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ABSTRACT (ET), which has been considered in more general settings, including

In this paper, we propose power efficient motion estimation (ME) us__hard hardware faults [1]. Our previous work has demonstrated that

: T . : : image/video compression systems exhibit ET characterigties) if
ing multiple imprecise sum absolute difference (SAD) metric com- L ) )
putations. We extend recent work in [18] by providing analytical no explicit error control block is addeih the presence of VOS [2]

solutions based on modelling of computation errors due to voltagéaddmonal work dealing with hard errors due to deterministic faults

over scaling (VOS) and sub-sampling (SS). Results show that our s<§-h°WS similar resuilts [7, 5]). For example, our simulations demon-

lutions provide significantly better performance in the sense of rat trated37% power savings in the ME process with negligible per-
increase for fixed) P, e.g., less thafi% increase, while in [18] the ormance penalty in _typlcal video encoders. A? part of our work we
rate increase could be as high2%. Our analysis also allows us developed an analytical model for VOS errors in the ME cpntext.

to compare different ME algorithms (e.g., full search vs. a fast al-  Recentwork [18] has also proposed using VOS to achieve power

gorithm) and SAD computation architectures (parallel vs. serial) ir°2vings in ME. Error concealment is introduced in this system, by
terms of their robustness to imprecise metric computations and the?:romp“t'n_g _addltlonal SAD values using a sub-s_ampled (SS) version
power efficiency. Finally, we demonstrate that additional power sav©! the original macro-block data, and then using SAD data com-

ings can be achieved by removing redundancy between the variof&!t€d by these two computation modules (VOS and SS) in order to
estimate the “true” SAD value for each candidate (a simple thresh-

computations. old method is proposed in [18] to combine information provided by
Index Terms— voltage over scaling (VOS), error tolerance (ET), the two modules). The basic idea is then to use two imprecise SAD
matching metric computation (MMC), imprecise computation computations (with different characteristics) instead of one. If the er-
ror concealment module (based on SS) consumes much lower power
1. INTRODUCTION than the VOS module then overall power savings can be achieved, as

compared to a technique without error concealment (e.g., [6]). Note

Multimedia applications represent a major workload on a large numthat algorithmic methods to approximate the SAD metric with lower
ber of hand-held devices such as cellular phones and laptops [1e¢pmputation cost are well known (e.g., see analysis of SS in [13]
8], for which power (or energy) is the most important design con-and references therein), but techniques for SAD computation cost
straint. Video encoders (e.g., H.264/AVC and MPEG-4) are the mogteduction based on VOS are very recent.
power consuming part of multimedia applications. Within a typical  In this paper, we study a two-module system such as that pro-
video encoder, we focus on the power efficiency of motion estimaposed in [18]. Our main contribution is to use analytical error models
tion (ME) as it consumes large portion of resources (e.g., 66%-94%or both VOS [6] and SS [13]. These models lead to novel techniques
in an MPEG-4 encoder [12]). for combining the SAD values obtained by the two modules, which

Algorithmic approaches for power efficient ME [10, 9, 17] are we show outperform the threshold methods proposed in [18]. In par-
have been studied for a number of years. Recently, a new techniqucular we show that the additional error tolerance enabled by error
voltage over scaling (VOS) within ME, has been shown to lead taconcealment with improved SAD estimation leads to an increase in
significant additional power savings [6, 18]: given an existing algo-the range of operating values fbtdd andm, which directly trans-
rithm, the input voltage(dd) for the SAD computation module is lates into increased power savings. Removing redundancy between
set below critical voltageWdd.i:). A reduction inVdd by afac- computations performed by the two models can further reduce over-
tor W can lead to power dissipation that is nearly a factoiiot all power. Furthermore, we use these models to evaluate error tol-
lower. A major difference with respect to existing algorithmic meth-erance and power efficiency of various ME algorithms (full search,
ods is that the lower power consumption comes at the caspot- FS, and enhanced predictive zonal search, EPZS [3]) and SAD com-
dependent soft errordower input voltage increases circuit delay, putation architectures (parallel and serial).
and the number of basic operations possible for one clock period de- Note that some of our techniques may also apply to environ-
creases, thus generating error. In [6], we have shown that these errgfents where multiple differemqterfectmetric computations are per-
due to VOS are either i) concealed by the encoding process (€.9.,férmed in a noisy environment (e.g., deep submicron noise [16]).
motion vector selected to minimize SAD can be correct, even if theyjith appropriate models, the techniques we discuss may lead to in-
SAD itself is incorrect) or ii) can lead to “acceptable” degradationcreased resilience (with lower are overhead), as compared to tra-
(e.g., a small distortion or rate increase). This acceptable degradaitional techniques such as triple modular redundancy which uses
tion characteristic can be seen as a specific instance of error toleranggee the same perfect modules and simple majority voting [14].

