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Abstract

In this paper we introduce a novel technique for adaptive scalar quantization. Adaptivity is
useful in applications, including image compression, where the statistics of the source are either
not known a priori or will change over time. Our algorithm uses previously quantized samples to
estimate the distribution of the source and does not require that side information be sent in order
to adapt to changing source statistics. Our quantization scheme is thus backward adaptive. We
propose that an adaptive quantizer can be separated into two building blocks, namely, model
estimation and quantizer design. The model estimation produces an estimate of the changing
source probability density function, which is then used to re-design the quantizer using standard
techniques. We introduce non-parametric estimation techniques that only assume smoothness
of the input distribution. We discuss the various sources of error in our estimation and argue
that for a wide class of sources with a smooth pdf we provide a good approximation to a
“universal” quantizer, with the approximation becoming better as the rate increases. We study
the performance of our scheme and show how the loss due to adaptivity is minimal in typical
scenarios. In particular, we provide examples and show how our technique can achieve SNRs
within 0.05 dB of the optimal Lloyd-Max quantizer for a memoryless source, while achieving
over 1.5 dB gain over a fixed quantizer for a bi-modal source.
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1 Introduction and related work

Adaptivity is a key feature in the most popular methods for lossless data compression, such as
arithmetic coding (AC) [2, 3, 4], Lempel-Ziv coding [5] or dynamic Huffman coding [6, 7, 8] (see
[9] for an extensive review of lossless compression).

The classical works on entropy coding (e.g. Huffman coding) and optimal quantizer design (e.g.
Lloyd-Max quantization), propose methods to achieve optimal performance for sources which can
be fitted to a certain model. In adaptive AC implementations, adaptation is achieved by estimating
this model “on the fly”, with no prior assumptions. In this work, we propose that estimating the
source model from past inputs should be an essential building block in adaptive scalar quantization
as well. While the same could be argued for vector quantization, we concentrate here in the
scalar case since going to higher dimensions complicates the modelling process. Note also that an
adaptive quantizer can be used as part of a DPCM loop and we are thus not restricting ourselves to
memoryless sources. We can define our problem as that of adapting some or all of the parameters of
a scalar quantizer/entropy coder system (including bin sizes, reconstruction levels, codeword lengths
and dynamic range) to the changing statistics of an input source. We make few assumptions on the
statistical characteristics of the source and, in particular, we allow it to have long term dependencies
and to show varying “local” behavior. We will assess the performance of the adaptive schemes by
comparing their rate-distortion characteristics with those achievable by means of non-adaptive
schemes. We study systems where the adaptation occurs based only on the causal past so that
both encoder and decoder can adapt in the same manner, and no extra information needs to be
sent.

While adaptive source models have been used to varying extents in many adaptive quantiza-

tion schemes, here we propose to explictly separate the adaptation algorithm into two parts (see
Fig. 1(a)):

1. Source modeling: Based on the previous N quantized samples we model the source (for

instance by estimating its probability density function, pdf).

2. Quantizer design: For the given estimated statistics new quantizer parameters are computed.

Separating the algorithm into these two building blocks, an approach similar to that used in adap-
tive AC, allows us to use well-known quantizer design techniques (such as the Lloyd-Max algorithm
in the case of constant rate quantizers) and concentrate on the task of estimating the model. If
we correctly estimate the distribution then we are guaranteed optimality. The main contributions
of this work are (i) to make an explicit separation of modeling and quantizer design, (ii) to study
methods to model a source based on quantized samples, and (iii) to consider non-parametric, piece-
wise linear models for the pdf’s. Non-parametric models are selected (see Section 2.1) so as to
minimize the number of assumptions needed. We also study the amount of memory which should
be used in estimating the distribution (i.e. N). Clearly, if the input source were independent iden-
tically distributed (i.i.d.), it would be reasonable to accumulate statistics over a long time window.
Conversely, if the source input distribution were changing over time, shorter windows would have

to be used. If the window size is kept constant, choosing an appropriate size for a given type of
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Figure 1: Adaptive quantization algorithm. (a) The adaptation algorithm can be decomposed into
two parts (i) the estimation of the input distribution based on past samples and (ii) the design of
the new quantizer given the estimated distribution. (b) In the simplest case the adaptive algorithm
uses a fixed finite window to estimate the distribution. In a more general case it would be necessary
to change the speed of adaptation as well, so that the window size would also change over time.

Adaptive quantization While some recent work has demonstrated adaptive vector quantization
schemes which do require side information to specify modifications on existing codebooks [10, 11, 12]
or to choose among a predetermined set of codebooks [13], here we focus on backward adaptive
schemes, which do not require overhead information. Examples of backward adaptive quantization
can be found in [14, 15, 16], where the objective is to adjust the support region of a uniform scalar
quantizer so that this quantizer can be used in conjunction with a predictor in a DPCM system.
Adaptation is based on one [14, 17, 18] or more [15] of the previously quantized samples. In [16]
both the support region and the bin sizes can be adjusted, although the bin sizes are restricted to
a finite set of values.

