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ABSTRACT
Numerous approaches for distributed video coding have beenre-
cently proposed. One of main motivations for these techniques
is the possibility of achieving complexity tradeoffs between the
encoder and the decoder that may not be feasible in the context
of conventional video coding. In our previous work, a Maximum
Likelihood (ML) method for motion estimation at the decoderwas
proposed. It was shown that the ML method, designed based on the
PRISM architecture, induces no additional rate cost, and isable to
work with existing methods, e.g. those based on hash functions or
CRC, to improve overall decoding PSNR. In this work, we present
a rate-distortion analysis of our ML method. This analysis,given
a correlation model for the video data, allows us to improve bit
allocation at the encoder, i.e., the decision on the number of cosets
to be used to represent various types of video information. We
also signal “End of Block” (EOB) in coding to further exploitthe
energy compaction. Our experiments demonstrate significant im-
provements PSNR up to 1.5dB from RD optimized bit allocation.

1. INTRODUCTION

Distributed Video Coding (DVC) techniques have been recently
proposed based on distributed source coding (DSC) principles.
One potential advantage of DVC is that it enables trade-offsbe-
tween encoding and decoding complexity. In particular, motion
estimation with reduced complexity can be performed at the en-
coder, while the decoder performs some form of search to exploit
inter-frame correlations.

In many DSC applications, for each set of data to be encoded
(e.g., one band in a hyperspectral image, as in [1]), there isa
unique corresponding dataset available at the decoder thatwill be
used as the side information (in [1], it is the previous band in a
given encoding order). Instead, in the context of DVC, exploiting
inter-frame correlation to reduce the rate is achieved by allowing
the decoder to select, for each block within a frame, one of mul-
tiple blocks in the previous frame (corresponding to different mo-
tion displacements) as the side information for decoding. Thus,
a major challenge in DVC is to develop techniques that allow the
decoder to identify the best side information, given that the infor-
mation sent by the encoder is ambiguous. This process can be seen
as a form of motion estimation and compensation performed atthe
decoder.

Several practical methods have been proposed to enable mo-
tion estimation at the decoder. Aaron and Girod proposed sending
a hash function containing auxiliary information of the original
frame [2]. Puri and Ramchandran used CRC to validate the cor-
rectness of the decoded blocks [3]. Both methods require an ex-
plicit increase in transmission rate. In our previous work [4] a ML

method was proposed. This method, designed for the PRISM ar-
chitecture, exploits correlation statistics available atthe decoder,
in principle requires no auxiliary information, and can be used
independently of or in combination with other motion estimation
methods.

In the DVC literature, rate decisions are often made to meet a
target decoding error probability. This requires taking into consid-
eration the correlation between the data to be encoded and the side
information available at the decoder, either at the frame level, as
in systems using LDPC-based Slepian-Wolf encoders (e.g., [1, 2]),
or at the block level (e.g., [3]). For example, for block-based sys-
tems, such as PRISM [3], the number of cosets used to encode
each DCT coefficient is determined based on available statistics of
the residual energy between the data and the side information.

However, in video coding problems, PSNR, rather than de-
coding error probability, is the conventional performancemetric.
In this paper, we present a rate-distortion analysis of the decod-
ing performance using the ML method, with the mean squared er-
ror (MSE) of the reconstructed signal as the distortion measure.
We express MSE as a function of the number of bits used to en-
code each DCT coefficient and of the given the statistical models.
The analysis is then used to decide the number of bits to devote to
each DCT coefficient in order to minimize MSE. This R-D anal-
ysis shows that both the characteristics of the correlationbetween
data and side information,and the statistics of the data to be en-
coded affect MSE, and thus both should be considered in rate deci-
sion. We also introduce the EOB signal into our system to further
exploit the energy compaction. The RD optimized bit allocation
posts 0.7dB-1.5dB improvement in PSNR. The coding efficiency
is also greatly improved with the introduction of the EOB method,
particularly in the lower rate region, for up to 2.5dB gain inPSNR.

