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ABSTRACT

In many practical distributed source coding (DSC) applications cor-
relation information has to be obtained at the encoder in order to
determine the encoding rate. Coding efficiency depends strongly on
the accuracy of this correlation estimation, which often has to be per-
formed under rate and complexity constraints. In this paper we fo-
cus on correlation estimation for wavelet-based DSC. We extend our
previously proposed model-based estimation techniques, which pro-
vided accurate estimates of bit-plane level correlation under rate con-
straints, in the simple case where bit-planes are generated from the
binary representation of the sources. To extend the model-based ap-
proach to wavelet-based DSC, we need to address two issues. Firstly,
in order to improve coding efficiency, bit-planes are typically gener-
ated by more sophisticated algorithms in wavelet-based DSC (e.g.,
by deciding on the bitplane scan order based on coefficient “signif-
icance”), which makes model-based estimation more challenging.
Secondly, certain wavelet subbands may not have enough coeffi-
cients for reliable model estimation, so that model-based techniques
alone may not be sufficiently accurate. We propose solutions to these
problems and, using a DSC-based hyperspectral image system as
example, we demonstrate that model-based estimation can lead to
efficient system implementation with lower computational and data
exchange requirements, and improved parallelism, while incurring
only small degradation in coding efficiency.

1. INTRODUCTION

Distributed source coding (DSC) [1] addresses the problem of com-
pression of correlated sources that are not co-located. In practical
DSC schemes, correlation information is needed at the encoder to
determine the encoding rate. However, in many applications exact
correlation information may not be available beforehand, and one
would need to estimate it as part of the coding process. In such
situation the coding efficiency of DSC depends strongly on the ac-
curacy of correlation estimation performed at the encoder. If exact
correlation information is available at the encoder, it is possible to
construct capacity-approaching codes, e.g., [2, 3, 4]. In addition, [5]
has reported that if the correct motion statistics can be estimated at
the encoder, a distributed video coding system can indeed match the
performance of traditional predictive codec like MPEG.

Correlation estimation in DSC usually has to be performed un-
der rate and complexity constraints. For example, in wireless sensor
networks, where communication costs are significant, it is desirable
to limit data exchanges between nodes (such as those required to
estimate correlation). In low complexity distributed video encoding
[6, 7] and DSC-based hyperspectral image compression [8, 9], corre-
lation estimation at the encoder should be computationally efficient.
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In fact, since these systems target low complexity encoding, reduced
complexity correlation estimation may be desirable, even if it leads
to somewhat lower coding efficiency.

Several methods have been proposed for correlation estimation
problem in DSC. For video applications, low-complexity schemes
to classify macroblocks into different correlation classes have been
proposed [6], while other methods use a feedback channel to convey
correlation information to the encoder [7]. In our prior work for
wavelet-based DSC, correlation estimation was performed by direct
bitplane comparison between the source and an approximation of the
decoder side-information [8].

In this paper we focus on correlation estimation for wavelet-
based DSC. Applications of wavelet-based DSC include hyperspec-
tral image compression [8, 9], data compression in wireless sensor
network [10], multi-view video coding [11], etc. The main novelty
of this work is an extension ofmodel-based estimationto take into
account specific characteristics of wavelet-based DSC. We first pro-
posed a general approach for model-based estimation for DSC in
[12]: appropriate statistical models are chosen for the data, and ana-
lytical expressions are derived to estimate the bit-plane level correla-
tion. Our simulation results have shown that model-based estimation
can achieve better accuracy than direct sample exchange under in-
formation exchange constraints. Our work [12] focused on bit-plane
level correlation estimation, in the simple cases where bit-planes are
generated directly from the the binary representation of the sources.
Recent work [13] has proposed similar correlation estimation meth-
ods for binary and Gray code representations of the sources.

There are two main challenges in extending model-based esti-
mation to wavelet-based DSC. Firstly, in wavelet-based DSC, bit-
planes are usually generated using more sophisticated methods in
order to improve coding efficiency. A concrete example of this,
which we consider in this paper, is that of bit-planes generated by
set-partitioningas in SPIHT [14]. This type of bit-plane genera-
tion complicates the model-based correlation estimation process, as
will be shown. Secondly, some high level wavelet subbands do not
have enough coefficients for reliable model parameters estimation,
so that model-based techniques alone may not provide sufficient ac-
curacy. In this paper we present techniques to address these two
problems. Using the DSC-based hyperspectral imagery system pro-
posed in [8, 9] as an example, we demonstrate model-based estima-
tion can lead to efficient implementation with lower complexity and
data exchange requirements, and improved parallelism, while incur-
ring only small degradation in coding efficiency.