A somewhat different problem is tackled in [19] where an initial tree-structured vector quantizer
(TSVQ) is designed off-line with a rate higher than the rate available for transmission. At any

given time a subtree of the original tree is used, namely, the one which minimizes the expected



distortion (under the assumption that future samples will have the same distribution as, recent,
past ones). Encoder and decoder keep counts of the number of samples that corresponded to each
of the nodes and use this information to generate the distortion estimates.

Note that these systems use (implicitly or explicitly) simple models of the source to determine
the changes in quantization. For instance, [14] assumes that the source distributions are relatively
smooth (and a uniform quantizer is thus suitable) but have varying dynamic range so that the role
of the adaptation is to estimate the changes in the variance of the source. Similarly, the assumption
in [19] is that the initially designed tree-structured codebook is sufficiently representative of the
expected input signals, so that the adaptive algorithm can find a “good” sub-tree at any given
time. In our work, the aim is to explicitly determine a model for the source from the data known
to encoder and decoder, and then adapt the quantization scheme to get the best performance for

the given model.

Adaptive lossless compression The two main approaches to adaptive lossless compression
[9]are model-based (e.g. arithmetic coding (AC) or adaptive Huffman coding) and dictionary-
based (e.g. Lempel Ziv (LZ) coding), where the adaptivity comes from dynamically updating,
respectively, the model and the dictionary.

We will concentrate on the AC algorithm [2, 4, 3] as it is closer in spirit to our approach. In an
AC scheme, the encoder keeps track of the probabilities of the input symbols. If the source is i.i.d.
and the model is correct then AC can achieve a rate very close to the source entropy. However,
in real life environments, the performance of the algorithm is determined by how well it adapts to
the changing statistics of the source. In that sense, model tracking plays an essential part in the
AC algorithm performance. The general idea [20] is to determine for every newly arrived symbol,
whether the occurrence is “normal”, i.e. consistent with the current model, or “not-normal”, i.e.
unexpected within the current model. Because of the need to adapt to changing statistics, this
scheme will perform worse than a static algorithm for an i.i.d. source [20].

As another example of adaptation in the context of lossless coding, it has been shown that the
Huffman coding tree can be modified on the fly so that the code adapts to changing statistics, or
learn them starting with no prior knowledge [6, 7, 8]. A first approach to generate these statistics
would be to choose the number of samples N over which symbol occurrences are counted. However,
a fully adaptive scheme would also require a procedure to change N, if necessary, during the
coding process in order to improve the performance (we would thus have a parameter N(n) as in
Fig. 1(b)). Recent work [21] presents a solution to this last question and proposes that the window
size N be updated by choosing, among several possible sizes, the one producing a code with better
compression for the last received symbols.

Finally, it is worth noting the connection between data modeling and data compression. Indeed,
the minimum description length (MDL) principle introduced by Rissanen [22, 23] provides the link
between these two problems by establishing the asymptotic optimality of describing a distribution
with a set of parameters that requires the least total number of bits to be encoded when counting
both the bits needed to describe the model and the bits needed to encode the occurrences of the

different symbols within the model.



Outline of the paper The paper is organized as follows. In Section 2 we describe the various
components of the adaptive quantization scheme as depicted in Fig. 1(b). For each of the building
blocks we define the objective and examine some solutions. In Section 3 we analyze the convergence
properties of the algorithm. We consider the asymptotic behavior as well as the various sources of
error in the algorithm. Finally, in Section 4, we provide some experimental results to demonstrate

the advantages and disadvantages of adaptive quantization over static approaches.

2 Adaptive scalar quantization algorithm

In this section we will describe the three building blocks of the adaptive quantizer, namely, source

probability density function (pdf) estimation, quantizer adaptation and adjustment of adaptation
speed (see Fig. 1(b).)

2.1 Estimation of input distribution
2.1.1 General case

Given a discrete time input z(1),...,z(n) we are seeking to find a model that best “explains” the
data. To do so, we assume that the last NV samples have been generated by an i.i.d. source and we
estimate the pdf of that source, f(z), based on information available at both encoder and decoder,
i.e. the previously quantized samples. We only assume that the underlying source has a smooth
(e.g. continuous) pdf and that the source changes slowly, so that modeling the past N samples as

if they had been generated by an i.i.d. source is reasonable. Our goal is to:

Objective 1 Given the N most recent quantized sample occurrences &(n— N), &(n — N +1), ...,
&(n — 1), where N might be a constant or can be changed by the speed adaptation algorithm, find
an estimate fn(x) of the probability density function of the source, f(z).

We consider a quantizer with L reconstruction levels rq, ..., 77— and L—1 decision levels denoted
bi,...,br_1. Additionally, denote n;, for i = 0,..., L — 1, the number of samples, out of the N
most recently transmitted, which were quantized to the ¢-th bin. ng and n;_; are the number of
samples that fell in the “outer” bins and, obviously, >, n; = N. Our goal is, given the knowledge
of ng,...,np_1 and by,...,by_1, to find a good approximation fn(x)l From the observed data we

can deduce that:
biy1 n;
B:/ flz)de ~ N fori=0,...,L —1, and by = —00, by, = +00. (1)
b; 4

Although strictly speaking the equality holds only in the limit as N goes to infinity, we use n;/N
to approximate F;.
The problem we have formulated is in fact very general and is encountered, for instance, in

statistics when fitting a model to some data. There are, however, two major differences between

'To simplify the notation, in the remainder of the paper we do not use the subscript n in fn(x) but it should be
clear that different f(z)’s are obtained every time the estimated input pdf is updated.



our work and standard model estimation problems: (i) we estimate a model based on quantized
data and (ii) we insist on using a non-parametric approach.

