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Abstract— In this paper, we propose a quantizer design algorithm
that is optimized for source localization in sensor networks. For this
application, the goal is to minimize the amount of information that the
sensor nodes have to exchange in order to achieve a certain source
localization accuracy. We show that this goal can be achieved more
efficiently when “application-specific” quantizers are used. Our proposed
quantizer design algorithm uses a cost function that takes into account
the distance between the actual source position and the position estimated
based on quantized data. We also propose a distributed encoding
algorithm that is applied after quantization and achieves rate savings
by merging quantization bins without any degradation of localization
performance. The merging technique in the encoding algorithm exploits
the fact that certain combinations of quantization bins at each node
cannot occur because the corresponding spatial regions have an empty
intersection. We apply these algorithms to a system where an acoustic
sensor model is employed for localization. For this case, we introduce the
Equally Distance-divided Quantizer (EDQ), designed so that quantizer
partitions correspond to a uniform partitioning in terms of distance.
Our simulations show the improved performance of our quantizer over
traditional quantizer designs. In addition, they show rate savings (32.8%,
5 nodes, 4 bits per node) when our novel bin-merging algorithms are used.
Our results also show that an optimized bit allocation leads to significant
improvements in localization performance with respect to a bit allocation
that uses the same number of bits for each node.

I. INTRODUCTION

In sensor networks, multiple correlated observations are available
from many sensors that can sense, compute and communicate.
Often these sensors are battery-powered and operate under strict
limitations on wireless communication bandwidth. This motivates
the use of data compression in the context of various tasks such
as detection, classification, localization and tracking, which require
data exchange between sensors. The basic strategy for reducing the
overall energy usage in the sensor network would then be to decrease
the communication cost at the expense of additional computation in
the sensors [8].

One important sensor collaboration task with broad applications is
source localization. Localization based on acoustic energy measured
at individual sensors is considered in [3], where each sensor transmits
unquantized acoustic energy readings to the central node, which then
computes an estimate of the location of the source of these acoustic
signals. Practical systems will require quantization of these energy
readings before transmission and thus different quantizer designs
should be compared in terms of localization error, defined as the
average of the distance between the actual source location and its
estimated value based on received quantized data. There are numerous
examples of techniques for source localization. They have in common
that the quantities being measured by the sensors can be linked to
the position of the source.

Since standard design of scalar quantizers aims at minimizing the

average distortion between the actual sensor reading and its quantized
value, there is no guarantee that these quantizers will be optimal in
the sense of minimizing localization error. Thus, we propose that
quantizer design should be “application-specific”. That is, to design
optimal quantizers, a new metric should be defined that takes into
account the accuracy of the application objective. For an example
of application specific quantizer design for time-delay estimation
see [6]. In this paper we consider as an application-specific metric
the localization error, i.e., the difference between the actual source
location and that estimated based on quantized data. A challenging
aspect of this problem is that, while quantization has to be performed
independently at each node, the localization error, which we wish to
minimize, depends on the readings from all quantizers. Thus we have
a problem where independent (scalar) quantizers for each node have
to be optimized based on a global (vector) cost function.

To solve this problem, we have proposed an iterative quantizer
design algorithm for the localization problem [2], as an extension
of our earlier work [5]. We have applied our algorithm to a system
where an acoustic sensor model [3] is considered. In [2], we have
also studied the bit allocation problem (i.e., determining the number
of bits to be used by each sensor) and provided a solution with
the introduction of the Equally Distance-divided Quantizer (EDQ),
which is simple and provides good performance in the acoustic
sensor model case. Our approach is also applicable to general cases
where sensors measure information that is a function of distance. Our
experiments demonstrated the benefits of using application-specific
designs. In particular, our bit allocation results showed that bits
should be distributed so as to lead to partition of the sensor field that
is as uniform as possible. Thus, for example, when several nodes are
clustered together, the number of bits per node tends to be lower than
when the same sensors are more spread out.

In this paper, we extend our previous work in [2] and propose a
novel distributed encoding algorithm that can exploit redundancies
in the quantization and is shown to achieve significant rate savings,
while preserving source localization performance. In our problem a
source signal is received and quantized by a series of distributed
nodes. Clearly, in order to make localization possible, each possible
location of the source has to produce a different set of readings at the
nodes, so that the vector of readings uniquely determines the source
location. Quantization of the readings at each sensor reduces the
accuracy of the localization but again a vector of quantized readings
at a set of sensors uniquely determines a region of the space where
the source is located. A quantized value provided by an individual
sensor can be linked to a region, with a shape that depends on the
characteristics of the sensor. For example, in our paper we consider
sensors that provide no directional information, leading to regions in



the form of “rings” centered at the sensor location (see Figure 1);
each of these “rings” corresponds to one quantization index. Thus,
the central node operates by aggregating the information received
from individual sensors: the source location, as illustrated in Figure
1, is estimated to be in the intersection of all the regions specified
by the sensors.