This paper is organized as follows. In Section 2 we define the
correlation estimation problem. In Section 3 we provide details on
how to extend model-based estimation to wavelet-based DSC using
hyperspectral image compression as example. Section 4 presents the
experimental results and Section 5 concludes the work.



2. PROBLEM DEFINITION

In this paper we consider encoding a sourceX with another corre-
lated sourceY that is available only at the decoder. Our goal is to de-
sign low complexity methods to estimate the correlation betweenX
andY at the encoder. AssumeX andY are vector sources such that
each component can be represented byN bits. A straightforward
encoding approach would be to compress the successive bit-planes
extracted from the binary representation ofX. We have presented
correlation estimation tools for this setting in [12]. Here we con-
sider more sophisticated methods to extract bit-planes from the vec-
tor sources, in particular those based on set-partitioning algorithms,
as those used in SPIHT [14]. Set-partitioning and related methods
are typically used whenX andY are wavelet transform coefficients.
In these techniques the encoder first signals thesignificanceof each
of the vector components at a given bit-plane. After a component
becomes significant,sign information is conveyed and then further
refinementbits are transmitted. Note that JPEG2000 and SPIHT use
different techniques to encode significance, sign and refinement in-
formation, but the techniques we propose in the context of SPIHT
would also be applicable to JPEG2000. We consider systems where
Slepian-Wolf coding is applied to compress the sign/refinement bit-
planes, while significance bits are intra-coded. At the decoder, the
significance bits ofX are used to extract sign/ refinement bit-planes
from Y for joint decoding of sign/ refinement bit-planes ofX 1. The
focus of this paper is to investigate efficient correlation estimation
scheme in this setting.

DenotebX(l) and bY (l) the sign/refinement bit-planes of sig-
nificancel extracted by set-partitioning fromX andY respectively,
and denotebX(l, k) andbY (l, k) thekth binary random variable in
bX(l) andbY (l) respectively. We assumebX(l, k) andbY (l, k) are
i.i.d. equiprobable. Furthermore, we assumebX(l, k) andbY (l, k)
are correlated withcrossoverprobability pl, i.e., Pr[bY (l, k) =
1|bX(l, k) = 0] = Pr[bY (l, k) = 0|bX(l, k) = 1] = pl. In theory
bX(l, k) can be encoded with a rate as low asH(pl) [4]. Previous
work has reported code constructions that can approach this limit,
butpl needs to be known at the encoder to determine the rate. In this
setting, the correlation estimation problem becomes estimating the
crossover probabilitypl of sign and refinement bit-planes.

3. MODEL-BASED APPROACH TO CORRELATION
ESTIMATION

In this section we will describe how we extend the model-based
approach to estimate the crossover probability of sign/refinement
bit-planes, using the DSC-based hyperspectral image system pro-
posed in [8] as example. In what follows we first describe the orig-
inal system in [8] and our proposed improvements based on model-
based estimation. Then we discuss how to derive expressions for
crossover probability estimation, with different approaches depend-
ing on whether or not subbands contain enough coefficients for reli-
able model estimation.

3.1. DSC based hyperspectral image compression

Figure 1 depicts the original DSC-based hyperspectral image com-
pression [8]. To compress the current spectral band,Bi, its signifi-
cant, sign and refinement bits are first generated in a similar fashion
as in the standard SPIHT algorithm [14]. Then we further compress

1Note that sending significance information in intra-mode allows the decoder to
use, in decoding the subset of already significant coefficientsX, side information from
coefficients in exactly thesameposition inY .

sign and refinement bit-planes using a Slepian-Wolf code, to be de-
coded using as side information the sign and refinement bit-planes of
same significance extracted fromaB̂i−1 + b, whereB̂i−1 is the pre-
vious adjacent reconstructed band available only at the decoder, and
a andb are the linear prediction coefficients. Significance informa-
tion of Bi is intra-coded. To determine the channel coding rate, we
need to estimate the crossover probability between sign/refinement
bit-planes and their corresponding side-information. This is accom-
plished by extracting sign and refinement bit-planes from theorig-
inal previous bandBi−1

