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Abstract

We address the joint optimization of routing and com-

pression for wireless sensor networks using a lifting-based

2D transform that can be computed along arbitrary routing

trees. The proposed 2D transform allows for unidirectional

computation, thereby eliminating costly backward transmis-

sions often required by existing 2D transforms. We also pro-

pose a framework for optimizing the transform by selecting

among a different set of coding schemes (i.e., different lev-

els in the wavelet decomposition). Since our transform can

operate on arbitrary routing trees, we focus on the prob-

lem of jointly optimizing routing trees based on inter-node

data correlation and inter-node distance. The two extreme

solutions would be i) to route data along paths that max-

imize inter-node data correlation (at the risk of increas-

ing transport costs), corresponding to a minimum span-

ning tree (MST), or ii) to follow shortest path tree (SPT)

routing (where inter-node data correlation may not be as

high). We propose an optimization technique that exhaus-

tively searches for the optimal tree over a set of combina-

tions of MST and SPT. We also propose a heuristic approx-

imation algorithm that is amenable for use on larger net-

works and with which we observe total cost reductions close

to 10% for some of the data.

1 INTRODUCTION

In recent years, low-cost, densely deployed Wireless

Sensor Networks (WSN) have been studied for applica-

tions such as instrumentation and enviromental monitoring,

among many others [2]. Because these are typically bat-

tery powered devices, it is important to find power-efficient

techniques for data gathering and transmission. These tech-

niques entail both energy-efficient routing and low-cost in-

network compression.

A typical in-network compression technique collects

data at individual nodes, then compresses it as it “flows”

towards a fusion center or sink, along a series of pre-

established paths. These approaches exploit spatial corre-

lations in the data in order to reduce the overall number of

bits needed to represent a snapshot of information sensed in

the network. We focus here on transform-based in-network

compression techniques, which include the distributed KLT

[8] and wavelet based methods [1, 3–5, 16, 19, 20]. Obvi-

ously, the ultimate goal is to achieve overall power savings.

In the case of transform techniques, a more efficient sig-

nal representation is computed in a distributed manner (by

de-correlating data across neighboring nodes) resulting in

fewer bits to transmit to the sink in exchange for some “lo-

cal” communication overhead.

While existing transform-based methods are capable of

reducing the number of bits to be transferred to the sink, al-

most all of them separate transform design and routing, i.e.,

they define transforms first then map those transforms onto

efficient routing trees. In some cases, this requires nodes

to transmit uncompressed data directly to a cluster head as

in [8] or to a certain number of neighbors [19, 20] before

transform coefficients can even be computed. If the neigh-

bors (or cluster head) of a node are further away from the

sink than the node itself, additional backward transmissions

of uncompressed data will be required that increase the to-

tal cost. The method proposed in [5] eliminates backwards

transmissions by computing coefficients in a unidirectional

manner (as data flows towards the sink) along paths of a

given routing tree. However, this results in an oversampled

transform (the number of wavelet coefficients generated is

greater than the number of samples captured) when multiple

paths merge, resulting in additional energy consumption for

merging paths. Instead in our recent work [17] we propose

transforms that i) can be computed on arbitrary routing

trees, and in particular suffer no penalty as multiple paths

merge in the tree, and ii) do not require additional back-
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ward transmissions (the transform is computed in a unidi-

rectional manner as data flows towards the sink). Our pro-

posed transform is shown to be more energy-efficient than

the bi-directional transform in [19, 20] and the path-wise

unidirectional transform in [5]. However, like the other

methods discussed, the method presented in [17] considers

transform and routing separately, i.e., a shortest path routing

tree is chosen first and then a transform is performed over

that tree. Instead, the technique we propose here attempts to

exploit the inherent interaction between different trees and

the transform in [17]. This leads us to a practical approach

for jointly optimizing compression and routing, i.e., we can

aim at designing a tree with good transport cost and data

correlation properties, knowing that no matter what tree is

chosen the transform can be implemented.

A shortest path routing tree (SPT), guarantees that the

path from a given node to the sink is most efficient for

routing, but obviously does not guarantee that consecutive

nodes in a path contain highly correlated data. For exam-

ple, if data correlation is inversely proportional to distance

between nodes, one would always have to route through

the nearest neighbor in order to achieve maximal inter-node

data correlation. Clearly SPT routing does not guarantee

this, since this design aims to minimize distance to sink,

not inter-node distance. The results in [14] corroborate

this, where a network with high data correlation benefits

most from routing and compression along shorter hops with

longer overall paths. As an alternative, we could consider

trees that link together nodes with high inter-node data cor-

relation. Such trees can provide greater compression effi-

ciency than an SPT. However, aggregating along these types

of trees may force nodes to transmit data away from the

sink, so that gains provided by the increase in de-correlation

are offset by increased transmission cost. Since aggregation

will occur along routing trees, there is a trade-off between

trees that result in energy-efficient routing and ones that al-

low a transform to de-correlate data effectively.

