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ABSTRACT

In this paper, we propose power efficient motion estimation (ME) us-
ing multiple imprecise sum absolute difference (SAD) metric com-
putations. We extend recent work in [18] by providing analytical
solutions based on modelling of computation errors due to voltage
over scaling (VOS) and sub-sampling (SS). Results show that our so-
lutions provide significantly better performance in the sense of rate
increase for fixedQP , e.g., less than5% increase, while in [18] the
rate increase could be as high as20%. Our analysis also allows us
to compare different ME algorithms (e.g., full search vs. a fast al-
gorithm) and SAD computation architectures (parallel vs. serial) in
terms of their robustness to imprecise metric computations and their
power efficiency. Finally, we demonstrate that additional power sav-
ings can be achieved by removing redundancy between the various
computations.

Index Terms— voltage over scaling (VOS), error tolerance (ET),
matching metric computation (MMC), imprecise computation

1. INTRODUCTION

Multimedia applications represent a major workload on a large num-
ber of hand-held devices such as cellular phones and laptops [11,
8], for which power (or energy) is the most important design con-
straint. Video encoders (e.g., H.264/AVC and MPEG-4) are the most
power consuming part of multimedia applications. Within a typical
video encoder, we focus on the power efficiency of motion estima-
tion (ME) as it consumes large portion of resources (e.g., 66%-94%
in an MPEG-4 encoder [12]).

Algorithmic approaches for power efficient ME [10, 9, 17] are
have been studied for a number of years. Recently, a new technique,
voltage over scaling (VOS) within ME, has been shown to lead to
significant additional power savings [6, 18]: given an existing algo-
rithm, the input voltage (V dd) for the SAD computation module is
set below critical voltage (V ddcrit). A reduction inV dd by a fac-
tor W can lead to power dissipation that is nearly a factor ofW 2

lower. A major difference with respect to existing algorithmic meth-
ods is that the lower power consumption comes at the cost ofinput-
dependent soft errors; lower input voltage increases circuit delay,
and the number of basic operations possible for one clock period de-
creases, thus generating error. In [6], we have shown that these errors
due to VOS are either i) concealed by the encoding process (e.g., a
motion vector selected to minimize SAD can be correct, even if the
SAD itself is incorrect) or ii) can lead to “acceptable” degradation
(e.g., a small distortion or rate increase). This acceptable degrada-
tion characteristic can be seen as a specific instance of error tolerance

This paper is based upon work supported in part by the National Science
Foundation under Grant No. 0428940. Any opinions, findings, and conclu-
sions or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

(ET), which has been considered in more general settings, including
hard hardware faults [1]. Our previous work has demonstrated that
image/video compression systems exhibit ET characteristics,even if
no explicit error control block is addedin the presence of VOS [2]
(additional work dealing with hard errors due to deterministic faults
shows similar results [7, 5]). For example, our simulations demon-
strated37% power savings in the ME process with negligible per-
formance penalty in typical video encoders. As part of our work we
developed an analytical model for VOS errors in the ME context.

Recent work [18] has also proposed using VOS to achieve power
savings in ME. Error concealment is introduced in this system, by
computing additional SAD values using a sub-sampled (SS) version
of the original macro-block data, and then using SAD data com-
puted by these two computation modules (VOS and SS) in order to
estimate the “true” SAD value for each candidate (a simple thresh-
old method is proposed in [18] to combine information provided by
the two modules). The basic idea is then to use two imprecise SAD
computations (with different characteristics) instead of one. If the er-
ror concealment module (based on SS) consumes much lower power
than the VOS module then overall power savings can be achieved, as
compared to a technique without error concealment (e.g., [6]). Note
that algorithmic methods to approximate the SAD metric with lower
computation cost are well known (e.g., see analysis of SS in [13]
and references therein), but techniques for SAD computation cost
reduction based on VOS are very recent.

In this paper, we study a two-module system such as that pro-
posed in [18]. Our main contribution is to use analytical error models
for both VOS [6] and SS [13]. These models lead to novel techniques
for combining the SAD values obtained by the two modules, which
we show outperform the threshold methods proposed in [18]. In par-
ticular we show that the additional error tolerance enabled by error
concealment with improved SAD estimation leads to an increase in
the range of operating values forV dd andm, which directly trans-
lates into increased power savings. Removing redundancy between
computations performed by the two models can further reduce over-
all power. Furthermore, we use these models to evaluate error tol-
erance and power efficiency of various ME algorithms (full search,
FS, and enhanced predictive zonal search, EPZS [3]) and SAD com-
putation architectures (parallel and serial).

