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ABSTRACT
Numerous approaches for distributed video coding have been
cently proposed. One of main motivations for these tectesqu
is the possibility of achieving complexity tradeoffs betmethe

method was proposed. This method, designed for the PRISM ar-
chitecture, exploits correlation statistics availablahegt decoder,
in principle requires no auxiliary information, and can beed
independently of or in combination with other motion estiima

encoder and the decoder that may not be feasible in the ¢ontex methods.

of conventional video coding. In our previous work, a Maximu
Likelihood (ML) method for motion estimation at the decoders
proposed. It was shown that the ML method, designed basdton t
PRISM architecture, induces no additional rate cost, aadlis to
work with existing methods, e.g. those based on hash fureto
CRC, to improve overall decoding PSNR. In this work, we pn¢se
a rate-distortion analysis of our ML method. This analygisen

a correlation model for the video data, allows us to improite b
allocation at the encoder, i.e., the decision on the numbeosets

to be used to represent various types of video informatiore W
also signal “End of Block” (EOB) in coding to further expldite
energy compaction. Our experiments demonstrate signifioan
provements PSNR up to 1.5dB from RD optimized bit allocation

1. INTRODUCTION

Distributed Video Coding (DVC) techniques have been rdgent
proposed based on distributed source coding (DSC) priesipl
One potential advantage of DVC is that it enables trade-udfs
tween encoding and decoding complexity. In particular, iomot
estimation with reduced complexity can be performed at the e
coder, while the decoder performs some form of search taéxpl
inter-frame correlations.

In the DVC literature, rate decisions are often made to meet a
target decoding error probability. This requires takinm iconsid-
eration the correlation between the data to be encoded argidé
information available at the decoder, either at the framel)eas
in systems using LDPC-based Slepian-Wolf encoders (4.32]),
or at the block level (e.g., [3]). For example, for block-bdsys-
tems, such as PRISM [3], the number of cosets used to encode
each DCT coefficient is determined based on available Statisf
the residual energy between the data and the side informatio

However, in video coding problems, PSNR, rather than de-
coding error probability, is the conventional performameetric.

In this paper, we present a rate-distortion analysis of #eod-

ing performance using the ML method, with the mean squared er
ror (MSE) of the reconstructed signal as the distortion mesas
We express MSE as a function of the number of bits used to en-
code each DCT coefficient and of the given the statisticaletsod
The analysis is then used to decide the number of bits to deéwot
each DCT coefficient in order to minimize MSE. This R-D anal-
ysis shows that both the characteristics of the correldi@ween
data and side informatiorand the statistics of the data to be en-
coded affect MSE, and thus both should be considered in eaie d
sion. We also introduce the EOB signal into our system tdéurt
exploit the energy compaction. The RD optimized bit allaat

In many DSC applications, for each set of data to be encoded posts 0.7dB-1.5dB improvement in PSNR. The coding effigienc

(e.g., one band in a hyperspectral image, as in [1]), there is
unique corresponding dataset available at the decodewttte
used as the side information (in [1], it is the previous baméh i
given encoding order). Instead, in the context of DVC, eitilg
inter-frame correlation to reduce the rate is achieved mwihg
the decoder to select, for each block within a frame, one df mu
tiple blocks in the previous frame (corresponding to défgrmo-
tion displacements) as the side information for decodinusT

a major challenge in DVC is to develop techniques that allogv t
decoder to identify the best side information, given thatitifor-
mation sent by the encoder is ambiguous. This process caebe s
as a form of motion estimation and compensation performéteat
decoder.

is also greatly improved with the introduction of the EOB hut,
particularly in the lower rate region, for up to 2.5dB gaifP8NR.
This paper is organized as follows. In Section 2 we briefly re-
view the DVC system using the ML method proposed in [4]. In
Section 3 we introduce our assumptions and the problem farmu
tion. In Section 4 the rate-distortion analysis and the lkitation
strategy are presented. Experimental results are showetiiog 5
to validate our analysis.

2. SYSTEM OVERVIEW

In this section, we briefly review the ML method for motioniest

Several practical methods have been proposed to enable momation at the decoder and the corresponding video codirigrays

tion estimation at the decoder. Aaron and Girod proposedisgn
a hash function containing auxiliary information of theginial

proposed in our previous work [4]. This system, as shown ga Fi
ure 1, is an extension of a PRISM DVC, where a ML approach is

frame [2]. Puri and Ramchandran used CRC to validate the cor-used to identify blocks in the previous frame that should &edu

rectness of the decoded blocks [3]. Both methods requirexan e
plicitincrease in transmission rate. In our previous wetkd ML

as side information at the decoder.
letX = {z} _, ,andY, = {yn},_,  , beD-
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Figure 1: The DVC system proposed in [4]. It is a PRISM-basaddform domain distributed video coding architecturdnwmit decoding

dimensional vectors representing the DCT coefficients efcilr-
rent block and then-th reference block, respectively, where=
0,---,M — 1 (i.e., M is the total number of reference blocks).
The encoder has computed an estimate of the joint statisti&s
and the true side informatioyi:

P(X|Y:) = fxjve(X, Ye).