2 (after linear prediction), and measuring
the crossover probabilities by exchanging small subsets of bits (the
number is kept small to reduce the information transfer needed, e.g.,
assuming each band is assigned to a different processor). In order to
ensure that the bit-planes are formed with the same wavelet coeffi-
cients, we need to apply the significance tree ofBi when extracting
bit-planes fromBi−1. Note that the extracted sign/refinement bit-
planes fromBi−1 are solely used for correlation estimation. More
details can be found in [8, 9].
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Fig. 1. The original DSC-based hyperspectral image compression.
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Fig. 2. The proposed system with model-based estimation.

Here, as an alternative, we propose to use the system shown in
Figure 2. Significance, sign and refinement bits ofBi are extracted
using SPIHT as in the original system. However, the correlation es-
timation process is improved so as to reduce computational/data ex-
change requirements, and further enhance the degree of parallelism
achievable in the implementation. Specifically, explicit generation
of side-information bit-planes approximations at the encoder is no
longer required, and instead we use a model-based technique to es-
timate crossover probability. Denote the wavelet transform coeffi-
cients ofBi asX and the wavelet transform coefficients ofB̂i−1 (af-
ter linear prediction) asY . We assume a system modelY = X +Z,
whereZ is the correlation noise independent ofX. The model-
based estimation uses the model parameters ofX andZ to estimate
crossover probabilities through analytical expressions. The main ad-
vantage of this approach can be seen by comparing Figures 1 and 2:
wavelet transform onaBi−1 + b and bit-plane extraction are not re-
quired. Also in the original system there was a dependency when
applying the significance map ofBi to Bi−1, and this hinders paral-
lelism. Instead, the proposed system does not have such dependency.

3.2. Model-based estimation

We first modelX andZ and then use this information to estimate
crossover probabilities. ForX, we use separate models for different

2Note that using the original, i.e.,Bi−1 rather thanB̂i−1 is acceptable because
we are focusing on a high fidelity application. Note also that this way the system is
operating in “open-loop”, i.e, we do not need to perform decoding at the encoder.



subbands, while for correlation noiseZ we use a single model. Sepa-
rate models are chosen forX to take into account different statistics
in different subbands (e.g., variances tend to decrease when going
from high level subbands to low level subbands). Since high level
subbands may not have enough coefficients to obtain reliable esti-
mate of model parameters, we treat low level and high level subbands
differently. Essentially, we use different parametric models for dif-
ferent low level subbands which have enough data to achieve reliable
model estimation, while we use a single non-parametric p.m.f. for
all the remaining subbands. We will discuss in detail these two cases.

3.2.1. Estimation in low level subbands

Our goal is to estimate the crossover probability of refinement and
sign bit-planes of significance levell, denoted aspref (l) andpsgn(l)
respectively. Assuming there are enough data, letXi be the wavelet
coefficients in subbandi, and assume the system modelYi = Xi +
Z, with Xi andZ independent. Notice that the refinement bit-plane
of significance levell includes only coefficients that are already sig-
nificant [14], i.e.,|Xi| >= 2l+1. Hence the crossover probability
of the lth refinement bit-plane for coefficients drawn from subband
i, pref (l, i), is

pref (l, i) =
Pr(R ∩ |Xi| >= 2l+1)

Pr(|Xi| >= 2l+1)
(1)

whereR denotes the event of crossover in refinement bits. We can
calculatePr(R ∩ |Xi| ≥ 2l+1) by integrating the joint p.d.f. ofXi

andYi, fXiYi , over the shaded regions in Figure 3(a). In practice, we
only need to integrate a few regions wherefXiYi is non-zero. With
the modelYi = Xi + Z, and under the assumption of independence
of Xi andZ, fXiYi can be factored into

fXiYi(x, y) = fXi(x)fYi|Xi
(y|x) = fXi(x)fZ(y − x). (2)

Hencepref (l, i) can be readily calculated given models forfXi(x)
and fZ(z). We assumeXi and Z are Laplacian distributed, i.e.,
fXi(x) = 1

