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ABSTRACT

In this work, we present a method for achieving a compact image
representation by applying wavelet lifting along an arbitrary combi-
nation of trees. This is done by extending a lifting transform along
a single tree to a series of lifting transforms along a number of dif-
ferent trees, each of which exploits directionality differently. The
trees are constructed in ways that force tree edges to follow the geo-
metric ows inherent in images. In particular, we propose a method
for constructing trees that trace out geometric ows using edges in
the image. Our preliminary results demonstrate promising perfor-
mance in terms of PSNR as a function of the percentage of retained
coef cients, motivating its potential for image coding.

Index Terms— Wavelet transforms, Image representations, Im-
age processing, Image analysis, Trees (graphs)

1. INTRODUCTION

Wavelet transforms are widely used for image processing. Simple
separable extensions of orthonormal or bi-orthogonal 1D wavelet
transforms exhibit good energy compaction properties; for smooth
images the majority of the signal energy in the transform domain
is concentrated in the lowest frequency bands. This leads to image
coding techniques that can represent transform domain information
ef ciently at low bit rates. The separable nature of these standard
wavelet-based methods limits their ef ciency in representing direc-
tional information inherent in image data. Thus, transforms that cap-
ture directional information have the potential to lead to more ef -
cient representations for image processing and coding. Numerous
techniques have been proposed to capture directional information.
Some of these (e.g., contourlets [1]) require some degree of over-
sampling, while others (e.g., bandelets [2] and directionlets [3]) are
critically sampled. In this paper we focus on a novel critically sam-
pled technique that can be viewed as an extension of [2, 3].

Bandelets [2] directly exploit directional information by parti-
tioning the original image into blocks that contain nearly homoge-
neous geometric ows (i.e., pixel intensity tends to be aligned in a
direction in a given block). Standard separable wavelet bases are
then warped along these geometric ows and these warped bases are
used to represent the images. This allows the transform to exploit
directionality in a localized fasion. However, this approach relies on
a block-based segmentation and so may not effectively capture geo-
metric ows along longer and more complex contours. The choice of
transforms is also limited to warped versions of separable 1D trans-
forms. Note also that in order to fully specify the transform for en-
coding, it is necessary to transmit the choice of orientation in each
block to the decoder. As an alternative to bandelets, Velisavljevic, et

al, proposed directionlets [3], where anisotropic wavelet transforms
are computed along discrete approximations of lines using integer
lattices and are capable of exploiting directionality along lines in a
given block of an image. Unlike bandelets, the ltering along a line
is not strictly 1D and neighboring pixels to those directly on the line
are used to compute the transform. As for bandelets, some over-
head is required to indicate which directions are selected on a block
by block basis. Thus both methods employ a block based partition
and within each block the the geometric ow is parameterized using
curves (bandelets) or line slopes (directionlets).

To motivate our approach we rst observe that both bandelets
and directionlets (and indeed conventional separable transforms) are
designed by selecting i) a set of directions or “paths” for traversing
the pixels in the image and ii) a transform to be performed along
these directions. In both cases a single direction (line or curve) is
chosen to traverse pixels within each block, so that we can see the
transform as operating on a series of parallel paths through the pix-
els. This can be inef cient because a single direction may not repre-
sent well the geometric ow in a block. Moreover, even if a single
direction provides a good representation, there exists some redun-
dancy between those parallel paths that can only be exploited via a
separable transform (as done in [2]).

The key novelty in our work is to show that it is possible to de-
ne transforms that operate on any arbitrary trees. Following the

analogy, a tree de nes paths to traverse the pixels in an image. The
corresponding transform is invertible (and critically sampled if all
pixels in the image are traversed.) This type of transform can enable
directional representations, for example if trees are chosen to follow
the geometric ow of an image. Our starting point is the lifting trans-
form along trees we recently proposed in [4], an extension to 2D of
earlier work in [5], in the context of data transport and compression
in sensor networks. In this paper we extend the work in [4] by i) ap-
plying the tree-based lifting transform to image data, ii) introducing
an approach to achieve a separable transform by using different trees
to successively traverse the image, and iii) demonstrating that ef -
cient representations can be obtained when choosing trees designed
using image edge information. As in [2],[3] the proposed transform
requires some overhead, namely, a description of the tree used to tra-
verse image pixels. Overhead can be kept low in coding applications
by, for example, de ning tree growing techniques that can be run at
encoder and decoder starting from some common information (e.g.,
a simpli ed edge map). Moreover, these methods are best suited to
smooth images with small amounts of texture. In highly textured re-
gions, the geometric ows in bandelets are hard to parameterize and
the lines in directionlets will not exploit directionality effectively.
Filtering along oriented trees has similar drawbacks in textured re-
gions. Thus, we only consider applications to smooth images.
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2. TREE BASED LIFTING TRANSFORMS

The idea of performing lifting transforms on arbitrary trees [4] orig-
inated in the context of sensor networks, where nodes are deployed
in a highly irregular fashion and links / routes between nodes are
ill-determined. Such a technique provides a natural means for com-
pressing sensor data in a distributed manner as data is routed towards
a given sink. A short summary of the work presented in [4] now
follows, presented in the context of an image transform (assuming
gray-scale images).