By restricting ourselves to the quantized data we will operate with reduced information and
thus our model estimation technique will perform worse than those described for standard model
estimation problems. In particular, we may have to separate our model estimation problem into
two parts: (i) estimating f(x) in the two outer bins, where we can rely on knowing only one of the
boundaries (this is equivalent to estimating the dynamic range of the source), and (ii) estimating
f(x) within the inner bins, where we know both bin boundaries.

A parametric approach would restrict the set of candidate models to a family of pdf’s determined
by a vector parameter #. For example, one could try to find an estimate f(x|0) with 8 = (m, o)
such that f is a gaussian pdf with parameters m and o. In our work we choose to use estimates
f which are piecewise linear approximations to the underlying pdf. We are obviously estimating
a finite set of parameters which uniquely describe f but still deem this approach non-parametric
in that we do not expect the inpul pdf to also be piecewise linear. Rather, we choose a model
(piecewise linear) which is expected to provide a reasonably good fit for a wide class of input pdf’s
(but which will not give a “perfect” approximation) instead of choosing a specific parametric source

model (e.g. gaussian).

2.1.2 A non-parametric piecewise linear approximation

In general, we can choose a set of P points, zg,...,zp_1, P > L, and make it our objective to
find f(a:o), .. .f(xp_l). f(x) can then be linearly interpolated at other points z. The z; can be
chosen arbitrarily within the estimated dynamic range of the source, say [bg,br]. The task of
approximating the dynamic range will be dealt with in more detail in Section 2.1.5.

Assume, thus, [bo, bz ] given and choose P > L points. Our goal is then, under the pdf smoothness
assumption, to find f such that

biyr
/+1f($)dx:B for +=0,...,L—1, (2)
b;

where P, = n;/N. Since f is a piecewise linear approximation we can write the equations in (2) as a
function of the P unknowns f(xo), .. .f(xp_l). This can be seen as a typical inverse problem which
in the case of P > L is underdetermined. Several techniques can be used to regularize such problems
(see [24] for an excellent description of these techniques). We outline a linear regularization method
that has the advantage of resorting to the pdf smoothness assumption.

Clearly, if P > L there are many possible solutions which meet the constraints of (2). For a large
enough P linearizing is a good approximation and we can thus write the constraints as

P-1
Y (1/2)(J(arer) + fl@r))riee) (wen —ax) = B, Vi=0...L—1, (3)

k=0
where r;(zg) = 1 if (2g41 + k) /2 € [b;, bi41] and r;(zx) = 0 otherwise. Assuming, for simplicity,

equally spaced zj and normalizing so that 41 — zx = 1, we can write in matrix form

R-f=p (4)



where f is the vector of the P unknown “knots” in the piecewise linear approximation, p is the
vector of the L observed probability masses, F;, and R = {r;} = {ri(zx)} is the P X L matrix
which determines which f(zy) should be considered in each of the L constraints.

The basic idea of the linear regularization methods is to first relax the constraint of choosing

f(zk) to exactly match the observed frequencies of occurrence as in (4). We thus introduce a cost

M which measures how much a solution deviates from a perfect fit
M=|R-f-pl. (5)

Additionally, we introduce a second cost & which measures the “smoothness” of the resulting
f(ac) For instance, if we expect a priori f(x) not to deviate too much from a linear function we
can introduce a cost based on an approximation to the second derivative f”(w) so that

P-1

S= [(F@)? e = Y (~Fe) +2f(enn) = Flowsa))* (6

k=0

This can be also expressed in matrix form as
S=fT.BT.B.r (7)

where B = {b;1}, with by = —1 for k =4, bjp =2 for k=it + 1, by, = —1 for k = i+ 2, and zero
elsewhere, fori=1,...,P—2and k=1,...,P.

Now, combining the two costs M and § and choosing a real positive number A, we can find f(xk)
to minimize:

min(M 4+ AS) = min(|R - f — p|? + A(fT - BT . B -1)). (8)

This is a least squares problem which can be solved using standard techniques (see [24] for the
details.) Thus we can find for each value of A a set of points f(xk) that yield an approximation to

the pdf. There are two main advantages to using this technique:

1. It does not require an accurate estimation of the “outer boundaries”. A good guess for the
outer boundaries suflices, as the matching and smoothness criterion will guarantee smoothly

decaying tails for the approximated distribution.

2. It provides an easy way of including in the estimation any available prior knowledge about

the smoothness of the pdf to be estimated.

However, there are also drawbacks in this approach, such as the relatively large number of points
that are required, P, and, most importantly, the relevance of a good choice for the parameter A
which determines the relative weights to the smoothness and matching criteria. Potentially, an
iterative procedure, where several A’s are tried until an appropriate solution is found, may be
required. For these reasons we now propose a simpler approach that requires only P = L points
and involves no iterations. Note that, for the appropriate choice of the smoothness parameter
and sufficiently large P, this approach would in fact converge to the true distribution, while the
technique we present next would still generate an approximation error. However this may not be a

decisive consideration since, in general, the “right” smoothness parameter will not be known.