2
βie

−βi|x|, fZ(z) = 1
2
αe−α|z|. Model parameters

βi are estimated by maximum likelihood estimation (MLE) using
wavelet coefficients from subbandi. Model parameterα is estimated
by calculating the standard deviation ofBj−(aBj−1+b) in the pixel
domain (when compressingjth spectral band), denoted asσ, and
using the relationship between standard deviation and model param-
eter in Laplacian distribution,α =

√
2/σ. Note that we calculate

the standard deviation in pixel domain in order to avoid computing
the wavelet transform of side-information approximation. However,
since our filter banks are not orthogonal, the standard deviation of
the correlation noise in the pixel domain is not exactly the same as
that in transform domain, which introduces some estimation error.
Currently we are investigating improved techniques to estimateα in
the pixel domain. Note also that the noise model can be estimated
using a small percentage of pixels, e.g., 12.5% of pixels are used to
calculate the standard deviation in our experiments.

Since refinement bit-planes consist of wavelet coefficients drawn
from different subbands, we calculate the proportion of coefficients
drawn from subbandi (denoted asρi), so that the crossover proba-
bility of the wholelth refinement bit-plane is calculated as

pref (l) =
X
i∈L

ρipref (l, i) + qref (l)
X
i∈H

ρi. (3)

HereL denotes the subset of subbands where there are enough co-
efficients for reliable estimation ofβi, andH denotes the set of re-
maining subbands.pref (l, i) is derived using (1) and (2) if a subband
belongs toL. qref (l) denotes the average probability of bit-plane
segments consisting of subbands fromH. Estimation ofqref (l) for

subbands inH will be discussed in Section 3.2.2. The partition of
all subbands intoL andH is determined by the number of coeffi-
cients in a subband,ni. Specifically, denote the MLE estimator as
β̂i, then thepercentage deviationof MLE estimation,(β̂i − βi)/βi,
can be shown to beN(0, 1/ni), i.e., depending onni only. So we
can determine the threshold onni to classify a subband intoL or H
according to a desired (expected) percentage deviation in the model
parameter. Note that for subbands in setL, pref (l, i) is a function of
βi, α andl, so that estimation can be achieved with low complexity.
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Fig. 3. Crossover probability estimation. (a) Probability of crossover and
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crossover and “Xi become significant”.

The crossover probability of sign bit-planes can be derived in a
similar fashion as in refinement bit-planes. The difference here is we
need to integrate different regions in the sample space ofXi andYi.
The lth sign bit-plane includes only coefficients that become signif-
icant at significance levell [14], i.e.,2l+1 > |Xi| ≥ 2l. Hence the
crossover probability oflth sign bit-plane due to coefficients drawn
from subbandi, psgn(l, i), is

psgn(l, i) =
Pr(S ∩ 2l+1 > |Xi| ≥ 2l)

Pr(2l+1 > |Xi| ≥ 2l)
(4)

whereS denotes the event of crossover in sign bits.Pr(S ∩ 2l+1 >
|Xi| ≥ 2l) can be calculated by integrating the joint p.d.f. ofXi

andYi over the shaded regions in Figure 3(b). We factor the p.d.f.
as in (2), and re-useβi, α andρi from refinement bit-planes estima-
tion, and derive the crossover probability of the whole sign bit-plane
psgn(l) similar to (3).

3.2.2. Estimation in high level subbands

Subbands inH do not have enough coefficients for reliableβi esti-
mation. Hence usingfXi(x) to estimate the crossover probability as
in (1) and (2) would not provide reliable estimators. Instead, we use
the empirical p.m.f.Pr(Xi = x) of all the subbands inH to esti-
mate the crossover probability. This involves more computation than
usingfXi(x) as we will discuss later. Specifically, we derive the av-
erage crossover probability for the refinement bit-planes segments
consisting of only subbands fromH by

qref (l) =
X

Pr(R |Xi = x)Pr(Xi = x) (5)

where the summation is taken over all the possible values ofXi

wherePr(Xi = x) is non-zero. We can determinePr(Xi =
x) empirically during set-partitioning by binning those coefficients
drawn from subbands belonging toH. AssumingYi = x + Z and
using a Laplacian model forZ as before (note that herex is a con-
stant instead of a random variable),Pr(R | Xi = x) can be de-
rived by summing the integrals offZ(z) over the shaded regions as
depicted in Figure 4. In practice we only need to sum over a few
regions aroundZ = 0 where the integrals are non-zero. Note that
Pr(R | Xi = x) is a function ofα, l andx, and we need to eval-
uate the expression for all thex wherePr(Xi = x) is non-zero.



