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ABSTRACT In fact, since these systems target low complexity encoding, reduced

In many practical distributed source coding (DSC) applications cor€omplexity correlation _estima_ti(_)n may be desirable, even if it leads
relation information has to be obtained at the encoder in order t&° Somewhat lower coding efficiency.

determine the encoding rate. Coding efficiency depends strongly on Several methods have been proposed for correlation estimation
the accuracy of this correlation estimation, which often has to be peproblem in DSC. For video applications, low-complexity schemes
formed under rate and complexity constraints. In this paper we foto classify macroblocks into different correlation classes have been
cus on correlation estimation for wavelet-based DSC. We extend oyproposed [6], while other methods use a feedback channel to convey
previously proposed model-based estimation techniques, which preorrelation information to the encoder [7]. In our prior work for
vided accurate estimates of bit-plane level correlation under rate convavelet-based DSC, correlation estimation was performed by direct
straints, in the simple case where bit-planes are generated from thétplane comparison between the source and an approximation of the
binary representation of the sources. To extend the model-based agecoder side-information [8].

proach to wavelet-based DSC, we need to address two issues. Firstly, | this paper we focus on correlation estimation for wavelet-

in order to improve coding efficiency, bit-planes are typically generpased DSC. Applications of wavelet-based DSC include hyperspec-
ated by more sophisticated algorithms in wavelet-based DSC (e.Gra| image compression [8, 9], data compression in wireless sensor
by deciding on the bitplane scan order based on coefficient “signifpetwork [10], multi-view video coding [11], etc. The main novelty
icance”), which makes model-based estimation more challengingy this work is an extension ahodel-based estimatido take into
Secondly, certain wavelet subbands may not have enough coeffizcount specific characteristics of wavelet-based DSC. We first pro-
cients for reliable model estimation, so that model-based technlqu%sed a general approach for model-based estimation for DSC in
alone may not be sufficiently accurate. We propose solutions to the$¢>]: appropriate statistical models are chosen for the data, and ana-
problems and, using a DSC-based hyperspectral image system @gcal expressions are derived to estimate the bit-plane level correla-
example, we demonstrate that model-based estimation can lead fign. our simulation results have shown that model-based estimation
efficient system implementation with lower computational and datgan achieve better accuracy than direct sample exchange under in-
exchange requirements, and improved parallelism, while incurringormation exchange constraints. Our work [12] focused on bit-plane

only small degradation in coding efficiency. level correlation estimation, in the simple cases where bit-planes are
generated directly from the the binary representation of the sources.
1. INTRODUCTION Recent work [13] has proposed similar correlation estimation meth-

ods for binary and Gray code representations of the sources.

Dlstrlputed source coding (DSC) [1] addresses the problem of com-  Tnere are two main challenges in extending model-based esti-
pression of correlated sources that are not co-located. In practicglation to wavelet-based DSC. Firstly, in wavelet-based DSC, bit-
DSC schemes, correlation information is needed at the encoder {anes are usually generated using more sophisticated methods in
determine the encoding rate. However, in many applications exacqer to improve coding efficiency. A concrete example of this,
correlation mforma_tlon may not be available _beforehand, and onghich we consider in this paper, is that of bit-planes generated by
would need to estimate it as part of the coding process. In SuCBet partitioningas in SPIHT [14]. This type of bit-plane genera-
situation the coding efficiency of DSC depends strongly on the acgon complicates the model-based correlation estimation process, as
curacy of correlation estimation performed at the encoder. If exacjji pe shown. Secondly, some high level wavelet subbands do not
correlation |nformat|on is avr?ulable at the encoder, it is pos.sllble thave enough coefficients for reliable model parameters estimation,
construct capacity-approaching codes, e.g., [2, 3, 4]. In addition, [S44 that model-based techniques alone may not provide sufficient ac-
has reported that if the correct motion statistics can be estimated E‘ﬁracy. In this paper we present techniques to address these two
the encoder, a dlstrlpyted V|deq cpdlng system can indeed match ﬂ{‘ﬁoblems. Using the DSC-based hyperspectral imagery system pro-
performance of traditional predictive codec like MPEG. posed in [8, 9] as an example, we demonstrate model-based estima-