Note that some of our techniques may also apply to environ-
ments where multiple differentperfectmetric computations are per-
formed in a noisy environment (e.g., deep submicron noise [16]).
With appropriate models, the techniques we discuss may lead to in-
creased resilience (with lower are overhead), as compared to tra-
ditional techniques such as triple modular redundancy which uses
three the same perfect modules and simple majority voting [14].

We first briefly explain the ME process, and propose a problem
formulation where two imprecise metric computations (i.e., due to
VOS and SS) are used within the ME process (Section 2). In Sec-
tion 3, we introduce analytical error models for each computation



module and propose novel techniques to estimate SAD based on the
output of these modules. In Section 4, we provide simulation re-
sults to evaluate the solutions. Results show that our new estimators
substantially outperform previous work in terms of rate increase for
fixed QP ; our solutions shows less than5% increases (when previ-
ously proposed techniques led to increases of around20%). Further-
more, we compare ME algorithms (FS/EPZS) and SAD computation
architectures (parallel/serial). We also show that additional power
savings can be achieved by removing redundancy between compu-
tation modules.

2. MOTION ESTIMATION WITH MULTIPLE IMPRECISE
COMPUTATIONS

The ME process comprises a search strategy (ME algorithm) and a
matching metric computation (MMC). The search strategy identifies
a set of candidate motion vectors (MVs) and then proceeds to com-
pute the matching metric for the candidates and to select the one that
minimizes the matching metric (typically SAD). There are several
types of hardware architectures to compute the matching metrics,
with different levels of parallelism [15]. We will refer to them as
MMC architectures. Among those, we mainly use a serial architec-
ture which hasM2 serially connected adders for SAD computation
between twoM ×M macro-blocks. A parallel architecture is also
used for comparison.

For eachM ×M macroblock in the current frame, thei-th can-
didate MV SAD is denotedSADi, and we assume there areN can-
didates. We defineI as the candidate index corresponding to low-
est SAD1 (I = argmini(SADi)), so that the minimum SAD is
SADmin = SADI . Here we consider two imprecise SAD com-
putations with VOS and SS (as in [18]). Note that this formulation
can be generalized to multiple SAD computations that are different
in the sense of being subject to different types of errors.
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Fig. 1. ME with two imprecise metric computations, Left: Redun-
dant, Right: Non-Redundant

DenoteSADss
i = SADi+Ess

i andSADvos
i = SADi+Evos

i ,
the SADs corresponding to thei-th candidate computed by the SS
and VOS modules, respectively (See Figure 1 (a)). These two sets of
SAD values are used to estimate the best MV, corresponding to index
Î. If I 6= Î, the residual block’s distortion (as measured by the SAD)
increases byESAD = SADÎ − SADI . This increase in distortion
(ESAD) may lead to a rate increase (∆R) for a givenQP . For

1Note that this could be replaced by another selection metric, e.g., one
involving a Lagrangian cost.

example, a quadratic model [4] suggests that∆R is a linear function
of ESAD, so that the relative rate increase can be approximated as
∆R
R

= ESAD
SADI

.

Now our goal is to provide a method to find̂I such thatESAD

is minimized. We will use the error models forEss
i , Evos

i (proposed
in [6] and [13], respectively). We propose a method that operates in
two steps: i) for each candidate find an SAD estimatedSADi based
on information provided by each moduledSADi = f(SADss

i , SADvos
i ), (1)

and ii) find Î which minimizes dSADi.

3. PROPOSED SAD ESTIMATORS

In [18] a threshold-based estimator (EstTh) is proposed. If the
difference betweenSADvos

i and SADss
i is larger thanTh, then

SADss
i is chosen as an estimate ofSADi. OtherwiseSADvos

i is
used as an estimate. The sameTh is applied to allSADi:

Th = maxi|SADss
i − SADi| (2)

Note that the threshold is defined in terms ofSADi, which is not
known beforehand, so that an approximate procedure (or training)
may have to be developed to estimate (details are not provided in [18]).
This approach is a heuristic based on two simple observations about
VOS and SS errors; i) the magnitude of VOS errors tends to be large
and always leads to SAD values that arebelowthe correct ones, and
ii) SS errors are usually relatively small compared to VOS errors es-
pecially for low sub-sampling factorsm, i.e., in cases when a greater
percentage of pixel data is used to computeSADss. This approach
works well forV dd andm values where errors are relatively small
(e.g., relatively largeV dd andm ≤ 4). As will be shown next, by
using models for both SS and VOS errors, it is possible to achieve
good performance in a larger range ofV dd andm values, thus fur-
ther increasing power savings.