This paper is organized as follows. In Section 2 we briefly re-
view the DVC system using the ML method proposed in [4]. In
Section 3 we introduce our assumptions and the problem formula-
tion. In Section 4 the rate-distortion analysis and the bit allocation
strategy are presented. Experimental results are shown in Section 5
to validate our analysis.

2. SYSTEM OVERVIEW

In this section, we briefly review the ML method for motion esti-
mation at the decoder and the corresponding video coding system
proposed in our previous work [4]. This system, as shown in Fig-
ure 1, is an extension of a PRISM DVC, where a ML approach is
used to identify blocks in the previous frame that should be used
as side information at the decoder.
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Figure 1: The DVC system proposed in [4]. It is a PRISM-based transform domain distributed video coding architecture with ML decoding

dimensional vectors representing the DCT coefficients of the cur-
rent block and them-th reference block, respectively, wherem =
0, · · · , M − 1 (i.e., M is the total number of reference blocks).
The encoder has computed an estimate of the joint statisticsof X

and the true side informationYt:

P (X|Yt) = fX|Y t(X, Yt).

P (X|Yt) should be known at both encoder and decoder in order
to enable efficient DSC. The encoder can perform motion estima-
tion on some of the data to estimate the model.X is then Wyner-
Ziv (WZ) coded asX̃ and transmitted along withP (X|Yt) and
potentially some helper information (to be discussed further be-
low). X̃ can be decoded using each of the referencesYm, m =

0, · · · , M − 1 as side information, witĥXm representing the de-
coding result whenYm is used. For each pair (̂Xm, Ym) we com-
pute the likelihood ofX̂m givenYm based onP (X|Yt):

L(X̂m, Ym) = fX|Y t(X̂m, Ym). (1)

If
m

∗ = arg max
m

L(X̂m, Ym), (2)

then Ym∗ is chosen as side information and the corresponding
X̂m∗ will be the decoded block.

In our system two types of “helper information” are transmit-
ted in addition to the WZ coded information. The DC value of
each encoded block is sent directly (without WZ coding), since
the DC values from neighboring blocks are usually highly corre-
lated and thus can be coded very efficiently. We also employ an
explicit EOB strategy, i.e., the location of the last non-zero coeffi-
cient in each block (when scanned in a zigzag fashion) is signaled
to exploit the energy compaction properties in the transform do-
main. Thus, the zero coefficients at the end of each block are not
encoded using WZ techniques. Note that both these types of in-
tra information can be used to help in identifying the correct side
information at the decoder.

3. PROBLEM STATEMENT

Our goal in this paper is to derive a rate-distortion model when
our proposed ML method is used, for given statistical modelsand
encoding options. We assume the following model for the joint
statistics ofX andYt:

X = Yt + Nt (3)

whereNt is a noise term and is independent ofYt. Both Yt =
{
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t
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SinceYt andNt are independent,

P (X|Yt) = P (Nt) (5)

ConsiderM reference blocksYm, m = 0, · · · , M − 1. Let
mt be the index of the true predictor. We assume that the true
predictor is always one ofYm, thus 0 ≤ mt < M . Ym =
{

yd
m

}

d=1,··· ,D
, m 6= mt are identically distributed asYt. Let

Nm = X − Ym = Ymt + Nmt − Ym,

then the standard deviation ofNm is
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Although in generalNm is not Laplacian distributed, in video cod-
ing problems of interest we usually have thatσd

yt
≫ σd

nt
and thus

Nm can still effectively being modeled as a Laplacian random vec-
tor with distribution given by
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In our system, we use coset coding and thus the encoder has
to select the number of cosets (and thus number of bits) to encode
each DCT coefficient. LetB =

{

bd
}

d=1,··· ,D
be the bit allocation

vector wherebd denotes the number of bits we assign to thed-th

DCT coefficient. ThenC =
{

cd
}

=
{

2(bd)
}

, d = 1, · · · , D

denotes the number of cosets to encode thed-th DCT coefficient.
The distortion of the reconstructed frame is defined as

D = E

[

(

X̂m∗ − X
)2

]

, (7)

wherem∗ is the index selected by the ML algorithm (which need
not be the true side information.)