P(X|Y:) should be known at both encoder and decoder in order

to enable efficient DSC. The encoder can perform motion @stim
tion on some of the data to estimate the modélis then Wyner-
Ziv (WZ) coded asX and transmitted along witt(X|Y;) and
potentially some helper information (to be discussed &rrthe-
low). X can be decoded using each of the referei¢égsm =
0,---,M — 1 as side information, wittX ,, representing the de-
coding result whefY;, is used. For each paii(,, Y,.) we com-
pute the likelihood ofX,,, givenY,, based onP(X|Y;):

L(Xm,Ym) =

Fxive(Xm, Ym). )

@)

thenY,,~ is chosen as side information and the corresponding
X, will be the decoded block.

In our system two types of “helper information” are transmit
ted in addition to the WZ coded information. The DC value of
each encoded block is sent directly (without WZ coding)csin
the DC values from neighboring blocks are usually highlyreor

m” = arg max L()A(m7 Yin),

lated and thus can be coded very efficiently. We also employ an

explicit EOB strategy, i.e., the location of the last nomezeoeffi-
cient in each block (when scanned in a zigzag fashion) isaégh

to exploit the energy compaction properties in the tramsfdo-
main. Thus, the zero coefficients at the end of each blockatre n
encoded using WZ techniques. Note that both these types of in
tra information can be used to help in identifying the corséde
information at the decoder.

3. PROBLEM STATEMENT

Our goal in this paper is to derive a rate-distortion modeemwh
our proposed ML method is used, for given statistical modats
encoding options. We assume the following model for thetjoin
statistics ofX andY;:

X=Y:+N; 3)
where NV; is a noise term and is independent}ef BothY: =
{yf}d L L, andN; = {n{ ba \.....p are assumed to be ran-

dom vectors with Laplacian dlstrlbutlon and diagonal c@amce

matrices. Letr{, andoy, denote the standard deviationsref

andyy, respectively. The distributions d¥; andY; are modeled
as

D D d
P(vi) = [T P = T “pee el
d=1 d=1
D D Oéd
mmznmmzﬂganI (4)
d=1 d=1
. _ V2 V2
ayt = O_—d, andozm = g‘d
Yt
SinceY; and NV, are independent,
P(X|Y;) = P(Ny) (5)
Consider M reference blocks;,, m = 0,---,M — 1. Let

m: be the index of the true predictor. We assume that the true
predictor is always one oY,,, thus0 < m; < M. Y,
{ym},_, ., m# m areidentically distributed ak;. Let

Nm =X - an = Y'”t + Nmt - Ynu
then the standard deviation 8f,, is

2 2 2
(0’2) :<0-Zt> +<U:’ibt) _2O-Ztym

Although in generalV,,, is not Laplacian distributed, in video cod-
ing problems of interest we usually have thﬁg > ait and thus
N,, can still effectively being modeled as a Laplacian random ve
tor with distribution given by

_ V2

Qp =

pr (6)
In our system, we use coset coding and thus the encoder has

to select the number of cosets (and thus number of bits) todenc

each DCT coefficient. LeB = {6"} _  bethe bit allocation

vector whereb? denotes the number of bits we assign to dhii

DCT coefficient. TherC' = {c?} = {Q(bd)}, d=1,---,D

denotes the number of cosets to encodeittte DCT coefficient.
The distortion of the reconstructed frame is defined as

D=E {(X - X)Q} 7 7)

wherem™ is the index selected by the ML algorithm (which need
not be the true side information.)

Note that we do not consider the impact of quantization on
D in the analysis.X andY,, are modeled as continuous random
vectors and the coset encoding operation is modeled as alaodu
operation, i.e., encoding usingC' leads toX = mod (X, C).
This approximation is only used for our analysis; in our ekpe
ments, the DCT coefficients are quantized prior to cosetngpdi
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Figure 3:X,, — X as a function ofV,,,

4. ML DECODING RATE-DISTORTION ANALYSIS

We start from the simplest case, whdpe= 1 and M = 1, and
then extend the analysis to a more general case wherel and
M — oo.

4.1. Coset Codingand ML Decoding

Define Ny, = Xom — Y. Given (4) and (5),
(X, Yin) = el ®)

SinceL(Xn, Y, is amonotonically decreasing function|f,.,|,
ML decoding is equivalent to finding the minimuidy,, |*.

Coset coding introduces a “modulo effect” in the likelihood
computation since the encoding is ambiguous and we have that

|Nim| < § at the decodetV,,, is a periodic function ofV,,,.

Nm:g(Nm) = mod (N77L+%7C)— % (9)

as depicted in Figure 2. Sincé,, — X = N, — N.,, a decoding

error occurs whenN,,| > % We can represent the decoding

error as a function olV,,,, as depicted in Figure 3.
WhenM = 1 (i.e., the true predictor is given):

0o 2i2+1€ o
D=2Z<i0)2/zi,1c et ™ldn,.(10)
i=1 -2

X=Ym+ Nm

Figure 4: lllustration of the Distortion Analysis whén = 1 and
M =2

4.2, Two References

Now consider ML decoding whei! = 2 references; andY;

are available. Without loss of generality assume Hais the true
predictor. ML decoding can then been seen to be compafifg-

Yy) andg(X — Y1), as illustrated in Figure 4. Sineg, > oy,,

on average the MSE introduced when a false predictor is gicke
is much higher than when a true predictor is picked. Hence the
overall distortion increases when we have multiple refeesn

4.3. Asymptotic Behavior (M — o)

In typical video coding scenariogy/ can be a very large num-
ber, e.g., a full search motion estimation algorithm usuatbuld
choose the best predictor from more than 1000 candidates>(
1000). This is the motivation to study the asymptotic behavior of
D asM increases.