3.1. Error Characteristics for VOS and SS

We describe briefly the error models for VOS and SS that have been
proposed in [6] and [13], respectively. The VOS error (Evos

i ) is a
non-positive discrete random variable with values that are multiple
of −2RS for a givenSADi. HereRS is the number of basic opera-
tions (e.g., full adder operation in ripple carry adder) possible for one
clock cycle, which is a non-decreasing function ofV dd: higherV dd
implies largeRS and thus more operations can be completed per cy-
cle, leading to a lower probability of computation error. As a result,
VOS error depends on bothV dd and the input characteristics. In
summary, we have thatSADvos

i ≤ SADi andSADvos
i = SADi

for SADi < 2RS . Refer to [6] for additional details. Note also
that the error in computingSADvos

i is upper bounded bySADi;
also, from our simulations we observe thatPr(SADvos

i 6= SADi)
for small SADi is more than10 times smaller than the average
Pr(SADvos

i 6= SADi).
The SS error (Ess

i ) can be modelled [13] as a continuous lapla-
cian random variable with parameterλ for givenSADi, whereλ is
a function of the sub-sampling parameterm; largerm’s correspond
to largerλ parameters. We observe thatλ varies as a function of
SADi; thus, for smallerSADi an accurateλ may be up to an order
of magnitude smaller than the averageλ that would be selected for
all SADs. Note that for givenSADi, SS and VOS errors are prac-
tically uncorrelated (in our simulation, correlation< 0.02): in what



follows we assume that SS errors are independent of VOS errors for
givenSADi.

3.2. Adaptive Threshold Estimator and MAP Estimator

An adaptive threshold strategy can be defined based on the observa-
tion that in the SS modelλ decreases withSADi. We can divide
the range of SAD values into intervalsr = 1, 2, ..., K, and associate
a thresholdThr (and correspondingλr) to each interval, based on
the observedSADss

i . Thus, thresholds can be smaller for smaller
SADss

i .
Additionally, within each interval, we can use a maximum a

posteriori (MAP) estimator forSADi based onSADss
i , SADvos

i ,
which can be defined as follows:dSADi = argmaxxPr(SADi = x|SADss

i , SADvos
i )

= argmaxxPr(SADss
i , SADvos

i |SADi = x)Pr(SADi = x)
(3)

Assuming thatSADi is uniformly distributed would lead to a max-
imum likelihood (ML) estimator. Note that applying this estima-
tor for each candidate indexi does not require significant compu-
tational complexity. First,Pr(SADss

i , SADvos
i |SADi = x) =

Pr(SADss
i |SADi = x) ·Pr(SADvos

i |SADi = x), under our as-
sumption of independence of SS and VOS errors for givenSADi.
Second, the above term only needs to be evaluated for a small num-
ber of values because the VOS error is a discrete random variable
with sparse support. Third, we can further approximate the dis-
tribution of VOS errors as follows. Given the probabilitypr

0 =
Pr(SADvos = SAD in r − th interval) that no VOS errors when
SADss belongs to ther-th interval, we can approximate allL nonzero
errors (multiples of−2RS ) as having the same probability1−pr

0
L

.
This has negligible effect on the MAP estimator performance, ac-
cording to our simulations.

In our observation this MAP estimator can occasionally be some-
what sensitive to modelling errors. Thus a more robust estimator
would combine the MAP technique with the adaptive threshold esti-
mator. Note also that both the adaptive threshold estimator and the
MAP estimator are designed to find the best estimate ofSADi, and
thus are not optimized in terms of our final objective, i.e., minimiz-
ing ESAD. We next propose an estimator to address this objective.