Correlation estimation in DSC usually has to be performed unyion can lead to efficient implementation with lower complexity and

der rate and complexity constraints. For example, in wireless sensefia exchange requirements, and improved parallelism, while incur-
networks, where communication costs are significant, it is deswablﬁng only small degradation in coding efficiency

to limit data exchanges between nodes (such as those required to Thi . ed as foll In Section 2 define th
estimate correlation). In low complexity distributed video encoding IS paper is organized as follows. In Section 2 we define the

[6, 7] and DSC-based hyperspectral image compression [8, 9], corr orrelation estimation problem. In S_ection 3 we provide details on
lation estimation at the encoder should be computationally efficient°" to extend_model-based estimation to Wavelet-b_ased DSC using
yperspectral image compression as example. Section 4 presents the

This work was supported in part by NASA-JPL. experimental results and Section 5 concludes the work.




2. PROBLEM DEFINITION sign and refinement bit-planes using a Slepian-Wolf code, to be de-
coded using as side information the sign and refinement bit-planes of

In this paper we consider encoding a souf€evith another corre-  same significance extracted fran;_; + b, whereB;_1 is the pre-
lated source” that is available only at the decoder. Our goal is to de-vious adjacent reconstructed band available only at the decoder, and
sign low complexity methods to estimate the correlation between ¢ andb are the linear prediction coefficients. Significance informa-
andY” at the encoder. Assume andY” are vector sources such that tion of B; is intra-coded. To determine the channel coding rate, we
each component can be represented\opits. A straightforward need to estimate the crossover probability between sign/refinement
encoding approach would be to compress the successive bit-plangg-planes and their corresponding side-information. This is accom-
extracted from the binary representation’of We have presented plished by extracting sign and refinement bit-planes fromattig-
correlation estimation tools for this Setting in [12] Here we Con-jnal previous ban(Bi_l 2 (after linear prediction)’ and measuring
sider more sophisticated methods to extract bit-planes from the vegne crossover probabilities by exchanging small subsets of bits (the
tor sources, in particular those based on set-partitioning algorithmsumber is kept small to reduce the information transfer needed, e.g.,
as those used in SPIHT [14]. Set-partitioning and related methodgssuming each band is assigned to a different processor). In order to
are typically used wheX andY are wavelet transform coefficients. ensure that the bit-planes are formed with the same wavelet coeffi-
In these teChniqUeS the encoder first Signa'Sthiﬁcancmf each Cients‘ we need to app|y the Significance tredBpfwvhen extracting
of the vector components at a given bit-plane. After a componengit-planes fromB;_;. Note that the extracted sign/refinement bit-

becomes significansigninformation is conveyed and then further planes fromB;_; are solely used for correlation estimation. More
refinemenbits are transmitted. Note that JPEG2000 and SPIHT usgetails can be found in [8, 9].

different techniques to encode significance, sign and refinement in- aBuatb

formation, but the techniques we propose in the context of SPIHT B"‘»fmemem "
would also be applicable to JPEG2000. We consider systems where Sgn_s| -
Slepian-Wolf coding is applied to compress the sign/refinement bit- swgn}flcant ””””” T
planes, while significance bits are intra-coded. At the decoder, the S— 2. i san I =
significance bits ofX" are used to extract sign/ refinement bit-planes X refinement ¥ ¥ drome
fromY for joint decoding of sign/ refinement bit-planesX®f*. The Conelation

focus of this paper is to investigate efficient correlation estimation
scheme in this setting.

Denotebx (1) andby (1) the sign/refinement bit-planes of sig- a8,1+b
nificancel extracted by set-partitioning froty andY respectively, = ,523
and denotéx (I, k) andby (I, k) the kth binary random variable in ... eSSl NS
bx (1) andby (1) respectively. We assunte (I, k) andby (I, k) are
i.i.d. equiprobable. Furthermore, we assubrg!, k) andby (I, k) syndrome
are correlated wittrcrossoverprobability p;, i.e., Priby (I, k) = 8 i
1bx (1, k) = 0] = Prby (I, k) = 0|bx(l,k) = 1] = p;. In theory
bx (I, k) can be encoded with a rate as low$ép;) [4]. Previous Fig. 2. The proposed system with model-based estimation.
work has reported code constructions that can approach this limit,