The probability of the true predictdr;,, being picked at the
decoder can be expressed as

P(m" =m:) = P(|Nm,| < min (|Npn])) (11)

m#Emyg
As M — 0o, minmm, (|Nm|) — 0, henceP(m* = m.) tends
to 0 asM increases. Thus we can assume that a false predictor

is likely to be picked at the decodér We further simplify the
problem by assuming

Nopr = min(N7,L) =0

Now D can be computed as

D=3 (iC)*P (Nm* = iC| Ny = 0)
i=1
oo ) an g—anliC| (12)
=2) (i0)° =2

N a—"e*“n‘jc‘
i=1 j=—o0 2

4.4. Multidimensional DCT Vector (D > 1)

When D > 1, we can follow the same strategy as in Section
4.2 to compute the expected distortion. HoweverDasicreases,
the computation can become intractable due to the incrgakin
ficulty of representing regions corresponding to differdistor-
tions. We need to represent different regions correspgrigin

{i;in—xd} = {kdcd} ,
d=1,---,D d=1,---,D

!This is not true wherD > 1, since usuallyr{ # ok, whend # k
2X can be correctly decoded even if a false predidtar is picked.
The criterion for correct decoding j&(,,+ — Y| < % notm* = mq




wherek? € IN. As D increases, the number of combinations of
{kd}d:1 .. p increases beyond what would be computationally
manageéblé. Thus, instead of considering all dimensidnsiyjo
for the likelihood test, we simplify the computation by ciutes-
ing each dimension individually for the likelihood test andhe
distortion computation. The total expected distortion pprax-
imated as the sum of all expected distortions of each diransi
computed independently.

Thus, in the general case whdbe> 1 andM — oo, the total
MSE can be expressed as

4.5, Bit Allocation

Since here only integer bits are assigned to each DCT caffic
we can easily use the Viterbi algorithm to find the bit allomat
vector B to minimize (13) under the rate constrait’_, b% <
Br, whereBr is the total number of bits per block.

5. EXPERIMENTAL RESULTS

In our experiments the size of the blockBix 8 (i.e. D = 64) and

8 x 8 DCT is used. All DCT coefficients are quantized with tt
same uniform scalar quantizer. The test video sequenceoig“F
man” in CIF format. We encode the first 20 frames in “I-P” mos
to gather information to initialize the correlation modgbr each
block in P-frame, we consider the blocks from the previofraine
with minimum SAD as the true reference bloek;, , o, ando
are estimated based on the collected data. The remainingp$ra
are coded as “I-P-1-S-1-S-I-S-I-S”, where “S” denotes thgriat-
Ziv coded frame. The correlation model is updated every 4é&
using the new collected data from the P-frame. In S-franfes, t
difference of the DC coefficients are entropy coded, whiteréa
maining AC coefficients are coset coded. EOB informatioreig s
before the AC coefficients. We allow blocks in S-frames to be
intra-coded if the intra-coded rate is lower than cosetecorhte.
In total 100 frames are coded. Currently the bit allocat®ae-
cided based on the statistic model at the 20th frame (i.enttial
model), adaptive bit allocation is left for future work. Rdata
shown is for the S-frames only.

To demonstrate the efficacy of the proposed methods, the ML
motion estimation method is compared against the CRC based m
tion estimation used in PRISM [3], and the proposed RD oztirthi
bit allocation is compared against a bit allocation scheeséghed
based on DISCUS [5]. The DISCUS based bit allocation scheme
is designed as follows: First the minimum distaiige between 2
symbols in a coset so to achieve a target decoding error pileba
ity is computed [5]. Assume the quantization step size useai
system g, then

5= e ()]

We show the experimental results of 4 different systems: (i)
CRC-16: 16-bit CRC motion estimation and DISCUS based bit
allocatiorf. (ii) CRC-16-EOB: 16-bit CRC motion estimation,

SNote that here only the lower frequency coefficients are tcosded
while the higher frequency coefficients are entropy codeel same as the
original PRISM system.

DISCUS based bhit allocation and EOB. (iii) ML-EOB: ML mo-
tion estimation, DISCUS based bit allocation and EOB. Amjl (i
ML-EOB-RD: ML motion estimation, proposed RD optimized bit
allocation scheme.

Figure 5 shows the experimental results. All the systemedod
with the EOB approach outperform “CRC-16" by large margin.
On average “ML-EOB-RD” shows around 1dB improvement agains
“ML-EOB”, which validates the rate-distortion analysishe bit
allocation strategy.
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Figure 5: PSNR curve of various systems described in Sebtion
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