Note that each source location leads to a set of quantized sensor
measurements that correspond to a non-empty intersection. Thus,
assuming there are no measurement errors, the central node will
only receive those combinations of quantized measurements that
correspond to real source locations. The key observation in this paper
is that the number of real quantized vector observations is smaller
than the total number of combinations of quantized values at the
sensors. Thus, many arbitrary combinations of quantized readings
at several sensors cannot be produced because the corresponding
regions have an empty intersection.

In this paper we propose a novel algorithm that exploits this fact
so as to reduce the overall rate required. With our method, we
merge (non-adjacent) quantization bins in a given sensor whenever
we determine that the ambiguity created by this merging can be
resolved at the central node once information from other sensors
is taken into account. Note that this is an example of binning as
can be found in Slepian-Wolf and Wyner-Ziv techniques [1]. In our
approach, however, we do not use any channel coding. Instead, we
propose design techniques that allow us to achieve rate savings purely
through binning, and provide several methods to select candidate bins
for merging. Our experimental results show that significant gains be
achieved with our proposed approach (e.g., over 30% reduction in rate
with no change in localization performance). While our experimental
results are provided for simple cases with a relatively small number
of nodes and coarse quantization, the results do indicate that the
potential savings achievable with our technique will increase with
the number of sensors and at higher rates.

This paper is organized as follows. The problem formulation and
target cost function are introduced in Section II-A. The quantizer
design algorithm first proposed in [2], is presented in Section II-
B. In Section III, the novel encoding algorithm is explained and
we present an application to the case where an acoustic sensor
model is employed in Section IV. Section V discusses the bit
allocation problem. Simulation results are given in Section VI and
the conclusions are found in Section VII.

II. QUANTIZER DESIGN

A. Problem Formulation

Suppose that there are M nodes in a sensor field S and these nodes
measure signals generated by a source assumed to be static during
the localization process. We assume that the i-th sensor measures the
source signal over a time interval k. This measurement is denoted by
zi and can be expressed as follows:

zi(x, k) = f(x, xi,Pi) + wi(k) ∀i = 1, ..., M, (1)

where the signal received by each sensor is assumed to be modeled
by the function f(x, xi,Pi), where x is the source location, xi is the
position of node i, Pi is the parameter vector for the sensor model,
and wi is the combined noise term for the measurement noise and the
modelling error that might exist. An example of Pi for an acoustic
sensor case is given in Section IV. It is also assumed that the positions
of all nodes xi, i = 1, ..., M , are known and each node senses its
observation zi(x, k) at time interval k, quantizes it and sends it to a
central node, where all sensor readings are used to obtain an estimate
of the source location x̂.

Suppose that at node i we use a quantizer with Li quantization
levels, with a dynamic range of [zmin zmax]. Denote αi(.) the
encoder at node i which generates a quantization index j ∈ Ii =
{1, . . . Li} for observations zi that fall in the quantization bin Qj

i .
Denote βi(.) the decoder corresponding to node i, which maps the
quantization index j to a reconstructed quantized observation ẑj

i .
As an example, zi(x, k) could be the energy of an acoustic

signal during the k-th observation interval, where each interval has
a predetermined duration. We assume that the central node will
determine the location of a source based on zi(x, k)’s obtained from
all nodes. In some cases, one reading per node is used, while in other
cases values of zi(x, k) for several k are needed for localization.

Clearly, for zi(x, k) to be useful for localization it must be a
function of the relative positions of the source and the node. Thus
there exists some function g(.) that can provide an estimate of the
source location x̂ based on quantized observations

x̂ = g(α1(z1), ..., αM (zM )), (2)

Note that the localization function g(.) should be closely related to
the sensor model f(.). As an example, refer to (15) to (17) in Section
IV.

To design the optimal quantizer at node i, i.e., the one that
minimizes the localization error, we define a cost function Ji(x) as
follows

Ji(x) =‖ zi − ẑi ‖2 +λ ‖ x − x̂ ‖2 ∀x ∈ S (3)

where ẑi is the reproduction value assigned to zi. The cost function
takes into account the error in reproducing the sensor reading, as well
as the localization error, ‖ x − x̂ ‖2. The relative importance of the
two terms in the cost function can be adjusted by selecting different
values of the Lagrange multiplier, λ ≥ 0. To see why this multiplier
is needed note that the localization error term can only be computed
given all the readings and cannot be separately optimized by each
sensor. Thus, if we were to optimize localization, one particular
reading zi may have to be quantized in different ways, depending
on the quantized values at other sensors. Clearly, in a real operating
environment, quantization can only be based on zi, and a given zi

will always be assigned to the same quantized value, since the i-
th node cannot know the readings at other nodes without incurring a
communication cost. Thus the actual encoding will be based on a cost
function with λ = 0. Using a non-zero value for the multiplier during
the design allows us to take into account the effect of quantization on
localization while not deviating significantly from a regular quantizer
design.