-~



2.1.3 A simple non-iterative approach

Assume that the boundaries by and by, are chosen so that f(by) = f(br) = 0, as our estimate of
the dynamic range (refer to Fig. 2). Furthermore, assume that we estimate that our choice of
bo, by, is expected to “leave out” fractions of the tails of the distribution such that ff‘f}o flz)dx =
fbtoo f(z)dz = P,y (the details will be explained in Section 2.1.5). Then, denoting P} = Py — P,u:
and P} | = Py — Poy with P/ = P, fori=1,..., L —2, we can choose P = L points z; at which
we need to calculate the function values f(x;) = f; such that f will meet the constraint of (2) for
P!. To restrict the number of degrees of freedom we arbitrarily choose the z; to be the center of

each of the inner binsZ2.

f(x)

Figure 2: Notation used in the model estimation algorithm. The b;’s denote the decision levels,
with bg and by, denoting the outer boundaries of the finite support approximation. The z;’s are
the knots of the piecewise linear approximation. In this figure there are as many knots as bins but
in general one can use more knots than bins. Note that we depicted an f(z) which is non zero
outside the range determined by by, by, to emphasize the fact that these two boundaries have to be
estimated and that the operation introduces some error.

Now we can write the integrals over each bin of the piecewise linear approximation as

(f(o)+F () (@i=bi)+ 5 (F @)+ f (big1)) (bigr—2), i =0,...,L—1, (9)

N | —
N | —

. bit1
P= [ fe)do =
b;
where f(bz) can be found by linear interpolation

F(bs) = (bi - 302'_1)][(?;)2- - ifj)_l) + f(zin) (10)

?Note that we choose for simplicity the z; = b; + (b¢+1 — bi)/2 as the “fixed” points in our piecewise linear
approximation. Alternatively, we could have defined the estimation problem as one where both f; and z; have to be
chosen to match the observed input and possibly some smoothness constraints, in a manner similar to the method in
Section 2.1.2.



and we have f(bo) =0 and f(bL) = 0. Note that, since we have only one “knot” per bin, each of
the equations (9) involves at most three unknowns f(z;_1), f(z;), f(zi41) so that the system we
have to solve is

T f=p' (11)

where T is a L x L tridiagonal matrix and p’ denotes the vector of observed probabilities (with the

corrected tails). Efficient gaussian substitution methods can be used to solve this system [24].

2.1.4 The zero frequency problem

So far we have seen how to estimate the distribution from the available sample counts but a further
question remains as to whether the counts can be used as is or some additional assumptions have
to be made. In particular the zero frequency problem [9, 25| arises: if for a certain ¢ (not one of
the outer bins) we have n; = 0, should we assume that the source has probability 0 of producing
samples in that range? Or, conversely, should we assume that the set of samples is not of significant
enough size? We adopt the solution advocated, for instance, in probability estimation for arithmetic
coders, and we add one count to all counters to avoid the problem [2, 4]. Using some such technique

is particularly important when NV is small and we have a rapidly varying source.

2.1.5 Estimation of the dynamic range

The remaining task is to determine the points bg, by, at which we estimate the pdf to be zero. Note
that this problem is especially relevant in the simple method of Section 2.1.3. Indeed, while in
the general case a sufficiently large number of interpolation points P > L enables us to produce a
model with smoothly decaying tails, in the scheme of Section 2.1.3 we are restricted to a f(x) with
linearly decaying tails. More precisely, in the general case as P > L, the tail in the outer bins can
have several linear segments, thus achieving a smoothly decaying tail, while in Section 2.1.3 we are
restricted to just one such segment. If we chose points bg, by, which overestimate the true dynamic
range of the input source we may have cases where the result of solving (11) would yield negative
values for f(zo), f(zr_1). We are thus interested in having good estimates of the dynamic range

of the source. More formally, our objective is to:

Objective 2 Find by and by, defined as the points such that we estimate the source pdf to be
“almost zero”. For these points we will have by definition f(bo) = 0 and f(by) = 0.

The difficulty here stems from the fact that we have limited information: we know that ng, resp.
nr_1, samples fell below by, resp. above by_1, but we need to resort to some of our assumptions to
estimate bg and br. Obviously the main assumption is that the outer bins should contain the tails of
the distribution. Based on the available information, i.e. the counts n;, the current decision levels
b;,i=1,L—1,and b3" and bj);ld the dynamic range estimates obtained in the previous iteration, we

will consider three cases as follows (we outline the algorithm for adjusting bg, but the same ideas

apply for br):



1. if ng = 0, i.e. the outer bin is empty, we readjust the boundaries so that by = by (unless the
adjacent bin is also empty), and we then “split” one of the inner bins (e.g. the one where
we observed the most samples, ¢ = argmax; n;), say ¢, and we assign n;/2 samples to each
of the newly formed bins. Thus we choose the new by such that, at least based in our latest

observation, we have f(by) = 0.