This paper is based upon work supported in part by the National Scienc; We f.IrSt briefly eka.am the .ME proc_ess, and pr_opose_ a problem
Foundation under Grant No. 0428940. Any opinions, findings, and conclulormulation where two imprecise metric computations (i.e., due to
sions or recommendations expressed in this paper are those of the auth¥©S and SS) are used within the ME process (Section 2). In Sec-
and do not necessarily reflect the views of the National Science Foundatiortion 3, we introduce analytical error models for each computation




module and propose novel techniques to estimate SAD based on tegample, a quadratic model [4] suggests thd& is a linear function
output of these modules. In Section 4, we provide simulation reef Esap, so that the relative rate increase can be approximated as

sults to evaluate the solutions. Results show that our new estimato%ﬁ = ’gf\i‘g[’.

substantially outperform previous work in terms of rate increase for  now our goal is to provide a method to firidsuch thatFs 4
fixed QP; our solutions shows less thafi increases (when previ- o minimized. We will use the error models f&rs, EY°* (proposed

ously proposed techniques led to increases of ara0fit). Further- i, 6] and [13], respectively). We propose a method that operates in
more, we compare ME algorithms (FS/EPZS) and SAD computation L : . o
. . o two steps: i) for each candidate find an SAD estim&teD; based
architectures (parallel/serial). We also show that additional powef " / X
. . : on information provided by each module
savings can be achieved by removing redundancy between compu-

tation modules. SZ\D;‘ — F(SAD:®, SAD), Q)
2. MOTION ESTIMATION WITH MULTIPLE IMPRECISE and ii) find 7 which minimizessz/ﬁ)i.
COMPUTATIONS

. . 3. PROPOSED SAD ESTIMATORS
The ME process comprises a search strategy (ME algorithm) and a

matching meFric compL_Jtation (MMC). The search strategy identifiesgy, [18] a threshold-based estimataE4tr) is proposed. If the

a set of candidate motion vectors (MVs) and then proceeds to conyitference betweerS ADY** and SADS® is larger thanTh, then

pute the matching metric for the candidates and to select the one thg%Dfs is chosen as an estimate 8f1D;. OtherwiseSAD?** is

minimizes the matchlng_ metric (typically SAD). There are sever_alused as an estimate. The saffieis applied to allS AD;:

types of hardware architectures to compute the matching metrics,

with different levels of parallelism [15]. We will refer to them as Th = max;|SAD;® — SAD;| 2)

MMC architectures. Among those, we mainly use a serial architec-

ture which has\1? serially connected adders for SAD computation Note that the threshold is defined in terms$AD;, which is not

between twal x M macro-blocks. A parallel architecture is also known beforehand, so that an approximate procedure (or training)

used for comparison. may have to be developed to estimate (details are not provided in [18]).
For eachM x M macroblock in the current frame, thiéh can-  This approach is a heuristic based on two simple observations about

didate MV SAD is denoted A D;, and we assume there afecan-  VOS and SS errors; i) the magnitude of VOS errors tends to be large

didates. We definé as the candidate index corresponding to low- and always leads to SAD values that bedowthe correct ones, and

est SAD® (I = argmin;(SAD;)), so that the minimum SAD is ii) SS errors are usually relatively small compared to VOS errors es-

SADy.in = SAD;. Here we consider two imprecise SAD com- pecially for low sub-sampling factors, i.e., in cases when a greater

putations with VOS and SS (as in [18]). Note that this formulationpercentage of pixel data is used to comp$it€D*°. This approach

can be generalized to multiple SAD computations that are differentvorks well for Vdd andm values where errors are relatively small

in the sense of being subject to different types of errors. (e.g., relatively largd’dd andm < 4). As will be shown next, by

using models for both SS and VOS errors, it is possible to achieve

good performance in a larger rangelofld andm values, thus fur-

Metric Comp. Metric Comp. Metric Comp. Metric Comp. . . A
(ss:m) (VOS: Total) (ss:m) (VOS: Total-m) ther increasing power savings.
3.1. Error Characteristics for VOS and SS
Multiply by m | SAD;"*|= SAD, + E" Multiply by m SAD"
SADS = SAD, +E= SAD; We descrik_)e briefly the error modc_els for VOS and SS that h_ave been
_ proposed in [6] and [13], respectively. The VOS erréi(®) is a
‘ Combine (Est) ‘ ‘ Combine (Est) ‘ " B . . .
non-positive discrete random variable with values that are multiple
S/AB' S/A-IS of —2%s for a givenSAD;. HereR; is the number of basic opera-
WE agorthmin) | p——— | tions (e.g., full a}ddt_ar operationin rlp_ple carry adder) ppssmle forone
Search point selection — clock cycle, which is a non-decreasing functiorl@id: higherVdd
1. # of search points SADmm,f SADmm,i implies largeR s and thus more operations can be completed per cy-