The overall optimal quantizer design is the one that can minimize
the expected value of this cost function, averaged based on the
probability density function of the source locations, p(x):

Javg = E(Ji(x)) =

∫
S

Ji(x)p(x)dx. (4)

If no prior information is available about the relative likelihood
of possible source locations, p(x) could be made uniform over
the sensor field. For the purpose of training our quantizer, we
generate a training set of observations {z1(x, k), ..., zM (x, k)} based
on the sensor model, f(x, xi,Pi), with a given choice of p(x).
Our algorithm is aimed at finding M quantizers that minimize the
averaged cost function Javg . The cost function Ji(x) can be rewritten
in terms of the M quantizers

Ji(x, αi(zi)) =‖ zi − βi(αi(zi)) ‖2 +

λ ‖ x − g(α1(z1(x, k)), ..., αM (zM (x, k))) ‖2 . (5)



B. Quantizer Design Algorithm

Our goal is to design a set of encoders, each operating inde-
pendently on the observations of one node, so as to minimize the
expected value of the cost function (5), when the entire vector
[α1(.), ...αM (.)] is used for localization. The algorithm should seek
to design independent quantizers for each node, while taking into
account their combined effect on localization. The generalized Lloyd
algorithm (GLA) is used to design the encoder at each node. Since
the cost function in (5) is dependent on the encoders at other nodes,
we use an iterative procedure, where the quantizer at node i is
optimized while the quantizers for the other nodes remain unchanged.
This iterative method is based on that proposed in [5] and was first
proposed for this localization problem in [2].

Note that the quantizer design is performed off-line using the
training set that is generated based on known values of Pi and p(x)
and thus the quantizer training phase makes use of information about
all nodes, but when the resulting quantizers are actually used, each
node quantizes the information available to it independently (i.e.,
using cost function Ji(x) from (5) with λ = 0).

Given the number of quantization levels, Li, at node i, the proposed
algorithm is summarized as follows. For simplicity, in what follows,
zi(x, k) is written as zi(x).
Step1 : Initialize the encoders αi(.), i = 1, ..., M . Set the thresholds
ε1 and ε2, set i = 1, and set iteration indices k = 0 and k1 = 0.
Step2 : Compute the cost function of (5).
Step3 : Define the region, V j

i which corresponds to quantization bin
Qj

i :

V j
i = {x : Ji(x, αi = j) < Ji(x, αi = m), ∀m �= j} (6)

where j, m = 1, ..., Li. This is the spatial region where a source is
located when it generates a signal that is quantized to index j by
sensor i.
Step4 : Compute the average cost Jk

avg = Ex(Ji(x))

Step5 : If
(Jk−1

avg −Jk
avg)

Jk
avg

< ε1 go to Step 7; otherwise continue

Step6 : k = k + 1. Update the quantization bin Qj
i as follows.

ẑj
i = E(zi(x)|x ∈ V j

i )

Qj
i = [bj−1

i bj
i ] ∀j = 1, ..., Li (7)

where bj
i = 1

2
(ẑj

i + ẑj+1
i ), b0

i = zi,min, bLi
i = zi,max. The new

value for ẑj
i is chosen to be the expected value of the measured signal

averaged over all possible locations in region V j
i . The quantization

bin is then redesigned so that an input zi is assigned to the closest
ẑi. Go to Step 2
Step7 : if i < M i = i + 1 go to step 2;
else if Dk1−1(x,x̂)−Dk1 (x,x̂)

Dk1 (x,x̂)
< ε2 Stop;

else i = 1; k1 = k1 + 1; Go to Step 2,
where Dk1(x, x̂) is given by E(‖ x − x̂ ‖2) at k1th iteration.
A discussion of the robustness of our approach to model mismatches
is left for Section VI.

III. DISTRIBUTED ENCODING ALGORITHM

The assumptions made in Section II-A still hold throughout this
section.

A. Terminologies and Motivation

Let SM = I1 × I2 × ... × IM be the cartesian product of the
sets of quantization indices. SM contains |SM | =

∏M

i
Li M -tuples

representing all possible combinations of quantization indices. We
denote SQ the subset of SM that contains all the quantization index
combinations that can occur in a real system, i.e., all those generated

as a source moves around the sensor field and produces readings at
each sensor:

SQ = {(Q1, ..., QM )| ∃x ∈ S, Qi = αi(zi(x)), i = 1, . . . , M}
(8)

We denote Sj
i the subset of SQ that contains all M -tuples in which

the i-th node is assigned quantization bin Qj
i :

Sj
i = {(Q1, ..., QM ) ∈ SQ|Qi = j}. (9)

Thus, given Qj
i , we can always construct the corresponding set Sj

i

from the set SQ. Note also that Sj
i ⊂ SQ,.