In order to achieve jointly optimized routing and trans-

form we search exhausitvely for the lowest cost tree among

a set of possible trees, for a fixed distortion. In general, for

a given tree T , we assume the cost to tranport one bit from

a node n to the sink is a function of the edge weights in T
along the path from n to the sink, which we denote f(n).
For example, in [17] we use as edge weights the squared

inter-node distances and f(n) is the sum of squared dis-

tances along each hop from n to the sink. Then the cost

to transport bn bits from node n to the sink is bnf(n). We

also associate with each n a small local communication cost

l(n) incurred for unidirectional transform computation (as

will be discussed in Section 2.2). Naturally, the local cost

term l(n) will vary depending on the structure of the tree

(e.g., if n has multiple children) and on the number of lev-

els of decomposition that n uses. The total cost for trans-

forming and routing data for N nodes along T is then given

by CT =
∑N

n=1 (bnf(n) + l(n)). This is the cost we seek

to minimize, for fixed distortion. Since our chosen trans-

form is computed along arbitrary trees, a natural optimiza-

tion problem is to find a tree T that minimizes the total cost

CT for a fixed distortion.

While one could consider the full set of possible trees

for a given communication graph, this set can be extremely

large. The well-known matrix-tree theorem [11] (which

provides the number of spanning trees for a given graph)

implies that a complete graph with n nodes has nn−2 pos-

sible trees. Even if the graph is not complete, the matrix-

tree theorem may still imply a very large solution space.

Thus, it is not computationally feasible to consider a full

solution set. To make the optimization problem tractable,

we choose only to explore trees that can be obtained by

combining links from an SPT computed with edges defined

by physical inter-node distances (to minimize distance to

the sink) with links from a minimum spanning tree (MST)

computed with edge weights defined by inter-node data

correlation (to maximize pair-wise inter-node correlation).

More specifically, we design an MST using edge weights

w(m, n) = 1 − rm,n with rm,n the correlation coefficient

between nodes m and n so that an MST corresponding to

these edge weights will have a link between each node n
and the neighbor of n that has maximum inter-node data

correlation with n. Clearly, such an MST is “best” in the

sense of maximizing pair-wise data correlation along the

tree, which should help achieve improved compression effi-

ciency for our transform. Since the SPT will minimize the

cost to route any amount of data from a node to the sink,

we can use combinations of such an MST with an SPT to

provide a direct trade-off between high compression perfor-

mance and low routing cost.

To illustrate this point, consider the real network in Fig-

ure 1 taken from [13], where a combination of an SPT and

MST is used for joint routing and compression. The SPT

provides the shortest route to the sink from any node, but

fails to link some nodes to their closest neighbors. This

can reduce compression efficiency. The MST links those

nodes to their closest neighbors, but also has some lengthy

paths that push data away from the sink. Clearly, neither

alone is sufficient to achieve the best joint routing and com-

pression performance. Instead, the trees obtained by our

proposed optimization methods tend to link nodes to their

closest neighbor, but in a way that preserves short paths to

the sink, resulting in improved overall performance, as will

be shown in Section 4.3.

In summary, in this paper we address the joint opti-

mization of routing and compression by using a distributed

2D wavelet transform. We first describe how our pro-

posed transform can be applied along arbitrary routing trees.

Then, we propose a technique for selecting routing and
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Figure 1. SPT, MST, and Combined Tree

transform jointly by accounting for both data correlation

and routing costs.

1.1 Related Work

In the context of wavelet-based approaches [1, 3–5, 16,

19,20], we consider the design of a unidirectional 2D trans-

form (as in [17]) along routing trees in order to facilitate

joint selection of routing and transform. An early proposal

using wavelet transforms in WSN by Servetto [16] was

based on the assumption that sensors are located in a regu-

lar grid, where wavelet transform techniques for 2D images

provide a natural extension. However, these regular grid as-

sumptions will not hold in general as illustrated in [7].