2. search range

cle, leading to a lower probability of computation error. As a result,
@ (®) VOS error depends on boftidd and the input characteristics. In
summary, we have thftAD;°* < SAD; andSAD;°* = SAD;
Fig. 1. ME with two imprecise metric computations, Left: Redun- for SAD; < 2%s. Refer to [6] for additional details. Note also
dant, Right: Non-Redundant that the error in computing AD;°® is upper bounded by AD;;
also, from our simulations we observe tifat(SAD7°* # SAD;)
DenoteSAD;* = SAD'+E;* andSADY*® = SAD'+Eyes,  for small SAD; is more thanl0 times smaller than the average

the SADs corresponding to theth candidate computed by the SS Pr(SAD;?® # SAD;).
and VOS modules, respectively (See Figure 1 (a)). These two sets of The SS error £7°) can be modelled [13] as a continuous lapla-
SAD values are used to estimate the best MV, corresponding to indésan random variable with parametefor given SAD;, where) is
I.1f T # I, the residual block’s distortion (as measured by the SAD)a function of the sub-sampling parametey largerm’s correspond
increases byZsap = SAD; — SAD;. This increase in distortion 0 larger A parameters. We observe thatvaries as a function of
(Esap) may lead to a rate increas\ R) for a givenQP. For SAD:;; thus, for smallelSAD; an accuraté. may be up to an order
of magnitude smaller than the averay¢hat would be selected for
INote that this could be replaced by another selection metric, e.g., ond/l SADs. Note that for giver5 AD;, SS and VOS errors are prac-
involving a Lagrangian cost. tically uncorrelated (in our simulation, correlatien0.02): in what




follows we assume that SS errors are independent of VOS errors fohat this is a non-parametric estimator, which means that overall es-
givenSAD;. timation complexity is modest.

3.2. Adaptive Threshold Estimator and MAP Estimator 4. SIMULATION RESULTS AND DISCUSSION

An adaptive threshold strategy can be defined based on the obserge now evaluate the performance of our proposed estimators: i)
tion that in the SS model decreases witty AD;. We can divide  5qanive threshold estimator, i) MAP combined with adaptive thresh-
the range of SAD values into intervals= 1,2, ..., K, and associate  o|q estimator, and i) MAX estimator. For our experiments we use
a thresholdl'h, (and corresponding,) to each interval, based on ho FOREMAN sequence with a serieslofid, Q P, andm using an

the observedAD;*. Thus, thresholds can be smaller for smaller 4y 554/avC baseline profile encoder with FS/EPZS ME algorithms

SAD®. o ) ) and serial/parallel MMC architectures. Oril§x 16 block partitions
Additionally, within each interval, we can use a maximum a 5 a single reference were considered for ME. A conspetvas

posteriori (MAP) estimator foSAD; based oS AD;*, SADI™,  ysed and rate distortion optimization was turned on. We assign 15

which can be defined as follows: frames to each group of pictures (GOP), and use an IPPP GOP struc-

ture. We collect distortion increas&§sp = SAD; — SADy)

data by encoding each GOP with/without errors for differ&mld

(Rs = 10,12,14 whereRs = 16 for error free operationQ P =

. . . o 10,20, 30, andm = 2,4, 8 (note thatm = 4 was the maximum
Assuming thaty A D; is uniformly distributed would lead to a max- sub-sampling rate that could be supported with the proposed thresh-

imum likelihood (ML) e.stlm.ator. Note that. app.'y"?g this estima- old estimator in [18]). We evaluate the relative rate increase using
tor for each candidate indexdoes not require significant compu- zg,,

tational complexity. FirstPr(SAD;®,SAD;{°° |SAD; = z) = SAD;’ . . . -

Pr(SAD*|SAD; = ) -Pr(SADY**|SAD; = ), under our as- Clearly, in selecting parameters (i.8,,, Th., py, A\, Th) for the
sumptionzof independence of Sszand VOS errors for giverD;. various estimators we do not have access to the original SAD. One
Second, the above term only needs to be evaluated for a small nurﬂQSSibIe approach would be to use a few blocks per frame for train-

ber of values because the VOS error is a discrete random variab!%g' lf‘”?' tk;]enfuse the same estlmatt?r parzmﬁters for all remaining
with sparse support. Third, we can further approximate the dis?0Cks in the frame. However, we observed that estimator parame-

tribution of VOS errors as follows. Given the probabilipy = ters can vary Sig,ﬁ‘jﬁcam'y within a frame. Thus, as an approxima-
Pr(SADY® = SAD inr — th interval) that no VOS errors when tlon, we useSAD;°° as an estimate &§ AD;, and use this to select
estimator parameters for each macroblock.
With these settings, we compare the performance of the thresh-
old estimator of [18] and the three new estimators. In the sense of
minimizing rate increase\l AX estimator shows best performance,