Along with this, we denote Sj
i , the set of (M − 1)-tuples ob-

tained from M -tuples in Sj
i , where only the quantization bins at

positions other than position i are stored. That is, if (Q1, ..., QM ) =

(a1, ..., aM ) ∈ Sj
i then we have (a1, ..., ai−1, ai+1, ..., aM ) ∈ Sj

i .
Clearly, there is a one to one correspondence between the elements
in Sj

i and Sj
i , so that |Sj

i | = |Sj
i |.

As discussed in the introduction, there will be elements in SM

that are not in SQ. Therefore, if we were to perform simple scalar
quantization at each node it would be inefficient in terms of rate.
This because a standard scalar quantizer would allow us to represent
any of the M -tuples in SM , but |SM | ≥ |SQ|. What we would like
to determine now is a method such that independent quantization can
still be performed at each node, while at the same time we reduce
the redundancy inherent in allowing all the combinations in SM to
be chosen. Note that in general, to determine that a specific quantizer
assignment in SM does not belong to SQ requires having access to
the whole vector, which obviously is not possible if quantization has
to be performed independently at each node.

In our design we will look for quantization bins in a given node that
can be “merged”, without affecting localization. As will be discussed
next, this is because the ambiguity created by the merger can be
resolved once information obtained from the other nodes is taken
into account. Note that this is the basic principle behind distributed
source coding techniques: binning at the encoder, which can be
disambiguated once side information is made available at the decoder
(in this case quantized values from other nodes).

Merging of bins results in bit rate savings because fewer quantiza-
tion indices have to be transmitted. To quantify the bit rate savings
we need to take into consideration that quantization indices will be
entropy coded (in this paper Huffman coding is used). Thus, when
evaluating the possible merger of two bins, we will compute the
probability of the merged bin as the sum of the probabilities of the
merged bins. For example, suppose that Qj

i and Qk
i are merged into

Q
min(j,k)
i . Then we can construct the set S

min(j,k)
i and compute the

probability for the merged bin respectively as follows:

S
min(j,k)
i = Sj

i ∪ Sk
i (10)

P
min(j,k)
i = P j

i + P k
i (11)

where P j
i =

∫
A

j
i

p(x)dx, p(x) is the pdf of the source position and

Aj
i is given by

Aj
i = {x|(Q1 = α1(z1(x)), ..., QM = αM (zM (x))) ∈ Sj

i } (12)

Suppose the encoder at node i merges Qj
i and Qk

i into Ql
i, l =

min(j, k) and sends the corresponding index to the central node. The
decoder will construct the set Sl

i for the merged bin using (10) and
then will try to determine which of the two merged bins (Qj

i or Qk
i

in this case) actually occurred at node i. To do so, the decoder will
use the information provided by the other nodes, i.e., the quantization
indices Qm (m �= i). Consider one particular source position x ∈ S



for which sensor i produces Qj
i and where the remaining sensors

produce a combination of M −1 quantization indices Q ∈ Sj
i . Then,

for this x there would be no ambiguity at the decoder, even if bins
Qj

i and Qk
i were to be merged, as long as Q /∈ Sk

i . This follows
because if Q /∈ Sk

i the decoder would be able to determine that only
Qj

i is consistent with receiving Q.
The above argument holds for a specific x ∈ Aj

i , if it were to
hold for any x ∈ Aj

i then bins Qj
i and Qk

i can always be merged.
With the notation adopted earlier this leads to the following definition:

Definition 1: Qj
i and Qk

i are identifiable, and therefore can be

merged, iff Sj
i ∩ Sk

i = ∅.

We consider here the case where there is no measurement noise
(i.e., wi = 0) and no parameter mismatches. In this case
Pr[(Q1, ..., QM ) ∈ SQ] = 1, i.e., only combinations of quantization
indices belonging to SQ can occur and those combinations belonging
to SM − SQ, which lead to an empty intersection, never occur.
Under these conditions any identifiable bins can be merged into one
bin without any decoding error at the central node. The question
that remains is how to merge identifiable bins in order to minimize
the total rate used by the M nodes to transmit their quantized
observations.

B. Proposed Encoding Algorithm

In general there will be multiple pairs of identifiable quantization
bins that can be merged. Often, all candidate identifiable pairs cannot
be merged simultaneously, i.e., after a pair has been merged, other
candidate pairs may become non identifiable. In what follows we
propose algorithms to determine in a sequential manner which pairs
should be merged.