Note that we do not consider the impact of quantization on
D in the analysis.X andYm are modeled as continuous random
vectors and the coset encoding operation is modeled as a modulo
operation, i.e., encodingX usingC leads toX̃ = mod (X, C).
This approximation is only used for our analysis; in our experi-
ments, the DCT coefficients are quantized prior to coset coding.
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Figure 2:N̂m is a periodic function ofNm

X   - X

C

-2C

-C

2C

C/2 3C/2
-3C/2 -C/2

^

Nm

m

Figure 3:X̂m − X as a function ofNm

4. ML DECODING RATE-DISTORTION ANALYSIS

We start from the simplest case, whereD = 1 andM = 1, and
then extend the analysis to a more general case whereD > 1 and
M → ∞.

4.1. Coset Coding and ML Decoding

DefineN̂m = X̂m − Ym. Given (4) and (5),

L(X̂m, Ym) =
αn

2
e
−αn|N̂m| (8)

SinceL(X̂m, Ym) is a monotonically decreasing function of|N̂m|,
ML decoding is equivalent to finding the minimum|N̂m|1.

Coset coding introduces a “modulo effect” in the likelihood
computation since the encoding is ambiguous and we have that
|N̂m| ≤ C

2
at the decoder.̂Nm is a periodic function ofNm.

N̂m = g(Nm) = mod (Nm +
C

2
, C) − C

2
(9)

as depicted in Figure 2. SincêXm −X = N̂m −Nm, a decoding
error occurs when|Nm| > C

2
. We can represent the decoding

error as a function ofNm, as depicted in Figure 3.
WhenM = 1 (i.e., the true predictor is given):
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Figure 4: Illustration of the Distortion Analysis whenD = 1 and
M = 2

4.2. Two References

Now consider ML decoding whenM = 2 referencesY0 andY1

are available. Without loss of generality assume thatY0 is the true
predictor. ML decoding can then been seen to be comparingg(X−
Y0) andg(X − Y1), as illustrated in Figure 4. Sinceσn ≫ σnt ,
on average the MSE introduced when a false predictor is picked
is much higher than when a true predictor is picked. Hence the
overall distortion increases when we have multiple references.

4.3. Asymptotic Behavior (M → ∞)

In typical video coding scenarios,M can be a very large num-
ber, e.g., a full search motion estimation algorithm usually would
choose the best predictor from more than 1000 candidates (M >

1000). This is the motivation to study the asymptotic behavior of
D asM increases.

The probability of the true predictorYmt being picked at the
decoder can be expressed as

P (m∗ = mt) = P (|N̂mt | < min
m6=mt

(|N̂m|)) (11)

As M → ∞, minm6=mt (|N̂m|) → 0, henceP (m∗ = mt) tends
to 0 asM increases. Thus we can assume that a false predictor
is likely to be picked at the decoder2. We further simplify the
problem by assuming

N̂m∗ = min(N̂m) = 0

Now D can be computed as

D =
∞

∑
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4.4. Multidimensional DCT Vector (D > 1)

When D > 1, we can follow the same strategy as in Section
4.2 to compute the expected distortion. However, asD increases,
the computation can become intractable due to the increasing dif-
ficulty of representing regions corresponding to differentdistor-
tions. We need to represent different regions corresponding to
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1This is not true whenD > 1, since usuallyαd
n 6= αk

n, whend 6= k
2X̃ can be correctly decoded even if a false predictorYm is picked.

The criterion for correct decoding is|Xm∗ − Ym∗ | ≤ C
2

, notm∗
= mt



wherekd ∈ N. As D increases, the number of combinations of
{

kd
}

d=1,··· ,D
increases beyond what would be computationally

manageable. Thus, instead of considering all dimensions jointly
for the likelihood test, we simplify the computation by consider-
ing each dimension individually for the likelihood test andin the
distortion computation. The total expected distortion is approx-
imated as the sum of all expected distortions of each dimension
computed independently.

Thus, in the general case whereD > 1 andM → ∞, the total
MSE can be expressed as
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4.5. Bit Allocation

Since here only integer bits are assigned to each DCT coefficient,
we can easily use the Viterbi algorithm to find the bit allocation
vectorB to minimize (13) under the rate constraint

∑D

d=1
bd ≤

BT , whereBT is the total number of bits per block.