This has motivated researchers to investigage transforms

that operate with irregular 2D node placements. Wagner et

al [20] propose to apply a lifting transform along a tesse-

lation of the nodes. This transform is applicable to arbi-

trary 2D node deployments, but it also requires backward

data transmissions that flow away from the sink. Thus,

the compression performance is good in terms of overall

rate, but the transmission costs can be high. As an alter-

native, there have been proposals to use 1D wavelet trans-

forms along the routing paths in the sensor network, in a

way that explicitly computes the transform in a unidirec-

tional manner [1, 5], i.e., the transform is computed as data

flows towards the sink, thereby eliminating the overhead in-

troduced in [19,20]. In addition (unlike [19,20]), [1,5] pro-

vide techniques for optimizing the number of levels of de-

composition. The main drawback of the approaches in [1,5]

is that they are essentially 1D transforms and, consequently,

cannot exploit 2D spatial correlation as well as a fully 2D

transform. Furthermore, in [5], simple ad hoc techniques

are used to combine the information obtained from two or

more merging paths along a route to the sink (on each of

which a 1D transform has been computed), resulting in a

non-critically sampled signal representation.

The transform we recently proposed in [17] addresses

the disadavantages of existing transforms, while allowing

the transform to be constructed on arbitrary trees. It is crit-

ically sampled, unlike that in [5]. It is also computed in a

unidirectional manner, eliminating the backward transmis-

sions required in [19,20]. An algorithm is also provided that

finds an optimal number of levels of decomposition for each

node in order to exploit the tradeoff in [1, 5]. Note that the

transform developed in [17] does not jointly optimize the

routing and transform, but instead only optimizes the trans-

form for a particular routing tree. The joint optimization

problem is the main focus of this paper.

Mere transform design and optimization aside, only a

few existing methods jointly optimize routing and compres-

sion. Optimal routing trees were found in [10], assuming

concave aggregation functions. The aggregation functions,

however, depend only on the number of nodes participating

in aggregation which is not very realistic. A joint optimiza-

tion technique using “foreign coding” was presented in [15],

where data is encoded along a directed MST, and is for-

warded along an SPT. On the other hand, we attempt to find

a tree T which combines an MST and SPT such that per-

forming both routing and transform along T minimizes the

cost CT (over the set of possible combinations). The edge

weights used in [15] are also slightly different from ours

since they start with an initial set of edge weights, which are

modified by using the inter-node data correlation. Then an

MST is constructed based on these modified edge weights,

whereas we propose to use an MST constructed from edge

weights that are directly a function of inter-node data cor-

relation. Futhermore, this method assumes nodes will use

side information from exactly one other node to compress

their own data. Thus, nodes only encode their data using

information from one other node, whereas in our method

nodes will compress their own data using data from multi-

ple neighbors (depending on the tree and number of levels

of decomposition).

The work in [14] also studied the effects of data corre-

lation on joint routing and compression decisions and an

optimal clustering strategy was provided to maximize the

benefits of this joint decision given a particular correlation

level and network structure. However, no method is pro-

vided that finds a routing structure that is jointly optimal

for routing and compression, which is exactly what we set

out to do. Instead, nodes are grouped into an optimal set

of equally spaced tiles and shortest path routing trees (de-

fined for each tile) are used to perform joint routing and

compression, and as pointed out before, these SPTs may

not be best for exploiting compression. Results in [14] do,

185



however, provide useful insights that we have drawn upon.

In addition, both methods in [14, 15] utilize losseless data

compression techniques which can be difficult to employ in

practice. Instead, our method uses a practical, but lossy,

compression method via the wavelet transform.

Therefore, we aim to achieve joint routing and compres-

sion optimization by combining the benefits of the various

trees employed in existing work. In particular, we borrow

insight from [14] by designing trees that exhibit properties

beneficial to both routing and compression. We find such

trees by combining trees best for compression (e.g., an MST

as suggested in [15]) with trees best for routing. To achieve

additional savings, we also use the idea proposed in [15] of

overlaying an SPT (for efficient routing) over the transform

tree so that fully computed coefficients are routed directly

to the sink via the SPT. Naturally, our optimization accounts

for this by computing the cost for such an overlay of trees

(rather than the cost along just one tree). Our main goal is

then met by selecting, among our set of possible trees, the

tree that provides minimum cost transform and routing. To

the best of our knowledge, no technique has been developed

that jointly optimizes routing and compression using a uni-

directional 2D wavelet transform for an irregular 2D node

deployment.

The paper is organized as follows. The design and uni-

directional computation of our proposed transform is pre-

sented in Section 2, where a general overview of the trans-

form optimization framework is also provided. Our joint

transform and routing optimization algorithm is then pre-

sented in Section 3. Section 4 provides experimental results

and Section 5 concludes the paper.