Consider an M × N image with MN pixels and assume a tree
T has been selected that allows us to traverse the pixels in the image
from leaves to the tree root. Let xm,n denote the intensity of pixel
(m,n) in T , and suppose we index the root node of T by (MN +
1, MN + 1). Let Cm,n and ρm,n denote the set of children and the
parent of pixel (m, n) in T , respectively. Finally, let depth(m,n) be
the depth of pixel (m, n) in T , with depth(MN +1, MN +1) = 0.
A lifting transform [6] can then be developed along T by specifying
how to split pixels into even and odd sets and how to compute the
predict and update lter coef cients at each level of decomposition.

For a 1-level transform, pixels are split into prediction and up-
date sets according to their depth with respect to the root of the tree
(the sink) which has depth zero, i.e., pixels of odd (even) depth are
assigned as odd (even) pixels in the transform. A series of splitting
trees can then be developed at each level of decomposition, where
the tree at level j is constructed using the even pixels of the tree at
the previous level. Thus, Tj will consist of pixels of even depth in
Tj−1 with a link between two pixels in Tj only if they are 2-hops
apart in Tj−1. We would then split each Tj according to the parity
of the depths. Using this construction, we denote the children and
parent pixels of (m, n) ∈ Tj as Cm,n,j and ρm,n,j , respectively.

Since the pixels are organized along a given tree, the lifting l-
ter for a pixel could also be adapted to the structure of its neigh-
bors along the tree as discussed in [4]. Ergo, the lifting lter for a
pixel could be adapted to the relative distances between its neigh-
bors in the tree, or on the number of paths merging into it, etc. For
simplicity in experimentation, we employ the lifting lters proposed
in our previous work. Given the sets of prediction and update pix-
els at each level of decomposition j ∈ {1, 2, . . . , L}, denoted Pj

and Uj , and prediction and update operators given by pm,n,j and
uk,l,j at nodes (m, n) ∈ Pj and (k, l) ∈ Uj , respectively, and
Nm,n,j = Cm,n,j ∪ ρm,n,j , we compute the transform as follows:

For every (k, l) ∈ Pj :

dk,l,j = sk,l,j−1 +
∑

(it,jt)∈Nk,l,j

pk,l,j(it, jt)sit,jt,j−1 (1)

and given every dk,l,j , for each (m, n) ∈ Uj we have:

sm,n,j = sm,n,j−1 +
∑

(it,jt)∈Nm,n,j

um,n,j(it, jt)dit,jt,j . (2)

3. GENERALIZED TREE BASED TRANSFORMS

The tree based transform of [4] provides a general wavelet transform
along a single tree. However, this is essentially a 1D transform in that
it is run along 1D paths in the tree, and data from multiple 1D paths is
only aggregated at the merge points in the tree. Thus, the transform
proposed in [4] is well suited for sensor network data gathering but is
not effective for image processing and representation, e.g., it may not
exploit correlation across adjacent paths. Another drawback of this
approach is that it will lead to long 1D lter kernels at higher levels

of decomposition. This means smooth (update) coef cients may not
be highly correlated along a splitting tree Tj , for large j, because
the distance along the 1D path between successive coef cients can
be large. This reduces the ef ciency with which our transform can
represent the image. In this paper, instead of using multiple levels
of decomposition along a single tree, we propose a new approach
to increase the ef ciency of our representation, where the transform
is computed over multiple trees, with different orientations, with a
different tree being used at each level of decomposition.