SAD; = argmaz, Pr(SAD; = x|SAD;®, SAD{°%)
= argmaz, Pr(SAD;®, SAD}°°|SAD; = z)Pr(SAD; = x)
3

SAD?® belongs to the-th interval, we can approximate dllnonzero

errors (multiples of—2%s) as having the same probabilit%FLLS.
This has negligible effect on the MAP estimator performance, ac

cording to our simulations. followed by, in order of decreasing performance, MAP combined

In our observation this MAP estimator can occasionally be SOM&yith adaptive threshold, adaptive threshold, and threshold estimator;

what sensitive to modelling errors. Thus a more robust esumatoﬁerformance differences are clearer when FS is used. In Figure. 2

would combine the MAP technique with the adaptive threshold eStiMAX estimator outperforms threshold estimator evenfor= 8 and
mator. Note also that both the adaptive threshold estimator and thﬁs — 10 where the threshold estimator is known to be suboptimal;
MAP estimator are des!gned to find the_ best e.St'ma@fﬂ)D“ a}n_d .. MAX estimator shows less tha% rate increase, while the thresh-
Fhus are not optimized in terms of our final objective, 1.8, MINIMIZ- 4 estimator shows arourt% rate increase. In the other range of
ing Esap. We next propose an estimator to address this ObJethe'parameters all new estimators show reasonable performance; with
all estimators leading to less thaf% rate increase. Note thata%

3.3. MAX Estimator rate increase would correspond to arounddB PSNR loss if the
rate were to be kept fixed rate, whilé rate increase leads to less
than0.1dB loss [2]. Also in [18], three step search (TSS) algorithm
was used, which is shown to be less resilient to soft errors than EPZS,

J =3 (SADy — SADpin)Pr(k = f) thus rate increase can be worse if we use TSS instead of EPZS [2]. In

- k min - . .
. — — the extreme case, when we use FS algorithm, MAX estimator shows

=2 (SADy — SADyin) Pr(Vi # k, SAD; > SAD’“)M) similar rate increase, but threshold estimator shows moredtzn

We propose a heuristic estimator to avoid minimizihdirectly. increase, which corresponds to more tBal; loss.

- - . We also compare MMC architectures and ME algorithms. Since
Divide the candidates into two seiB: = {k|SADy >> SADpin} o :
andB = {k|SADy, ~ SADyun}. Then, fork € B, itis desirable a EPZS search strategy uses a good prediction algorithm to select

g ) " o n ) a small number of MV candidates, which are already near the min-
to haveSADy, > mins(SAD;, s € B) with high probability. This  imum SAD point, EPZS has smaller number searching points and
condition suggests that a reasonable estimator should have a posityg, ch range than the FS algorithm. Thus EPZS shows more re-
bias (to avoid introducing errors in identifying the minimum SAD gijjlience to errors due to imprecise computations than the FS case,
candidate) and that the bias should increase with the SAD valuegywer 17 dd can be used for EPZS, resulting in better power effi-
i.e., ideally smaller bias fot < B and larger bias fok € B. Note  jency, But here we do not consider the inherent difference in com-
that SADy > SAD;®, since VOS errors are always negative, but plexity, regularity, and memory usage between EPZS and FS algo-
that we do not have a specific upper bound$otD;, and thus the  rithm, which is not easy to quantify; FS algorithm has more search-
bias could be arbitrarily large. As a heuristic, we propose to select agg points but has more regular structure and memory usage than
an estimatornaxz(SAD;®, SAD;°%), which has the desired prop- EPZS. In case of MMC architecture, parallel architecture shows bet-
erty of tending to introduce a bias that increases ithD,. Note  ter performance than serial one because its intermediate nodes has

Consider a cost functionJjj that takes into account the expected
value of Esap:



Fig. 2. Comparison of four estimators with EPZS algorithm for various parametets;2, 4,8, Rs = 10, 12, 14, andQ P
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Fig. 3. Comparison of EPZS/FS ME algorithms, serial/parallel MMC architectures, redundant/non-redundant cases o4, 8, Rs =
10, andQP = 30

more balanced partial SAD dynamic range.

Note that there is a redundancy between VOS block and SS

block; pixel input data to the SS block is a subset of input of VOS [9]
block. Thus, removing this redundancy, leads to lower power con-
sumption as the number of operations in the VOS module (See Fig-
ure 1 (b)). Performance also increases because a smaller numbyeg)
inputs leads to lower probability of error in the VOS module.
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