2 TRANSFORM DESIGN USING LIFTING

In this section, we briefly review the design of the dis-

tributed 2D transform we proposed in [17]. Consider a sen-

sor field with N nodes, where data xn is captured by node

n ∈ I = {1, 2, . . . , N}. Let us model the network as a

graph G = (V, E), where V = I and for any m, n ∈ V ,

(m, n) represents an edge in E. Let T = (VT , ET ) be a tree

representing data routing through the network, with the root

of the tree corresponding to the sink (indexed by N + 1) ,

and each leaf node representing the first sensor in a given

path towards the sink and where VT ⊂ V and ET ⊂ E. Let

Cn and ρn denote the set of children and the parent of sensor

n in T , respectively. Let depth(n) be the depth of node n in

T , with depth(N + 1) = 0.

2.1 Lifting Transform Design

A lifting transform [18] can be performed once we define

disjoint sets of prediction and update nodes at each level of

decomposition j, denoted Pj and Uj , respectively. Then

given pn,j and um,j as the prediction and update operators

at nodes n ∈ Pj and m ∈ Uj , respectively, we can compute

the smooth coefficients given by sm,j and detail coefficients

dn,j in a standard recursive manner [17].

We split the nodes into prediction and update sets ac-

cording to their depth with respect to the root of the tree

(the sink) which has depth zero, i.e., nodes of even and

odd depth will be update and prediction nodes, respec-

tively. To facilitate unidirectional transform computation

along T as data flows towards the sink, we choose local-

ized operators so that non-zero weights are assigned only to

one-hop neighbors of a given node, i.e., pn,1(k) = 0 and

un,1(k) = 0 for k /∈ Cn ∪ {n, ρn}. Note that nodes that

are close to each other in T will also be close in physical

distance. This will keep local costs low and will tend to

produce data that is more correlated (thus, also providing a

reasonable way to exploit signal correlation).

Figure 2 gives an example of the splitting tree for 2-

levels. By extending to j-levels, Tj will consist of nodes

of even depth in Tj−1 with an edge between two nodes in

Tj only if they are 2-hops apart in Tj−1. Then we can apply

the same split method for each Tj . Clearly, T = T1 under

this construction. We also denote the children and parent

nodes of n ∈ Tj as Cn,j and ρn,j .

1-level of decomposition 2-levels of decomposition

VERSUS

Update (Even) Nodes

Predict (Odd) Nodes

Sink Node

Figure 2. Trees used for splitting

2.2 Unidirectional Computation

For the sake of design simplicity, we propose the fol-

lowing filters for j-levels. For a node n ∈ Pj , we gen-

erate a prediction by averaging data in neighboring nodes,

i.e., pn,j(m) = − 1
|Cn,j|+1 for each m ∈ Cn,j ∪ {ρn,j}.

and for all nodes m ∈ Uj , we similarly perform smooth-

ing by using the detail coefficients of its neighbors, i.e.,

um,j(k) = 1
2(|Cm,j|+1) for each k ∈ Cm,j ∪{ρm,j}. Clearly

we should have pn,j(n) = um,j(m) = 1.
For j-levels of decomposition, the lifting transform in

Section 2.1 can be computed as follows. For every m ∈
Pj :

dm,j = sm,j−1 +
X

k∈Cm,j

pm,j(k)sk,j−1 +pm,j(ρm,j)sρm,j ,j−1

(1)
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then, given each dm,j , for all n ∈ Uj we have:

sn,j = sn,j−1 +
X

m∈Cn,j

un,j(m)dm,j +un,j(ρn,j)dρn,j,j . (2)

This transform is invertible by construction and is also

critically sampled. Defining the transform along an arbi-

trary tree also facilitates unidirectional computation since

the terms corrsponding to the children and parent nodes in

(1) and (2) are explicitly separated. Thus (as in [3]), a node

can partially compute its own wavelet coefficient using the

coefficients and/or data from its children, then can forward

this partial coefficient to its parent where it will be updated

or finalized. The details of this partial coefficient algorithm

can be found in [17].

The partial coefficient algorithm in [17] can be a source

of local communication overhead since a few additional bits

are allocated to each partial to mitigate the effects of quan-

tization as in [3]. However, this increase in cost is minimal

since these added bits are only carried over a few hops. The

l(n) term in the cost equation CT presented in Section 1

reflects these minor increases in cost.