2. if ng/(by — b3'?) > ny/(by — by) then clearly our current estimate is incorrect since we assume
smoothly decaying tails for the distribution and we are observing greater “sample density” in
the outer bin. We have to expand the quantizer range and thus choose the new boundaries so

that the two adjacent bins have the same sample density, thus we pick by = by — (ng/n1)(bg —
by).

3. the two previous cases occur when there is a large enough disparity between the current
estimate and the “true” short term source distribution. When the estimate is sufliciently
good that neither (1) nor (2) apply, we assume that the tail of the density function is gaussian
and we determine bg so that f_bf)o f(z)dx ~ P,y, refer to [26] for the details.

Note that cases (1) and (2) have to be dealt with separately since they represent situations where
our previous estimates are incorrect. However, it is clear that, since we carry a running memory,
cases (1) and (2) would not occur if we updated the quantizer sufficiently often. For instance, we
note how in [14, 17], where the dynamic range is estimated after each quantized sample is received,
no such situations arise. However it may not be practical to recompute the model as frequently
and thus (1) and (2) are needed to enable a less complex operation of the algorithm. It should
also be pointed out that the estimation of the dynamic range is not as important when the more
general approach is used. Finally, in some cases, as for instance image processing applications, the

boundary estimation is not as critical since the source has inherently finite and known range.

2.2 Quantizer design for the estimated distribution

The ideas of the previous section have provided a way of computing an estimate of the source
distribution. The objective of the next building block, see Fig 1(b), is to:

Objective 3 Redesign the quantizer for the given density function f This can be done by using

an optimal quantizer design algorithm which assumesf as the input pdf.

As an example, we can design a constant rate quantizer simply using the Lloyd-Max algorithm
for the given piecewise linear approximation. The task is to choose a new set of bin boundaries
b, as well as the corresponding reconstruction levels r, such that the expected distortion for the
distribution f(m) is minimized. Note that, as is the case with Huffman coding for example, one can
guarantee optimality provided the model matches the source distribution. The algorithm fixes the
outer boundaries b)), and b} and then uses the standard Lloyd-Max design procedure [27] iteratively

to find the new boundaries and reconstruction levels. The only difference is that f(z) is used to

10



compute the optimal reconstruction levels, i.e. the centroids of the source distribution. Thus

bk—l

; pk—1
rf = S%k /b::rll ¢f(z)dz where SF= /bfjl f(z) dz,
is the centroid of the ¢-th bin, where k is the iteration number.

Note that obviously by and by, are not changed in the optimization since these are not decision
levels and are only used for the purpose of defining the model f(:v) Because linear approximations
to the distribution are used, determining the centroids can be done in closed form, at a low cost in
complexity.

The same framework can be used with a variable rate entropy constrained design [28] where again
the only modification to the standard algorithm is that we operate with our estimated pdf f(x)

For example the entropy estimates required by this algorithm can be found as

bk—l

i+l A
HF = —log, /bk_l f(z) da.

?

where HZ-]C is the entropy estimate for the i-th bin at the k-th iteration.

It is important to note that once we have estimated a model (i.e. chosen the f(z;)) the model
is not modified by the quantizer design algorithm. Furthermore, since our system keeps a running
memory of the counts for each bin (the counters are not reset to zero after the quantizer has
been redesigned) we also change the counters to adjust for the new bin sizes. Therefore, after the
quantizer design stage, and calling b’ and n!, respectively, the new bin boundaries and the updated
estimated bin counts, we have that:

I
b¢+1 A

n! :ROUND(N-/ f(2) de), (12)

b

where n! is rounded to the nearest integer and we ensure that ) n! = N. In this manner the bin
counts are reset every time the model is recomputed. This allows us to maintain a running memory
longer than the model update period, without taking into account the fact that the samples were

quantized with various quantizers (typically, a different quantizer during each update period).

2.3 Determining the speed of adaptation

The remaining block to be defined in the encoder of Fig. 1(b) is that in charge of determining the

speed of adaptation. Our aim here is to choose the “memory” of the algorithm, i.e. to

Objective 4 Dynamically determine every time the quantizer is updated the number of past sam-

ples N that should be used in estimating the pdf.

The errors produced by the choice of memory can be separated into two classes:

(a) Non-significant data: if not enough memory is used (/N small) we may be dealing with a

non-significant (in a statistical sense) set of data and our estimation could be erroneous.

11



(b) Sources with memory: if the source statistics (as determined by time averages over finite
windows) change over time then an excess of memory (V large) will not permit sufficient adaptivity
and will result in loss of performance.

Note that if we were quantizing an i.i.d. source with unknown statistics we could use a training
mode operation [29] where the quantizer learns the statistics of the source during a certain period
of time and afterwards the adaptivity is switched off. Similarly, one could operate the quantizer
alternatively in training and stationary modes according to whether the current measured statistics
agree with previously measured ones.

In our experiments we keep two sets of counters, one accumulating the long term statistics, the
other accumulating the latest pattern of sample distribution. We choose to use the short-term data
to estimate the model only if the difference between short- and long-term data exceeds a threshold.
In this way, we try to detect the changes in statistics while avoiding always using a short term
estimate, and thus risking having to deal with non-significant data. Other ways of weighting the
past are possible (and can be combined with the approach just described). For example, in our
experiments we use exponential weights for the past counts in long term statistics by multiplying

the current bin counts by a “forget factor” 0 < o < 1 before updating the counts.