This involves more calculation than computingpref (l, i), i ∈ L.
But since we use this method only for high level subbands where
the number of coefficients are small, the computational requirement
should still be small. After we have calculatedqref (l) we use it in
(3) to find the estimate of the whole refinement bit-plane. Similarly,

 

-x 

-x+2l 
-x+2*2l -x-2l -x+3*2l 

-x-2*2l 
z 

fZ(z) 

(a)
 

-x 

-x+2l 
-x+2*2l -x-2l -x+3*2l 

-x-2*2l 
z 

fZ(z) 

(b)
Fig. 4. Pr(R|Xi = x) when (a)b x

2l c is odd ; (b)b x
2l c is even.

we can deriveqsgn(l), the average crossover probability of the sign
bit-planes segments consisting of subbands fromH, similar to (5),
with Pr(S |Xi = x) =

R −|x|
−∞ fZ(z)dz.

3.3. Advantages of the proposed scheme

The proposed system has several advantages as compared to the
original scheme. First of all, it requires less computation. Instead
of explicitly generating the approximations of side-information bit-
planes for correlation estimation, which requires wavelet transform
and bit-plane extraction onaBi−1 + b (Figure 1), our proposed sys-
tem requires only evaluation of analytical expressions. Estimation
of model parametersβi requires negligible computation by MLE
assuming Laplacian model, and estimation of model parametersα
requires only calculation of standard deviation3. The proposed sys-
tem also improves parallelism. Assume a parallel implementation
where each processor compresses one spectral band. In the proposed
system, once we have estimatedα in the pixel domain, there is no
further dependency between processing units (Figure 5), leading to
efficient overall implementation. In addition, the proposed system
requires less data traffic compared to the original system, since ex-
changing of significance tree and sign/refinement bit-planes is no
longer required. Accurate estimation of the standard deviation of
correlation noise requires only small percentage of pixels.
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4. EXPERIMENTAL RESULTS

We have compared our proposed hyperspectral image system with
the original scheme. In the original system we exchange all the
sign/refinement bits to determine theexactempirical crossover prob-
ability, so that optimal estimation accuracy is achieved. In our pro-
posed system, we use 12.5% of pixels to calculate the standard de-
viation of correlation noise. To prevent decoding error due to under-
estimating the crossover probability, we allow a larger margin to de-
termine the encoding rate, at the expense of coding efficiency. Fig-
ure 6 shows the results of compressing imagesCupritespectral band
133 (radiance data) andLunarspectral band 44 (reflectance data). As

3Note that we can reduce complexity further by using the model parameters of the
previous band for the current band. This may be possible for many bands in a data-
set, since the variations in correlation are small in hyperspectral image. Yet some low
complexity method is needed to detect large change in correlation.

shown in the figure, our proposed system incurs about 0.5dB degra-
dation in coding efficiency. Note that raw hyperspectral images have
16 bits per pixel, and are usually compressed at high fidelity. So
the degradation due to model-based estimation is small. We observe
similar results for other hyperspectral image data sets.
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Fig. 6. Coding efficiency comparison. (a) Cuprite; (b) Lunar. PSNR=
10 log10(655352/MSE), where MSE is the mean squared error between the
original and reconstructed bands.

5. CONCLUSIONS
In this paper we have proposed to address correlation estimation in
wavelet-based DSC by extending model-based estimation to cases
where bit-planes are generated by set-partitioning. We proposed
parametric and non-parametric techniques for low level and high
level subband coefficients, respectively. Using a DSC-based hyper-
spectral system as an example, we demonstrated model-based esti-
mation can lead to efficient system implementation while incurring
only small coding efficiency degradation. The results suggest that
model-based estimation can be a viable low complexity approach to
estimate bit-plane level correlation for a variety of DSC applications
and correlation structures.
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