In order to minimize the total rate, an optimal merging technique
should attempt to reduce the overall entropy as much as possible,
which can be achieved by (1) merging high probability bins together
and (2) merging as many bins as possible. It can be observed
that these two strategies cannot be pursued simultaneously. This
is because high probability bins (under our assumption of uniform
distribution of the source position) are large and thus merging large
bins tends to result in fewer remaining merging choices (i.e., a larger
number of identifiable bin pairs may become non-identifiable after
two large identifiable bins have been merged). Conversely, a strategy
that tries to maximize the number of merged bins will tend to merge
many small bins, leading to less significant reductions in overall
entropy. In order to strike a balance between these two strategies
we define a metric, W j

i , attached to each quantization bin:

W j
i = P j

i − γ|Sj
i |, (13)

where γ ≥ 0. This is a weighted sum of the bin probability and the
number of quantizer combinations that include Qj

i . If P j
i is large

this would be a good candidate bin for merging under criterion (1),
whereas a small value of |Sj

i | will indicate a good choice under
criterion (2). In our proposed procedure, for a suitable value of γ,
we will seek to prioritize the merging of those identifiable bins having
largest total weighted metric. This will be repeated iteratively until
there are no identifiable bins left.

The proposed global merging algorithm is summarized as follows:
Step 1: Set F (i, j) = 0, where i = 1, ..., M ; j = 1, ..., Li, indicating
that none of the bins, Qj

i , have been merged yet.
Step 2: Find (a, b) = arg max(i,j)|F (i,j)=0(W

j
i ), i.e., we search over

all the non-merged bins the one with the largest metric W b
a .

Step 3: Find Qc
a, c �= b such that W c

a = maxj �=b(W
j
a ) where the

search for the maximum is done only over the bins identifiable with
Qb

a at node a. If there are no bins identifiable with Qb
a, set F (a, b) =

1, indicating the bin Qb
a is no longer involved in the merging process;

if all the bins are merged, stop; otherwise go to Step 2.
Step 4: Merge Qb

a and Qc
a to Q

min(b,c)
a with S

min(b,c)
a = Sb

a ∪ Sc
a.

Set F (a, min(b, c)) = 1. go to Step 2.
Given M quantizers, we can construct the sets, Sj

i and the metric
W j

i , ∀i, j, perform the merging using the proposed algorithm and find
the parameter γ in (13) that minimizes the total rate. In the proposed
algorithm, the search for the maximum of the metric is done for the
bins of all nodes involved. However, we can take different approaches
to the search, which are explained as follows.
Method 1: Complete sequential merging. In this method, we process
one node at a time in a specified order. For each node, we merge
the maximum number of bins possible before proceeding to the
next node. Merging decisions are not modified once made. Since
we exhaust all possible mergers in each node, after scanning all the
nodes no more additional mergers are possible.
Method 2: Partial sequential merging. In this method, we again
process one node at a time in a specified order. For each node,
among all possible bin mergers, the best one according to a criterion
is chosen (the criterion could be entropy-based and for example, (13)
is used in this paper) and after the chosen bin is merged we proceed to
the next node. This process is continued until no additional mergers
are possible in any node. This may require multiple passes through
the set of nodes.

These two methods can be easily implemented with minor modi-
fications to our proposed algorithm.

C. Incremental Merging

The complexity of the above procedures is a function of the
total number of quantization bins, and thus of the number of nodes
involved. Thus, these approaches could potentially be complex for
large sensor fields, i.e., M large. We now show that incremental
merging is possible, that is, we can start by performing the merging
based on a subset of N sensor nodes, N < M , and will be
guaranteed that merging decisions that were valid when N nodes
were considered will remain valid when all M nodes are taken into
account. To see this, suppose that Qj

i and Qk
i are identifiable when

only N nodes are considered. Then, since Qj
i and Qk

i are identifiable,

Sj
i (N) ∩ Sk

i (N) = ∅, where here N indicates the number of nodes
involved in the merging process. By the property of the intersection
operator ∩, we can claim that Sj

i (M) ∩ Sk
i (M) = ∅ ∀M ≥ N ,

implying that Qj
i and Qk

i are still identifiable even when we consider
M nodes. Thus, we can start the merging process with just two nodes
and continue to do further merging by adding one node (or a few) at
a time without change in previously merged bins. When many nodes
are involved, this would lead to significant savings in computational
complexity. In addition, if some of the nodes are located far away
from the nodes being added (That is, the dynamic ranges of their
quantizers do not overlap with those of the nodes being added),
they can be skipped for further merging without loss of merging
performance.