We now outline a general framework for computing general 2D
transforms along multiple trees in a separable manner, with the main
goal of exploiting directionality in images. Suppose we are given
an arbitrary method for constructing trees that follow the geometric
ow in an image given a prespeci ed root node (or more generally,

set of root nodes). For a one level decomposition (using a tree in
one direction followed by 2 trees in another), we would rst apply 1
level of decomposition along one tree T1 oriented in one direction,
then split the set of coef cients in T1 into even (low pass) and odd
(high pass) subsets (according to their depths in T1) and then run a
one level transform along a second tree T1,l and third tree T1,h (both
oriented in totally different directions) over the even and odd subsets
respectively. A simple example of such trees is shown in Figure 1,
where links in the tree (denoted by black lines between pixels) are
not allowed to cross edges in the images (denoted by blue asterisks).
In this example, T1 is a minimum spanning tree (MST) [7] of all of
the pixels with the sink set as the center pixel in the left-most column.
In addition, T1,l is an MST of all the even pixels in T1 and T1,h is an
MST of all the odd pixels in T1, each with the sink set as the center
pixel in the top row. While our examples are limited to MSTs, any
type of spanning tree could be used in our method (i.e. shortest path
trees, Steiner trees, etc. [7]). We could even construct spanning
trees that trace out the directionality in the image by building links
between pixels that follow the ows in an image, where ows could
be de ned arbitrarily (e.g. as in bandelets [2]). This would allow us
to exploit directionality in a very general way.
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Fig. 1. Example of three trees used for 2-levels of decomposition. Red x’s
are non-edge pixels, black squares denote sinks, and blue asterisks are edges
in image. Top left shows image block, bottom left T1, top right T1,l, bottom
right T1,h.

Clearly, both T1,l and T1,h are oriented vertically and so exploit
different directional information than T1 which is oriented horizon-
tally. Note that each tree has links that follow (but do not cross over)
edges and there are also links across paths (which we call merge
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points), making each transform inherently non-separable. Thus, our
transform can exploit directionality in an image in arbitrary direc-
tions and in a non-separable fashion.

Applying this idea repeatedly at j-levels produces a subband
decomposition similar to the decomposition of standard separable
transforms as shown in Figure 2. Clearly, Ej,l and Oj,l represent the
sets of even and odd nodes respectively taken from Tj,l, similarly
for Ej,h and Oj,h with respect to Tj,h. Note that Tj is constructed
using the even pixels of Tj−1,l , i.e., Ej−1,l. The Split(Tj) block
splits nodes into Ej and Oj along Tj according to the method in Sec-
tion 2, similarly for other split blocks. The P(Tj) and U(Tj) blocks
compute predicts and updates along Tj according to the methods in
Section 2, similarly for other predict and update blocks.

Split(Tj,l) P(Tj,l)

Ej,l

Oj,l

U(Tj,l)

Split(Tj,h) P(Tj,h)

Ej,h

Oj,h

U(Tj,h)

Split(Tj) P(Tj)

Ej

Oj

U(Tj)
Ej-1,l...

...

Fig. 2. Lifting structure at j-levels of decomposition.

Our proposed method can be viewed as a generalization of exist-
ing methods. As an example, consider the standard, separable exten-
sion of 1D transforms. This can be thought of as a special case of our
transform, since ltering rst along rows is equivalent to generating
a tree with links along rows only (with appropriate subsampling and
ltering) and ltering along columns second is equivalent to gen-

erating a tree with links along columns only (also with appropriate
subsampling and lters). At higher levels of decomposition, similar
trees are developed along the rows and columns of the correspond-
ing subsampled images. Bandelets could also be developed in this
context. In each block a tree would be generated with links that fol-
low the geometric ow to perform the rst stage of ltering. The
second (still separable) stage of ltering would then be performed
by constructing a tree with links running perpendicular to the ge-
ometric ow. In both cases, ltering is only done along 1D paths
in a separable manner, thereby mimicking both standard techniques
and bandelets. In Directionlets, directional information is captured
along lines by applying integer lattices along these lines in a non-
separable fashion. In our context, the combination of these lattices
can be thought of as a single tree with the transform performed along
this tree.

One major difference between what we propose here and con-
ventional separable transforms is that pixel data is not always trans-
formed along horizontal or vertical paths. Instead, the links of the
tree can be forced to follow geometric ows throughout the image.
The construction of transform trees can also be arbitrary, allowing
great exibility in exploiting directionality. The chosen trees may
also have multiple merge points (e.g. pixels with multiple children
as shown in Figure 1) that allow the transform to directly exploit
correlation across adjacent paths in a non-separable fashion, a fea-
ture not found in standard methods nor in bandelets. Furthermore,
directionlets only locally exploit directional information along lines
on a block by block basis, and so may not represent data along arbi-
trarily complex contours as effectively as our proposed method.

4. EXPERIMENTAL RESULTS

Since image edges can be thought of as boundaries between rela-
tively smooth regions, an edge map (loosely) de nes the geometric
ows in an image. If no transforms are performed across edges, this

should contribute to reductions in the relative amounts of high pass
energy in the transform. Thus, as a rst step to identifying good
transform trees, it is reasonable to compute an edge map and to then
develop trees that trace out edges without crossing them. Such trees
can be constructed in a unique manner given the edge map, so that
in a coding application only the edge map needs to be sent to the
decoder.