! " Here, as an alternative, we propose to use the system shown in
butp; needs to be known at the encoder to determine the rate. In th|§igure 2. Significance, sign and refinement bitsfare extracted

setting, the correlation estimation problem becomes estimating thggjng SPIHT as in the original system. However, the correlation es-
crossover probability; of sign and refinement bit-planes. timation process is improved so as to reduce computational/data ex-
change requirements, and further enhance the degree of parallelism
3. MODEL-BASED APPROACH TO CORRELATION achievable in the implementation. Specifically, explicit generation
ESTIMATION of side-information bit-planes approximations at the encoder is no
longer required, and instead we use a model-based technique to es-
In this section we will describe how we extend the model-basedimate crossover probability. Denote the wavelet transform coeffi-
approach to estimate the crossover probability of sign/refinemendients ofB; asX and the wavelet transform coefficients®f_+ (af-
bit-planes, using the DSC-based hyperspectral image system preer linear prediction) a¥ . We assume a system modél= X + Z,
posed in [8] as example. In what follows we first describe the origwhere Z is the correlation noise independent &. The model-
inal system in [8] and our proposed improvements based on modebased estimation uses the model paramete?$ ahd Z to estimate
based estimation. Then we discuss how to derive expressions fefossover probabilities through analytical expressions. The main ad-
crossover probability estimation, with different approaches dependrantage of this approach can be seen by comparing Figures 1 and 2:
ing on whether or not subbands contain enough coefficients for relivavelet transform onB;_; + b and bit-plane extraction are not re-

Fig. 1. The original DSC-based hyperspectral image compression.

L

significant

able model estimation. quired. Also in the original system there was a dependency when
applying the significance map @&f; to B;_1, and this hinders paral-
3.1. DSC based hyperspectral image compression lelism. Instead, the proposed system does not have such dependency.

Figure 1 depicts the original DSC-based hyperspectral image COMys 5 \odel-based estimation

pression [8]. To compress the current spectral bdhdjts signifi- -

cant, sign and refinement bits are first generated in a similar fashiowe first modelX and Z and then use this information to estimate
as in the standard SPIHT algorithm [14]. Then we further compressrossover probabilities. FoX, we use separate models for different

INote that sending significance information in intra-mode allows the decoder to 2Note that using the original, i.eRB;_1 rather thanB;_1 is acceptable because
use, in decoding the subset of already significant coeffici&htside information from we are focusing on a high fidelity application. Note also that this way the system is
coefficients in exactly theameposition inY. operating in “open-loop”, i.e, we do not need to perform decoding at the encoder.



subbands, while for correlation noigewe use a single model. Sepa- subbands i will be discussed in Section 3.2.2. The partition of
rate models are chosen far to take into account different statistics all subbands intd. and H is determined by the number of coeffi-

in different subbands (e.g., variances tend to decrease when goilgents in a subbandy;. Specifically, denote the MLE estimator as
from high level subbands to low level subbands). Since high levep;, then thepercentage deviatioof MLE estimation,(ﬁi — Bi)/ B,
subbands may not have enough coefficients to obtain reliable esiégan be shown to b&/(0,1/n;), i.e., depending om; only. So we
mate of model parameters, we treat low level and high level subbandsin determine the threshold ento classify a subband intb or H
differently. Essentially, we use different parametric models for dif-according to a desired (expected) percentage deviation in the model
ferent low level subbands which have enough data to achieve reliabjgarameter. Note that for subbands inkep...; (1, 1) is a function of
model estimation, while we use a single non-parametric p.m.f. for3; « andl, so that estimation can be achieved with low complexity.
all the remaining subbands. We will discuss in detail these two cases.

|Y|| Yi
3.2.1. Estimation in low level subbands Al Ao

3x2'
Our goal is to estimate the crossover probability of refinement and 2;‘ . fe Y
sign bit-planes of significance levigldenoted ag... s (1) andpsgn () 5 i = 2d 2 Xi
respectively. Assuming there are enough dataXlebe the wavelet 2 X A
coefficients in subbang and assume the system model= X; + 0 2 22 3 '
Z, with X; andZ independent. Notice that the refinement bit-plane @ (b)

of significance level includes only coefficients that are already sig- F )'? :r.e C;:’r();sé);/ 2[9?122222;!,“)/;3“n;ztr;(;?dbi) QPEiOE atiggr?cfj T)ri(tnjjgxz)r and

e . _ l+1 e
nificant [14], i.e.,| Xl >= 2""". Hence the crossover probability \yhen x; takes the valus (i.e., already significant), crossover occurs when
of the lth refinement bit-plane for coefficients drawn from subbandy; takes the value in to 7, or 12 to 15, ..., i.e., whenY; is in m x 2!

i, pref(l, 1), IS to (m + 1) x 2! — 1, wherem is an odd number. (b) Probability of sign
Pr(R N |Xi| >= 2z+1) crossover andX; become significant”.