IV. APPLICATION TO ACOUSTIC SENSOR MODEL

As an example, we now consider source localization based on
acoustic signal energy as proposed in [3], where an energy decay
model of sensor signal readings is used for localization based on
unquantized sensor readings. When an acoustic sensor is employed



Fig. 1. Localization of the source based on quantized energy readings

at each node, the signal energy measured at node i over a given time
interval k, and denoted by zi, can be expressed as follows:

zi(x, k) = gi
a

(x − xi)α
+ wi(k), (14)

where the parameter vector Pi in (1) consists of the gain factor of
thei-th sensor gi, an energy delay factor α, which is approximately
equal to 2, and the source signal energy a. The measurement noise
term wi(k) can be approximated using a normal distribution. In
(14), it is assumed that the signal energy, a takes values in the
range [amin amax], while during the localization process a source
generates a constant energy, which is assumed to be known to a
central node where localization is performed based on quantized
energy readings. In practice, the source energy can be estimated
using the quantized energy readings for localization at the central
node. Localization based on quantized observations is illustrated
by Figure 1, where each ring-shaped area can be obtained from
one quantized observation provided by a sensor. By computing the
intersection of all the ring areas (one per sensor), it is possible to
define the area where the source is expected to be located. Note
that at least three observations are required to achieve a connected
intersection. This can be written as follows

A =

M⋂
i=i

Ai (15)

where Ai = Aj
i when αi(zi) produces the jth bin, Qj

i . For this case,
Aj

i is given by.

Aj
i = {x : gi

a

(x − xi)α
∈ Qj

i} (16)

That is, Aj
i is the ring-shaped region obtained from the quantized bin

Qj
i that zi falls into (Figure 1). Another expression for Aj

i can be
also found in (12). If the source is uniformly distributed in the sensor
field, the estimate, x̂ would be the sample mean in the intersection
A

x̂ = E(x|x ∈ A) (17)

To avoid quantizer overload, the dynamic ranges of the M
quantizers are initialized as [zmin zmax] = [ amin

r2
max

amax

r2
min

] where

[rmin rmax] is the range within which each sensor is supposed to

measure acoustic source energy. The value of rmax is set such that
the probability that an arbitrary point inside the sensor field can be
sensed simultaneously by at least 3 nodes should be close to 1 [7].
Assuming the distribution of the number of nodes in any given area
S = πr2 is Poisson with rate λS the probability, p is then given by

p =

∞∑
i=3

e−λπr2
(λπr2)i

i!
(18)

Given node density λ (nodes/m2), we can compute rmax(= 2r) for a
desirable value, p (say, 0.95). In this way, the likelihood of missing a
source is minimized. To have finite dynamic rages, the value of rmin

is chosen as a small nonzero value. Note that if more nodes are used,
better quantization in each node is possible (the dynamic ranges will
tend to be smaller). With this initialization step, the quantizer design
as outlined in Section II-B can be used.

The encoding algorithm described in Section III-B is applied after
quantization to achieve rate savings. The rate savings is computed
after entropy-coding of the merged bins and compared with those for
Method 1 and Method 2 in Section III-B.

V. EQUALLY DISTANCE-DIVIDED QUANTIZER AND BIT

ALLOCATION PROBLEM

Since each set of quantizers induces a partitioning of the sensor
field, designing good quantizers for localization can be seen to
be equivalent to making a good partition of the sensor field by
adjusting the width, ∆ri(ri) of the ring-shaped areas in Figure
1. If no prior information is available about the source location,
p(x) can be assumed to be uniform and thus choosing ∆ri(ri) to
achieve a uniform partitioning of the sensor field would seem to
be a good choice. Intuitively, a uniform partitioning of the sensor
field is more likely to be achieved when the ring-shaped areas have
the same width, ∆ri(ri) = const (this is certainly the case when
the nodes are uniformly distributed). This consideration leads to the
introduction of Equally Distance-divided Quantizers (EDQ), which
can be viewed as uniform quantizers in distance, and such that
∆ri(ri) = rmax−rmin

2Ri
, ∀i. To justify the EDQ design, we performed

a simulation (see Figure 2) which shows that EDQ provides good
localization performance, which comes close to that achievable by
the quantizer proposed in Section II-B. EDQ has the added advantage
of facilitating the solution of the bit allocation problem.

Given a total number of bits, RT =
∑

Ri, the goal is to minimize
the localization error by allocating different number of bits to each
node. Even though the GBFOS algorithm [4] provides the optimal
bit allocation, it would also require extremely large computational
load, since it relies on the calculation of rate-distortion points at
each iteration step, and the quantizers should be redesigned using the
algorithm of Section II-B for each candidate bit allocation. Instead,
in our experiments we use the GBFOS algorithm along with EDQ,
which does not require quantizer redesign for each candidate bit
allocation. With this approach one can use EDQ to compute easily
the optimal bit allocation for the particular node configuration, and
then use the technique proposed in Section II-B to design a quantizer
for the given bit allocation.