For the purposes of experimentation, rst we generate an edge
map of the image using standard edge detection methods (Robert’s
method is used for the following experiments.) This edge map is
used to construct trees that do not have links that cross over edges
in the image. This also tends to force pixels around edges to ow
through the tree along the ow of the image edges.

In this case, we separate pixels into edge and non-edge pixels.
Then for each tree we construct, we impose the following link con-
straints: (1) edge pixels will only be linked to other edge pixels and
(2) non-edge pixels will only be linked to other non-edge pixels.
Thus, any path in a given tree will contain only edge pixels or non-
edge pixels but not both. We consider a four subband decomposition.
Then, under the given link constraints stated above, we construct
three MSTs T1, T1,l, and T1,h using the same method described in
the example of Section 3. A one level transform is then performed
along each tree. This produces four subbands given by the sets of LL
pixels E1,l, LH pixels O1,l, HL pixels E1,h, and HH pixels O1,h.
We applied this preliminary method to two 256 × 256 test images
shown in Figure 3.

Fig. 3. Original images.

We evaluate this approach using the N term non-linear approxi-
mation problem (outlined in [3]) where we keep the N largest co-
ef cients and set the rest to zero. As discussed in [3], this is a
good preliminary indicator of coding performance. We compute the
PSNR of each image as a function of the percentage of retained co-
ef cients and compare a four subband decomposition using our pro-
posed transform against a four subband decomposition for a standard
separable 2D transform using the Haar basis and a four level decom-
position using a single MST rooted at the center pixel of the left-
most column. The performance curves are shown in Figures 4(a) and
4(b). Our proposed method is clearly better than the standard method
using a Haar basis. However, the standard method outperforms our
method when more pixels are retained for the clock image. One pos-
sible reason is that our current lter design leads to a bi-orthogonal
decomposition resulting in predict lters having more energy than
the update lters. We are currently studying techniques to normal-
ize the various lters (note that the lters depend on the structure of
the tree). Secondly, thicker image edges could be two or three pix-
els tall and wide, so our transform may not perform well near thick
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edges. Nonetheless, our transform still does better for smaller per-
centages. This is not the case in the airplane image since edges are
not as thick nor as detailed as in the clock image. Figures 5 and 6
show the reconstruction from our method (left) and from a Haar basis
(right) obtained by retaining 25% of the coef cients. Even though
the PSNR values are quite close for the clock, the reconstruction us-
ing our method is much sharper around the edges and contours. In
particular, the numbers on the clock, the frame, and images inside
the frame are quite blocky for the standard method, whereas they are
much sharper for our transform. The airplane image has a PSNR
gain of about 8 dB for our method over the standard method, and the
reconstruction clearly re ects this improvement. These preliminary
results are meant to demonstrate the potential merits of the proposed
representation, but further work is needed to develop image coding
applications. In particular there will be a trade-off between how well
a tree captures directionality and the number bits needed to represent
it. In terms of bits per pixel (bpp), the JBIG algorithm [8] is capable
of compressing the edge map for the airplane image to about 0.0117
bpp and about 0.0118 bpp for the clock image. Since our proposed
trees are constructed from the edge maps alone, the required over-
head is very low.
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Fig. 4. PSNR versus percentage of retained coef cients.

Fig. 5. Reconstruction with 25% for our method (left) and standard (right).

These improvements are the result of performing multiple lev-
els of decomposition along multiple trees, where each tree exploits
the inherent directionality in each image differently. Moreover, the
transform is not performed across edges as in the standard methods,
eliminating the inef ciency created by the large high frequency co-
ef cients around the edges found there. Some cross path correlation
is also exploited around pixels where paths in each tree merge, al-
lowing us to achieve more de-correlation across pixels than standard
methods.

Fig. 6. Reconstruction with 25% for our method (left) and standard (right).

5. CONCLUSIONS AND FUTURE WORK

We have developed a general 2D transform based on wavelet lifting
along arbitrary trees. This method can be viewed as a generaliza-
tion of existing methods. The arbitrary nature of the trees allows us
to exploit directionality and local homogeneity in a variety of ways.
Since multiple trees can be applied to different stages of the trans-
form, our method can repeatedly exploit directionality and homo-
geneity across all levels of decomposition. The results using N-term
non-linear approximations are promising. We are currently investi-
gating the application of this method to image coding.
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