Pres(li) = Pr([X;| >= 2111) @) The crossover probability of sign bit-planes can be derived in a

whereR denotes the event of crossover in refinement bits. We Cars],|mllar fashion as in refinement bit-planes. The difference here is we

calculatePr(R M | X,| > 2-+1) by integrating the joint p.d.f. ok, need to integrate different regions in the sample space; @&ndY;.

andY;, fx,y,, over the shaded regions in Figure 3(a). In practice, WeThelth sign bit-plane includes only coefficients that become signif-

. : . ; icant at significance leveél[14], i.e.,2"*' > |X;| > 2'. Hence the
only need to integrate a few regions whefe,y; is non-zero. With e " ropanility ofth sign bit-plane due to coefficients drawn
the modelY; = X; + Z, and under the assumption of independence, P y 9 P

of X; andZ, fx,y, can be factored into from subband, pegn (1, 7). is
L Pr(S n 2"t > x| > 2h
Ixivi () =[x (@) fvy x, (yle) = [x; (@) fz(y —2). (2 Psgn(l, i) = Pr2 > [ X,] > 21) “)

Hencep,.(l,7) can be readily calculated given models for; ()  whereS denotes the event of crossover in sign bits(S N 2+ >

and fz(z). We assumeX; and Z are Laplacian distributed, i.e., |x,| > 2!) can be calculated by integrating the joint p.d.f. Xf

fx,(x) = 1Bie P, f,(2) = Lae |, Model parameters andy; over the shaded regions in Figure 3(b). We factor the p.d.f.

Bi are estimated by maximum likelihood estimation (MLE) using as in (2), and re-us8;, a andp; from refinement bit-planes estima-

wavelet coefficients from subbandModel parametet is estimated  tion, and derive the crossover probability of the whole sign bit-plane

by calculating the standard deviation8f —(aB;—1+b) in the pixel Psgn (1) similar to (3).

domain (when compressingh spectral band), denoted as and

using the relationship between standard deviation and model paral

eter in Laplacian distributionpy = v/2/0. Note that we calculate

the standard deviation in pixel domain in order to avoid computingSubbands in{ do not have enough coefficients for reliallgesti-

the wavelet transform of side-information approximation. Howevermation. Hence usingx, (x) to estimate the crossover probability as

since our filter banks are not orthogonal, the standard deviation af (1) and (2) would not provide reliable estimators. Instead, we use

the correlation noise in the pixel domain is not exactly the same athe empirical p.m.f.Pr(X; = ) of all the subbands iif to esti-

that in transform domain, which introduces some estimation errommate the crossover probability. This involves more computation than

Currently we are investigating improved techniques to estimate  using fx, (x) as we will discuss later. Specifically, we derive the av-

the pixel domain. Note also that the noise model can be estimategtage crossover probability for the refinement bit-planes segments

using a small percentage of pixels, e.g., 12.5% of pixels are used tonsisting of only subbands frofd by

calculate the standard deviation in our experiments. Gres(l) = ZP’I‘(R | X; = 2)Pr(X; = z) (5)
Since refinement bit-planes consist of wavelet coefficients drawn S~ .

from different subbands, we calculate the proportion of coefficientdVhere the summation is taken over all the possible valuex’of

drawn from subband (denoted ag:;), so that the crossover proba- Wheré Pr(X: = z) is non-zero. We can determiner(X; =
bility of the wholelth refinement bit-plane is calculated as x) empirically during set-partitioning by binning those coefficients
drawn from subbands belonging . AssumingY; = = + Z and