VI. SIMULATION

The proposed quantizer was designed by the algorithm in Section
II-B, using a training set with 1532 source locations generated with
a uniform distribution in a sensor field of size 10 × 10m2, where
5 nodes are randomly located (as shown in Figure 3). The model
parameters are given by a = 50, α = 2, gi = 1 and SNR = ∞, and
the localization error is computed by E(‖ x − x̂ ‖2). In Figure 2,



Fig. 2. Localization error vs. the number of bits, Ri assigned to each node.
The localization error is given by E(‖ x − x̂ ‖2). 1481 source locations are
generated with uniform distribution of a source location.

the localization error is compared with traditional quantizers such
as uniform quantizers and Lloyd quantizers (λ = 0). Since the
proposed quantizer makes full use of the distributed property of the
observations, it can be seen to provide improved performance over
the traditional quantizers. This can be also explained in terms of the
partitioning of the sensor field, which is plotted in Figures 3 and 4. It
is easily seen that our quantizer leads to a more uniform partitioning,
which in turn reduces the localization error. In this simulation, we
assume that when the source is very close to one of the nodes,
the node position becomes an estimate of the source position. The
localization error due to this assumption can be reduced by lowering
the value of rmin at the expense of a larger dynamic range.

The distributed encoding algorithm was applied to the system
where 5 nodes are located as shown in Figure 3 and an acoustic
sensor model is employed at each node. In obtaining the metric in
(13), the source distribution is assumed to be uniform. Each time the
number of bits assigned to each node varies from 2 to 4, the encoding

algorithm was applied to the 5 quantizers which are designed by
the proposed algorithm in Section II-B. Table I provides results of
the new encoding algorithm under the different merging techniques
outlined in Section III-B. Methods 1 and 2 are as described in
Section III-B, Method 0 refers to the approach where entropy coding
is applied but there is no merging, and Method 3 is the global merging
algorithm discussed in that section . Note that the total rate consumed
by the 5 nodes was computed based on independent entropy coding
at each of the nodes. We can observe that even with relative low rates
(4 bits per node) and a small number of nodes (only 5) significant
rate gains (up to 30%) can be achieved with respected to Method 0,
which does not exploit the special characteristics of SQ and SM .

Fig. 3. Partitioning of Sensor field (10 × 10m2) (grid= 0.25 × 0.25) by
proposed quantizers. All partitioned regions are numbered, so that a region is
filled with the same number and Ri = 2

Fig. 4. Partitioning of Sensor field (10 × 10m2) (grid= 0.25 × 0.25) by
Lloyd quantizers. All partitioned regions are numbered and Ri = 2



The proposed quantizer was evaluated under various types of
mismatch conditions. In each test we modified one of the parameters
with respect to what was assumed during quantizer training. The
simulation results are tabulated in Table II. In this experiment, 1481
and 1176 source locations in a sensor field of size 10 × 10m2

were generated under the assumption of a uniform distribution
and a normal distribution, respectively. For each source location,
localization is performed using the true parameters, even when there
is mismatch. The proposed quantizers showed good performance for
the various parameter perturbations. That is, there is no need to
redesign quantizers when there are tolerable parameter mismatches.
In a large sensor field, they also provided good results with respect
to traditional quantizers in Table III.

In the same node configuration as in Figure 3, the bit allocation
was conducted using EDQ to search for the optimal bit allocation R∗,
that would give the minimum localization error. It can be seen that
nodes 3 and 5 are so close to each other that they provide redundant
information for localization and thus the optimal solution allocates
few bits to both these nodes. In fact, in our example, at relatively
low rates (an average of 2 bits per node) it is more efficient to send
information from only three nodes (node 1,2 and 4), i.e., allocating
zero bits for the other two nodes (node 3 and 5). In Table IV,
the localization errors were computed using EDQ and our proposed
quantizer designed for several different bit allocations respectively,
showing that bit allocation is important to achieve good localization
performance.

Fig. 5. Comparison of performance of the proposed techniques (proposed
quantizers and distributed encoding algorithm) with techniques based on
uniform quantizers and joint entropy coding.

Finally, we address the question of how our technique compares
with the best achievable performance for this source localization
scenario. As a bound on achievable performance we consider a system
where (i) each node quantizes its observation independently and (ii)
the quantization indices generated by all nodes for a given source
location are jointly coded (in our case we use the joint entropy of
the vector of observations as the rate estimate). This approach can
be applied to both the original quantizer designed and the quantizer
obtained after merging.

Note that this is not a realistic bound because the joint coding
cannot be achieved unless the nodes are able to communicate before
encoding. Note that in order to approximate the behavior of the joint
entropy coder via distributed source coding techniques one would
have to transmit multiple observations of the source energy from
each node, as the source is moving around the sensor field. Some of
the nodes could send observations that are directly encoded, while
others could transmit a syndrome produced by an error correcting
code based on the quantized observations. Then, as the central node
receives all the information from the various nodes it would be able
to exploit the correlation from the observations and approximate the
joint entropy. This method would not be desirable, however, because
the information in each node depends on the location of the source
and thus to obtain a reliable estimate of the measurement at all
nodes one would have to have observations at a sufficient number
of positions of the source. Thus, instantaneous localization of the
source would not be possible. The key point here, then, is that
the randomness between observations across nodes is based on the
localization of the source, which is precisely what we wish to observe.