3 Convergence of the adaptive quantizer

While in Section 2 we proposed using “optimal” quantizer design algorithms it should be clear that
these are guaranteed to be optimal only for the set of samples on which they were trained. Given
that our approach entails training the quantizer on the fly based on past quantized samples there is
no reason to expect optimal behavior. In this section we study the sources of error intrinsic to our
scheme and analyze its asymptotic behavior. As will be demonstrated by the examples of Section 4
with real sequences of samples, the suboptimality incurred is very limited, although pdfs which
would make the algorithm fail are also possible. We will concentrate on the case of a stationary
memoryless input source. While the dynamic behavior (characterizing how the algorithm performs
when the local statistics of the source change) is also of interest, it is more difficult to analyze.
Such an analysis is left for future work.

Also we will not compare the errors introduced by the different approaches that were presented for
approximating f(z) with a piecewise linear function. Although we have set up a general framework
for determining the approximation, we find the simpler approach of Section 2.1.3 to be sufficiently
good for our purposes. All the results presented in this section and Section 4 were obtained using

the approach of Section 2.1.3.

3.1 Sources of error

Our adaptive scalar quantization scheme introduces two sorts of errors which in general preclude

that the optimal quantizer for the given source be achieved. These are:

1. Modelization or approximation error, which results from designing the new quantizer based

on a certain model. Thus optimal performance would not be achieved in general unless the
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input pdf exactly matches the model.

2. Estimation error, which results from building the model on the fly based on a finite memory
of previous samples, rather than based on the complete set of samples as required to achieve

optimality.

Ideally, if the approximation error is zero and the estimation error goes to zero as the sample size
grows to infinity, we would have a universal quantizer. Otherwise, the quantizer will have a certain
redundancy.

In general, the approximation error is not going to be zero. First, we might not have enough
information to get an exact fit to the probability density function f(z). Second, for computational
reasons, we might choose an approximation to the true probability density function (e.g. a piecewise
linear fit as in our algorithm). This inherent mistmatch to the true probability density function
will lead to a suboptimal quantizer design during the Lloyd-Max procedure.

The estimation error of the pdf’s integral over the bins will go down to zero, since the variance of
the estimated probability of each bin goes to zero inversely proportionally to the number of sample
points (see Section 3.2).

Let us consider the approximation problem in more detail. First, assume that the probability
density function is parametric with & parameters. Assuming that the bins cover the region of
support of the random variable then we need k& + 1 bins to specify the distribution, and usually
this is sufficient as pointed out in [30]. For example, a Gaussian random variable is specified by
the probability measure on three intervals covering the real line. For more complex parametric
distributions, the intervals might have to be chosen with some care, and finding the parameters
from the probability measures could be involved. In these parametric cases, we are thus able to
identify the probability density function exactly from the quantized data, and can obtain a universal
quantizer for the parametric family.

However, there are several reasons why a non-parametric approximation such as that proposed
here could be preferable. First, the intervals over which the probability is measured in our applica-
tion correspond to the quantization bins. Therefore, we may have situations where the parametric
model estimation problem is ill conditioned for the given quantization levels. Second, the goodness
of our approximation to a certain arbitrary input source will hinge on how well such a source can be
described by our particular parametric model. Also, complexity considerations may come into play
and we might settle for an approximation which can perform reasonably well (without achieving a
perfect fit) for a large class of sources. The quality of this approximation will depend on the number
of bins and the interpolation function used to approximate the probability density function.

Instead of a parametric family, we may only assume smoothness properties on the probability
density function, which can then be used in fitting the data3. Note that to measure the “goodness
of fit” we do not consider the quality of the approximation to the pdf, but rather the obtention
a good Lloyd-Max quantizer (LMQ). Indeed, work reported in [30, 33] has shown that in many

? Actually, if the probability density function belongs to a certain smoothness class, e.g. Lipschitz-1, there exist
estimation procedures which allow an exact fit. However, these use a number of bins that increases with the number

of samples, e.g. as n'/?, and they would have to be modified so as to satisfy our constant rate requirement [31, 32].
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instances a good approximation to the LMQ can be found using our method, even when a relatively
high error is made in matching the true pdf with a piecewise linear approximation. Quantifying
the additional MSE due to a LMQ design based on an approximated probability density function is
beyond the scope of this work, but is an interesting question in its own right. Numerical evidence

shown in Section 4 indicates that a reasonable fit gives negligible errors in the cases investigated.

3.2 Asymptotic performance under fine quantization assumption

Let us consider now the high rate case, that is when the number of bins grows to infinity. Again
assume that the probability density function is smooth (e.g. continuous and differentiable). Then,
it is clear that the approximation error will go to zero, and again, we will obtain a universal scheme
(but only in the limit of infinite rate).

As for the estimation error, we note that our algorithm is asymptotically optimal for an i.i.d.
source, under the fine quantization assumption. In the asymptotic case we are interested in the
behavior of the algorithm as (a) we gather statistics over an arbitrarily long time, i.e. N large, and
(b) the number of quantization levels L becomes large.