5. EXPERIMENTAL RESULTS

In our experiments the size of the block is8× 8 (i.e. D = 64) and
8 × 8 DCT is used. All DCT coefficients are quantized with the
same uniform scalar quantizer. The test video sequence is “Fore-
man” in CIF format. We encode the first 20 frames in “I-P” mode
to gather information to initialize the correlation model.For each
block in P-frame, we consider the blocks from the previous I-frame
with minimum SAD as the true reference block.σd

nt
, σd

yt
andσd

n

are estimated based on the collected data. The remaining frames
are coded as “I-P-I-S-I-S-I-S-I-S”, where “S” denotes the Wyner-
Ziv coded frame. The correlation model is updated every 10 frame
using the new collected data from the P-frame. In S-frames, the
difference of the DC coefficients are entropy coded, while the re-
maining AC coefficients are coset coded. EOB information is sent
before the AC coefficients. We allow blocks in S-frames to be
intra-coded if the intra-coded rate is lower than coset-coded rate.
In total 100 frames are coded. Currently the bit allocation is de-
cided based on the statistic model at the 20th frame (i.e. theinitial
model), adaptive bit allocation is left for future work. R-Ddata
shown is for the S-frames only.

To demonstrate the efficacy of the proposed methods, the ML
motion estimation method is compared against the CRC based mo-
tion estimation used in PRISM [3], and the proposed RD optimized
bit allocation is compared against a bit allocation scheme designed
based on DISCUS [5]. The DISCUS based bit allocation scheme
is designed as follows: First the minimum distanceQD between 2
symbols in a coset so to achieve a target decoding error probabil-
ity is computed [5]. Assume the quantization step size used in our
system isQ, then

B =

⌊

log
2

(

QD

Q

)⌋

We show the experimental results of 4 different systems: (i)
CRC-16: 16-bit CRC motion estimation and DISCUS based bit
allocation3. (ii) CRC-16-EOB: 16-bit CRC motion estimation,

3Note that here only the lower frequency coefficients are coset coded
while the higher frequency coefficients are entropy coded, the same as the
original PRISM system.

DISCUS based bit allocation and EOB. (iii) ML-EOB: ML mo-
tion estimation, DISCUS based bit allocation and EOB. And (iv)
ML-EOB-RD: ML motion estimation, proposed RD optimized bit
allocation scheme.

Figure 5 shows the experimental results. All the systems coded
with the EOB approach outperform “CRC-16” by large margin.
On average “ML-EOB-RD” shows around 1dB improvement against
“ML-EOB”, which validates the rate-distortion analysis and the bit
allocation strategy.
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Figure 5: PSNR curve of various systems described in Section5.

6. REFERENCES

[1] N.-M. Cheung, C. Tang, A. Ortega, and C. S. Raghavendra,
“Efficient Wavelet-based Predictive Slepian-Wolf Coding for
Hyperspectral Imagery,”EURASIP Journal on Signal Pro-
cessing -Special Issue on Distributed Source Coding, vol. 86,
no. 11, pp. 3180–3195, 2006.

[2] A. Aaron, D. Varodayan, and B. Girod, “Wyner-Ziv Resid-
ual Coding of Video,” inProc. Picture Coding Symposium,
Beijing, China, April 2006.

[3] R. Puri and K. Ramchandran, “PRISM: A video coding archi-
tecture based on distributed compression principles,” Tech.
Rep., University of California, Berkeley, 2002.

[4] I. H. Tseng and A. Ortega, “Motion estimation at the decoder
using maximum likelihood techniques for distributed video
coding,” in Proc. Asilomar Conference on Signals and Sys-
tems, Pacific Grove, CA, November 2005.

[5] S. S. Pradhan and K. Ramchandran, “Distributed Source Cod-
ing Using Syndromes (DISCUS): Design and Construction,”
IEEE Transactions on Information Theory, vol. 49, no. 3, pp.
626–643, March 2003.


