8] based on Gaussian Mixture Model. We
partition a frame into up to three depth-level and estimate the corre-
sponding filters. According to the analysis in Section 2, 5×5 filters
with circular symmetric constraint are used. We encode frames only
at given timestamps using inter-view coding with IBPBP structure.
The interval between two timestamps is 0.5 sec. (e.g. Inter-view
coding at every 12th frame for frame rate 25fps.)

Without making any modification to the bi-predictive search
schemes, we currently performed simulations based on methods
in Section 3.1 and 3.2 using iterative search. (Initial search range
±64, plus 4 iterations with refinement search range±8.) For the se-
quences tested, the independent filter design (Section 3.2)achieves
coding efficiency which is up to 0.3dB higher than the method
in Section 3.1. Thus in Fig.2, we provide the corresponding rate-
distortion results of independent filter design. The four rate points
correspond to QP 22, 27, 32, and 37.

It can be seen that,for views encoded with bi-prediction,
the sequence Race1 achieves 0.5∼0.7 dB gain when applying pro-
posed independently designed ARF; while the improvement isabout
0.3∼0.4 dB for Rena. The higher efficiency comes with a penalty
with increased complexity introduced by the 2-pass ARF coding
scheme. However, we have demonstrated that [9], by evaluating the
RD performance across views and comparing the depth-composition
across time, complexity reduction techniques can be developed,
without sacrificing coding efficiency, such that ARF is applied only
to views with substantial coding gain and the filters are onlyesti-
mated when scene depth changes (instead of at every timestamps).
We expect the same results, i.e. negligible degradation in coding
efficiency, can also be achieved when applying those techniques to
ARF for bi-prediction.

5. CONCLUSIONS

This work considers compensating focus mismatches for frames that
are encoded with inter-view bi-prediction in multiview coding. We
analyze a multiview system with focus mismatches to demonstrate
different types of mismatches as compared to the reference frames
from different views. We show that the filter design approachfor
the averaged bi-predictor leads to a suboptimal solution when com-
bined with conventional bi-predictive search schemes. Taking into
account the interaction between filter design and the bi-predictive
search with filtered references, we proposed filter estimation method
which independently design depth-related filers for each reference
list. Simulation results shows that for views coded with inter-view
bi-prediction, the proposed method provides up to 0.7dB gain over
current H.264/AVC in the sequences we tested.

40 60 80 100 120 140 160 180 200
34

35

36

37

38

39

40

41

42

43

Kb/frame

P
S

N
R

Race1: V1,V3,V5,V7 (B−views)

H.264 + ARF each list
H.264

20 30 40 50 60 70 80 90 100

38

39

40

41

42

43

44

45

46

Kb/frame

P
S

N
R

Rena: V39, V41, V43... V51 (B−views)

H.264 + ARF each list
H.264

Fig. 2. Rate-Distortion performance of the proposed ARF

6. REFERENCES

[1] J.-H. Kim, P. Lai, J. Lopez, A. Ortega, Y. Su, P. Yin, and C.Gomila, “New coding
tools for illumination and focus mismatch compensation in multi-view video cod-
ing,” IEEE Trans. Circuits Systems and Video Technologies (CSVT), vol. 17, no.
11, pp. 1519–1535, Nov 2007.

[2] P. Lai, Y. Su, P. Yin, C. Gomila, and A. Ortega, “Adaptive filtering for cross-view
prediction in multi-view video coding,” inProc. SPIE 2007 Visual Communications
and Image Processing (VCIP), Jan 2007.

[3] Y. Vatis and J. Ostermann, “Prediction of P- and B-framesusing a two-dimensional
non-separable adaptive Weiner interpolation filter for H.264/AVC,” ISO/IEC-
JTC1/SC29/WG11 MPEG Document M13313, Apr 2006.

[4] H.-C. Lee, “Review of image-blur models in a photographic system using the
principles of optics,” SPIE Optical engineering, vol. 20, issue. 5, pp. 405–421,
May 1990.

[5] R. N. Bracewell, The Fourier Transform and Its Applications, McGRAW-HILL,
3rd edition, 2000.

[6] D. A. Forsyth and J. Ponce,Computer Vision: A Modern Approach, Prentice Hall,
2003.

[7] M. Flierl, T. Wiegand, and B. Girod, “A locally optimal design algorithm for block-
based multi-hypothesis motion-compensated prediction,”in Proc. IEEE Data Com-
pression Conference 1998 (DCC), Mar 1998, pp. 239–248.

[8] C. A. Bouman, “Cluster: An unsupervised algorithm for modeling Gaussian mix-
tures,” http://cobweb.ecn.purdue.edu/ bouman/software/cluster/, the version we
used was released in Jul. 2005.

[9] P. Lai, A. Ortega, P. Pandit, P. Yin, and C. Gomila, “Focusmismatches in multiview
systems and efficient adaptive reference filtering for multiview video coding,” in
Proc. SPIE 2008 Visual Communications and Image Processing (VCIP), Jan 2008.