The statistics gathered from the decoded data become arbitrarily close to the true statistics of
the input source as the number of observed samples increases. By the law of large numbers, for a
stationary input source, if N is the total number of observed samples and n;(N) is the number of

samples that fell in bin 7, we have that,

. ni(N) - bi 2\ da
lim = [ I,

Now N i1

where f(z) is the source pdf and the b;’s are the bin boundaries. Therefore, the variance of the
estimated statistics can be made arbitrarily small for large enough N.

Also when L increases the error we make in approximating a smooth input pdf with a piecewise
linear function decreases. This is analogous to the arguments used in high resolution quantization
analyses [27]. Thus, for a sufficiently large number of quantizer levels, the performance can be made
arbitrarily close to that of the optimal quantizer for the given input pdf, and thus, quite obviously,
the error due to generating the model based on the quantized levels can be made arbitrarily small.

Therefore, as N and L increase our approximation gets arbitrarily close to the true pdf and thus

the resulting quantizer is arbitrarily close to optimal.

3.3 Approximation error for memoryless sources

We now look at the behavior when the source input is again i.i.d. but we make no assumptions
on L. This case is of interest as it provides for practical cases (i.e. with small number of bins)
a measure of how close the adaptive quantizer is to the optimal performance. Since we noted
that under stationarity the measured bin counts approach those dictated by the true distribution,
we assume here that we know f(z) and we thus eliminate the effect of the estimaton error and
concentrate on the approximation error due to using a piecewise linear approximation f(x) instead

of the true pdf f(z). Moreover, we also assume that the input pdf has known finite support so
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as to ignore the errors derived from the estimation of the dynamic range for a non-finite support
distribution.

Note that the Lloyd iteration converges to a solution that meets the two optimality conditions,
namely, the centroid condition (CC) and the nearest neighbor condition (NNC) [27], however it is
not guaranteed to converge to a globally optimal solution. Section 4 will present examples of this
behavior in actual sources. The following toy example seeks to isolate the effect of the quantized
data from the error in determining the dynamic range and the error due to estimating the P; from

a finite set of past data.

3.3.1 Example: solution using Lloyd-Max with known pdf

Let us consider the iterative solution that can be obtained using the adaptive algorithm on a known
pdf (i.e. no estimation error). In our example (Figs. 3-5) we use a quadratic pdf (convolution of
3 uniform distributions). We first note that the initial conditions affect the result of the iteration
(refer to Fig. 3). In the experiment we initially use a quantizer that is a linear combination of the
LMQ for the true pdf and a uniform quantizer. Note how the initial choice of quantizer is not too
critical and, as should be expected, even less so in the case where a larger number of bins is used.
Fig. 3 represents the result after using a single Lloyd-Max iteration on the approximated function.
If we then use the new quantizer as the initial condition we again observe convergence.

Fig. 4 represents an example of the successive application of the algorithm (with a 4 level quan-
tizer). Note that the first iteration (when the algorithm is started with a uniform quantizer as the
initial condition) is already very close to the convergence value.

We can also measure the performance when using the iterative solution for different number
of quantizer levels. Our results are shown in Fig 5. We observe that the iterative application
of our algorithm converges to a unique solution. Furthermore we see that the loss due to the
approximation error is minimal, and diminishes as the number of levels increases. This figure

shows the lower bound of the error due to adaptivity.

3.3.2 Discussion

Our previous example shows that the Lloyd-Max algorithm converges for the considered piecewise
linear approximation. More generally, in order for the iteration to produce a global minimum, a
sufficient condition [34, 35] is to have a log-concave f(;v) For instance a concave piecewise linear
approximation can be shown to be log-concave and thus will yield a global minimum. Gener-
ally speaking, we should expect that if a solution exists for the underlying pdf f(z) then a good
approximation f(x) will also be well behaved.

Convergence was also observed in the experiments performed on real sources. In the above
example we only suffered from the approximation error since the P; were computed directly from
the known pdf f(z). However, in the case of actual sources, the errors in estimating both P; and
the bin boundaries would prevent a perfect convergence. In other words, even for an i.i.d. source,

the quantizer obtained in the process of successively estimating f(x) and running the Lloyd-Max
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Figure 3: SNR obtained after running the Lloyd-Max iteration on the f(z) obtained with different
starting conditions for the quadratic pdf. The horizontal axis represents the different choices for
the initial quantizer with 1 being the uniform quantizer and 10 the LMQ obtained on f(z). The
top line of each graph indicates the performance of the LMQ design for the true pdf. The top
graph represents the 3-bin case, the bottom one the 8-bin case. Note how the degradation due to
the approximation error is smaller, as expected, in the 8-bin case.

algorithm will probably change slightly at each iteration, because the samples observed over the

latest interval may give slightly different estimates for P; due to the estimation error.