3.3. MAX Estimator

Consider a cost function (J) that takes into account the expected
value ofESAD:

J =
P

k(SADk − SADmin)Pr(k = Î)

=
P

k(SADk − SADmin)Pr(∀i 6= k, dSADi > dSADk)
(4)

We propose a heuristic estimator to avoid minimizingJ directly.
Divide the candidates into two sets:B = {k|SADk >> SADmin}
andB̄ = {k|SADk ≈ SADmin}. Then, fork ∈ B, it is desirable
to have dSADk > mins( dSADs, s ∈ B̄) with high probability. This
condition suggests that a reasonable estimator should have a positive
bias (to avoid introducing errors in identifying the minimum SAD
candidate) and that the bias should increase with the SAD values,
i.e., ideally smaller bias fork ∈ B̄ and larger bias fork ∈ B. Note
that dSADk ≥ SADvos

k , since VOS errors are always negative, but
that we do not have a specific upper bound fordSADk and thus the
bias could be arbitrarily large. As a heuristic, we propose to select as
an estimatormax(SADss

k , SADvos
k ), which has the desired prop-

erty of tending to introduce a bias that increases withSADk. Note

that this is a non-parametric estimator, which means that overall es-
timation complexity is modest.

4. SIMULATION RESULTS AND DISCUSSION

We now evaluate the performance of our proposed estimators: i)
adaptive threshold estimator, ii) MAP combined with adaptive thresh-
old estimator, and iii) MAX estimator. For our experiments we use
the FOREMAN sequence with a series ofV dd, QP , andm using an
H.264/AVC baseline profile encoder with FS/EPZS ME algorithms
and serial/parallel MMC architectures. Only16×16 block partitions
and a single reference were considered for ME. A constantQP was
used and rate distortion optimization was turned on. We assign 15
frames to each group of pictures (GOP), and use an IPPP GOP struc-
ture. We collect distortion increase (ESAD = SADÎ − SADI )
data by encoding each GOP with/without errors for differentV dd
(RS = 10, 12, 14 whereRS = 16 for error free operation),QP =
10, 20, 30, andm = 2, 4, 8 (note thatm = 4 was the maximum
sub-sampling rate that could be supported with the proposed thresh-
old estimator in [18]). We evaluate the relative rate increase using
ESAD
SADI

.
Clearly, in selecting parameters (i.e.,λr, Thr, p

r
0, λ, Th) for the

various estimators we do not have access to the original SAD. One
possible approach would be to use a few blocks per frame for train-
ing, and then use the same estimator parameters for all remaining
blocks in the frame. However, we observed that estimator parame-
ters can vary significantly within a frame. Thus, as an approxima-
tion, we useSADvos

i as an estimate ofSADi, and use this to select
estimator parameters for each macroblock.

With these settings, we compare the performance of the thresh-
old estimator of [18] and the three new estimators. In the sense of
minimizing rate increase,MAX estimator shows best performance,
followed by, in order of decreasing performance, MAP combined
with adaptive threshold, adaptive threshold, and threshold estimator;
performance differences are clearer when FS is used. In Figure. 2,
MAX estimator outperforms threshold estimator even form = 8 and
RS = 10 where the threshold estimator is known to be suboptimal;
MAX estimator shows less than5% rate increase, while the thresh-
old estimator shows around20% rate increase. In the other range of
parameters all new estimators show reasonable performance; with
all estimators leading to less than5% rate increase. Note that a20%
rate increase would correspond to around0.5dB PSNR loss if the
rate were to be kept fixed rate, while5% rate increase leads to less
than0.1dB loss [2]. Also in [18], three step search (TSS) algorithm
was used, which is shown to be less resilient to soft errors than EPZS,
thus rate increase can be worse if we use TSS instead of EPZS [2]. In
the extreme case, when we use FS algorithm, MAX estimator shows
similar rate increase, but threshold estimator shows more than90%
increase, which corresponds to more than2dB loss.

We also compare MMC architectures and ME algorithms. Since
a EPZS search strategy uses a good prediction algorithm to select
a small number of MV candidates, which are already near the min-
imum SAD point, EPZS has smaller number searching points and
search range than the FS algorithm. Thus EPZS shows more re-
silience to errors due to imprecise computations than the FS case,
lower V dd can be used for EPZS, resulting in better power effi-
ciency. But here we do not consider the inherent difference in com-
plexity, regularity, and memory usage between EPZS and FS algo-
rithm, which is not easy to quantify; FS algorithm has more search-
ing points but has more regular structure and memory usage than
EPZS. In case of MMC architecture, parallel architecture shows bet-
ter performance than serial one because its intermediate nodes has
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more balanced partial SAD dynamic range.
Note that there is a redundancy between VOS block and SS

block; pixel input data to the SS block is a subset of input of VOS
block. Thus, removing this redundancy, leads to lower power con-
sumption as the number of operations in the VOS module (See Fig-
ure 1 (b)). Performance also increases because a smaller number
inputs leads to lower probability of error in the VOS module.
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