For the node configuration in Figure 3, the average rate per node
was plotted with respect to the localization error in Figure 5. As can
be seen from Figure 5, our proposed techniques (proposed quantizers
in Section II-B and distributed encoding algorithm in Section III-
B) outperform techniques based on uniform quantization. For this
particular configuration we can observe a gap of less than 1 bit/node,
at high rates, between the performance achieved by our proposed
quantizer with distributed encoding and that achievable with the
same quantizer if joint entropy coding was possible. We also observe
that our proposed techniques lead to a very significant gain (at low
localization error rates) as compared to standard uniform quantization
(around 5 bits/node). In summary, our techniques provide substantial
gain over straightforward application of known techniques and come
close to the optimal achievable performance.

VII. CONCLUSION

In this paper, we have proposed a distributed encoding algorithm
for source localization in sensor networks. In the experiments based
on the acoustic sensor model, our approach provides significant rate
savings without any degradation of localization performance. In the
future, we will work on the case where the source signal energy
is unknown. For this case, a new distributed localization algorithm
should be developed.
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TABLE I
TOTAL RATE IN BITS (RATE SAVINGS) ACHIEVED BY VARIOUS MERGING

TECHNIQUES. THE RATE SAVINGS IS COMPUTED BY
RT −totalrate

RT
× 100,

WHERE RT =
∑

Ri, Ri IS THE NUMBER OF BITS ASSIGNED TO NODE i.
THE RATE IN METHOD 0 IS COMPUTED WITHOUT MERGING AND METHOD

3 REPRESENTS THE GLOBAL MERGING ALGORITHM IN SECTION III-B

RT Method 0 Method 1 Method 2 Method 3
10 9.9 (0.3%) 8.7 (13.4%) 8.7 (13.4%) 8.1 (18.9%)
15 14.8 (1.4%) 11.5 (23.7%) 11.9 (20.9%) 11.2 (25.4%)
20 19.5 (2.3%) 13.5 (32.3%) 13.6 (32.0%) 13.4 (32.8%)



TABLE II
LOCALIZATION ERROR (LE) OF THE PROPOSED QUANTIZERS DUE TO

VARIATIONS OF THE SIGNAL ENERGY a, AND THE MODELLING

PARAMETERS. LOCALIZATION ERROR (LE) (m2) IS GIVEN BY

E(‖ x − x̂ ‖2). LE (NORMAL) IS FOR TEST SET FROM NORMAL

DISTRIBUTION AND LE (UNIFORM) FROM UNIFORM DISTRIBUTION. THE

PROPOSED QUANTIZERS ARE DESIGNED WITH

Ri = 3, a = 50, α = 2, gi = 1 AND SNR = ∞ FOR UNIFORM

DISTRIBUTION.

Source energy a 40 45 50 55 60
LE(normal) 0.065 0.070 0.078 0.098 0.119
LE(uniform) 0.071 0.061 0.072 0.077 0.094

Delay factor α 1.6 1.8 1 2.2 2.4
LE(normal) 0.167 0.124 0.078 0.046 0.055
LE(uniform) 0.307 0.120 0.072 0.078 0.694

Gain factor gi 0.6 0.8 1 1.2 1.4
LE(normal) 0.046 0.065 0.078 0.119 0.173
LE(uniform) 0.071 0.071 0.072 0.094 0.132

SNR(dB) 20 40 60 80 100
LE(normal) 1.470 0.167 0.082 0.079 0.078
LE(uniform) 2.381 0.123 0.083 0.073 0.072

TABLE III
COMPARISON BETWEEN PROPOSED QUANTIZER AND TYPICAL

QUANTIZERS FOR LARGE SENSOR FIELD (20 × 20m2) WHERE 15 NODES

ARE DEPLOYED AND EACH NODES USES 2 BITS FOR ITS QUANTIZER.

Quantizer type Localization Error
Uniform Quantizer 6.9206

Lloyd Quantizer(λ = 0) 1.8994
Proposed Quantizer(λ � 1) 0.1643

TABLE IV
LOCALIZATION ERROR (m2) FOR VARIOUS SETS OF BIT ALLOCATIONS

WHERE R∗ WAS OBTAINED BY GBFOS USING EDQ GIVEN

RT =
∑

Ri = 10. LOCALIZATION ERROR IS GIVEN BY E(‖ x − x̂ ‖2)

Sets of bit allocations EDQ Proposed Quantizer
R∗ = [4 3 0 3 0] 0.1533 0.1105
R = [3 3 0 4 0] 0.1615 0.1200
R = [3 4 0 3 0] 0.1543 0.1227
R = [3 2 2 3 0] 0.3005 0.2014
R = [2 2 2 2 2] 0.6199 0.3975
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