4 Experimental results

In this section we present several examples to illustrate the performance of our adaptive quanti-
zation. We are concerned with the advantages of adaptivity in situations where the input pdf,
as measured by the local gathered statistics, changes over time. We will also show examples for
i.i.d. sources where we should be experiencing some performance loss due to the adaptivity of the
algorithm and to various sources of error described in the previous section. Most examples are
provided for fixed rate quantizers at a rate of two bits per sample. The examples with variable rate
quantization indicate the achieved SNR vs. entropy trade-off. Note that we use the normalized
SNR, log(c2/0?%) where 02 and o? are respectively the variance of the signal and that of the error.
When we are dealing with time-varying signals, we use averages over windows as our estimates for
the variance. We use two types of sources in our experiments, memoryless Gaussian sources and
“bi-modal” sources which are generated using a Markov chain (each of the two states of the Markov

chain generates a memoryless Gaussian output).
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Figure 4: SNR obtained after running successive Lloyd-Max iterations where at each stage the true
pdf is used to generate the counts that will produce f(x) A 2 bit quantizer is used. The resulting
quantizer is used as the starting condition of the following iteration. Note that convergence is fast
and that even after only one iteration (with a uniform quantizer as the initial condition) the SNR
is very close to that attained at convergence.

4.1 Advantages of adaptivity

An adaptive algorithm can be useful even in the case of i.i.d. sources. In particular, adaptive
schemes can learn the distribution on the fly (for instance, they could operate in “training mode”
part of the time, typically at the beginning of the transmission). Furthermore, because they are
not designed for a specific distribution they do not suffer the shortcoming of loss of performance in
the face of mismatch between the actual source distribution and the one that was assumed in the
design. Examples can be seen in Figs. 6 (a) and (b), where the behavior of the adaptive algorithm
and a LMQ are compared when the mean and variance of the source, respectively, do not match
those assumed in the design.

A second advantage of using an adaptive algorithm is that it can outperform systems that are
designed considering only long term statistics, by attempting to find short term trends in the
data. As an example, Fig 7(a) shows the performances of the Lloyd-Max algorithm (trained on the
sequence) and the adaptive algorithm for a bimodal source which randomly switches between two
states each producing different mean and variance. When an i.i.d. source is considered though, the
adaptive approach will be less effective although, as shown in Fig. 7(b) for a gaussian distribution,
only marginally so. Note that the results we present were obtained using the adaptive algorithm
with the same parameters for both types of sources (i.e. both the time between quantizer updates,
and all the thresholds were fixed at the same level in both cases). Fig. 8 shows that the advantage of
adaptivity can also be obtained within an entropy constrained variable rate quantization framework

[28].
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Figure 5: Loss in performance due to the approximation error for several numbers of quantizer levels.
The curve depicts the difference in SNR between the optimal LMQ and the quantizer obtained after
iterating our algorithm. Note that the loss diminishes as the number of level increases. Also note
that the decrease is not strictly monotonic. The error incurred between f(z) and f(z) in the
approximation is clearly strictly monotonic in the number of quantizer levels, but this may not be
the case as far as the loss in performance of the LMQ is concerned.

4.2 Loss due to adaptivity

In this section we briefly discuss the performance of our adaptive algorithm for i.i.d. sources and
show how the loss due to operating with estimates of the distribution, rather than the samples
themselves as is the case in the Lloyd-Max design, is minimal. In our experiment, we use the
adaptive algorithm but initialize it with the optimal LMQ trained on the source, rather than a
uniform quantizer as is usually the case. In this way, since our first “guess” was optimal, the loss
in performance is due exclusively to the adaptivity. Table 1 summarizes our results.

In Table 1 the recurrence time is the period between consecutive quantizer updates. The memory
(measured in units of the recurrence times) represents the number of samples that are considered
to generate the new quantizer. For instance a memory of 1.25 implies that the previous 50 samples
are used when the recurrence time is 40, a memory of 400 means that all previous samples are
considered at every update. We note that, as the number of samples becomes small the main factor
is the “non-significance” error, i.e. not enough information is used in updating the quantizers. This
error can be overcome by appropriate choice of the speed of adaptation. Conversely, for long update
intervals the main factor is the error introduced by the algorithm itself due to its manipulating
quantized data, rather than the original samples as in the Lloyd-Max algorithm. This error can be

seen to be very small.
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Figure 6: Comparison between adaptive and Lloyd-Max algorithms. (a) Mean mismatch. The LMQ
is designed for a zero mean gaussian source. The adaptive algorithm maintains its performance
constant. The variance of the source was 1. (b) Variance mismatch. The LMQ is designed for a
variance 1 gaussian source. As the mismatch becomes significant the adaptive algorithm clearly
outperforms the LMQ.

5 Conclusions and future work

We have described an adaptive quantization algorithm which learns the source distribution from
the quantized data and adapts the quantizer parameters using well known design methods. As
an example we have demonstrated adaptive fixed rate and entropy constrained scalar quantizers
which use a piecewise linear approximation of the estimated source distribution and rely on the well-
known Lloyd-Max and entropy constrained quantization design algorithms to update the quantizer
parameters. Qur backward adaptive algorithm can also be used for quantization schemes, such
as Trellis Coded Quantization (TCQ) [36] and Scalar Vector Quantization (SVQ) [37], which rely
on an underlying scalar quantizer [38]. Recent work has also extended the algorithm by allowing
overhead information to be sent [33] and by considering piecewise polynomial approximations [39].

Future research will concentrate on extending these ideas to more general environments (e.g.
VQ), and exploring its suitability for DPCM applications. Applications to image compression, e.g.
in quantization of subbands, are being investigated [40]. Further work is needed on the problem of

estimating the boundaries and determining the speed of adaptation.
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