Pres(1) = pipres (18) + Gres (1) D pi- (3)  using a Laplacian model fof as before (note that hereis a con-
i€L i€H stant instead of a random variablé)r(R | X; = z) can be de-
Here L denotes the subset of subbands where there are enough adred by summing the integrals ¢t (z) over the shaded regions as
efficients for reliable estimation g;, and H denotes the set of re- depicted in Figure 4. In practice we only need to sum over a few
maining subbands,. ¢ (1, i) is derived using (1) and (2) if a subband regions aroundZ = 0 where the integrals are non-zero. Note that
belongs toL. ¢..f(!) denotes the average probability of bit-plane Pr(R | X; = z) is a function of«, [ andz, and we need to eval-
segments consisting of subbands fréfm Estimation ofg.¢ () for ~ uate the expression for all thewhere Pr(X; = ) is non-zero.

872.2. Estimation in high level subbands



This involves more calculation than computipg.f(l,i), ¢« € L. shown in the figure, our proposed system incurs about 0.5dB degra-
But since we use this method only for high level subbands wheréation in coding efficiency. Note that raw hyperspectral images have
the number of coefficients are small, the computational requiremerit6 bits per pixel, and are usually compressed at high fidelity. So

should still be small. After we have calculatgd ¢ (!) we use it in

the degradation due to model-based estimation is small. We observe

(3) to find the estimate of the whole refinement bit-plane. Similarly,similar results for other hyperspectral image data sets.
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Fig. 4. Pr(R| X; = ) when (a)| 57 | is odd ; (b). &7 | is even. " / o
we can deriveysgn (1), the average crossover probability of the sign “ /
bit-planes segments consisting of subbands fédnsimilar to (5),
with Pr(S | X; = ) = [\ f2(2)d=. @ (b)

Fig. 6. Coding efficiency comparison. (a) Cuprite; (b) Lunar. PSNR

101log; (655352 /MSE), where MSE is the mean squared error between the

3.3. Advantages of the proposed scheme

The proposed system has several advantages as compared to the

original scheme. First of all, it requires less computation. Instead
of explicitly generating the approximations of side-information bit-

original and reconstructed bands.

5. CONCLUSIONS

In this paper we have proposed to address correlation estimation in

planes for correlation estimation, which requires wavelet transfornj, .. elet-based DSC by extending model-based estimation to cases

and bit-plane extraction omB;_1 + b (Figure 1), our proposed sys-
of model parameterg, requires negligible computation by MLE
assuming Laplacian model, and estimation of model parameters
requires only calculation of standard deviatforThe proposed sys-
tem also improves parallelism. Assume a parallel implementatio%
where each processor compresses one spectral band. In the propo
system, once we have estimatedn the pixel domain, there is no

where bit-planes are generated by set-partitioning. We proposed
rﬁSarametric and non-parametric techniques for low level and high
level subband coefficients, respectively. Using a DSC-based hyper-
spectral system as an example, we demonstrated model-based esti-
mation can lead to efficient system implementation while incurring

nly small coding efficiency degradation. The results suggest that

el-based estimation can be a viable low complexity approach to

estimate bit-plane level correlation for a variety of DSC applications

further dependency between processing units (Figure 5), leading hd correlation structures.

efficient overall implementation. In addition, the proposed system

requires less data traffic compared to the original system, since ex-
changing of significance tree and sign/refinement bit-planes is no
longer required. Accurate estimation of the standard deviation of!

correlation noise requires only small percentage of pixels. 2]
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Fig. 5. Time charts of parallel implementation.
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4. EXPERIMENTAL RESULTS

We have compared our proposed hyperspectral image system with
the original scheme. In the original system we exchange all the[g
sign/refinement bits to determine tegactempirical crossover prob-
ability, so that optimal estimation accuracy is achieved. In our pro-
posed system, we use 12.5% of pixels to calculate the standard &Y
viation of correlation noise. To prevent decoding error due to under-
estimating the crossover probability, we allow a larger margin to defl1]
termine the encoding rate, at the expense of coding efficiency. Fig{-
ure 6 shows the results of compressing imageprite spectral band 12]
133 (radiance data) adinarspectral band 44 (reflectance data). As [13]

3Note that we can reduce complexity further by using the model parameters of th 4]
previous band for the current band. This may be possible for many bands in a data-
set, since the variations in correlation are small in hyperspectral image. Yet some low
complexity method is needed to detect large change in correlation.
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