2.3 Transform Optimization

As discussed earlier, a mixture of coding schemes

throughout the network may be more energy-efficient than

just one scheme, resulting in a tradeoff between more local

transmission cost for lower final transport cost [1, 5]. How-

ever, the proposed optimization schemes in [1, 5] do not di-

rectly extend to overlapping 1D paths, so the problem must

be reformulated for our proposed 2D transform. Following

the notation in [17], the optimization is done by selecting

(for each node n ∈ I) a number of levels of decompo-

sition jn ∈ {1, 2, . . . , J} that minimizes the total energy

consumption. This is done via a forward dynamic program-

ming algorithm that sequentially computes, from nodes of

greatest depth to nodes of depth one, the optimal cost to

arrive at scheme j for every node n. For each node n of

depth one in T , it then chooses the minimum cost scheme

j∗n and assigns to the descendants of n the optimal schemes

that correspond to j∗n. This results in an optimal network

assignment.

3 JOINT ROUTING AND TRANSFORM

OPTIMIZATION

Our proposed optimization method is inspired by the

“foreign coding” technique developed in [15], where an

MST is constructed with edge weights that are a function

of data correlation and where data is encoded along this

MST and forwarded along an SPT. In order to formulate our

routing optimization, consider a graph with vertices corre-

sponding to the node indices m, n ∈ I and edges (m, n)

with weights w(m, n) corresponding to some inverse mea-

sure of correlation between m and n. For instance, the

edges weights could be w(m, n) = 1 − rm,n, with rm,n

the inter-node correlation coefficient between nodes m and

n. We can then construct an MST from those edge weights

that implicitly maximizes pair-wise data correlation, yield-

ing a tree that provides good compression performance for

our transform. To see why this is so, consider Prim’s al-

gorithm [6] for constructing an MST. Given a set of edge

weights, Prim’s algorithm can construct an MST by start-

ing from any arbitrary node n. So by starting from n, the

second node added to the MST will be a node m such

that w(n, m) ≤ w(n, k), for all k ∈ V \{n}. Since

w(n, m) = 1 − rn,m is minimal over all edges containing

n as a vertex, rn,m is maximal. Therefore, data at n is max-

imally correlated with data at m. Since this can be done

for arbitrary n, our claim follows. It is worth noting here

that an MST defined in this way only considers pair-wise

correlation, and so is not necessarily optimal from a coding

standpoint when using our proposed transforms (where data

is filtered over multiple hops).

We could utilize Rickenbach’s approach [15] for joint

routing and compression (e.g. encode along MST and for-

ward along SPT). However, this would require each node to

transmit its data along its next hop in the MST which may

force data to flow away from the sink. This can produce

some inefficiency from a routing standpoint if the gains in

coding efficiency do not offset the resulting increase in rout-

ing cost. Instead, our proposed approach can avoid such sit-

uations since it allows nodes to forward their own data for

aggregation through either the SPT or the MST as their par-

ent in the tree. The transforms we consider are also better

since a node can compress its data using data from more

than one neighbor. Thus, we can exploit our stated trade-

off more effectively by searching for a minimum cost tree

among a set of trees that combine a distance-based SPT and

a correlation-based MST.

An MST does have some drawbacks, though. For one,

it may not have as many merge points as an SPT. Since our

transform only exploits cross-path correlation at and around

merge nodes, having fewer merges may actually reduce the

efficiency of our transform when performed along an MST.

However, an appropriate combination with an SPT should

maintain these merges whenever beneficial. In fact, not all

of the neighbors of a node in the MST will have high data

correlation with it so some merges may actually hurt coding

performance. As mentioned above, our MSTs only consider

correlation over a single hop and may result in some inef-

ficiency since our proposed transform actually filters data

over multiple hops. Furthermore (as will be discussed in

Section 4.2), if a predict has more neighbors it will tend to

have less residual energy and so should require fewer bits.

Similarly, having more neighbors at an update node can pro-
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duce a smoother approximation of the original data and as

such should also require fewer bits. So as an alternative to

MSTs, we could develop trees that (1) preserve beneficial

merges and (2) keep the number of merges at predict nodes

to a minimum. These issues will be explored experimen-

tally in Section 4.2 and are an active area of research for

us.

In Section 3.1, we propose an algorithm that finds the

minimum cost combination of an SPT and MST by com-

puting, for every possible combination, the cost of trans-

form and routing along each tree (overlayed on an SPT

as discussed in Section 1.1) and then selecting the low-

est cost combination for a fixed distortion D. The algo-

rithm is general enough to accomodate an arbitrary def-

inition of edge weights used to construct the MST, i.e.,

w(m, n) = 1 − rm,n, or w(m, n) can be physical inter-

node distance, or anything else that allows us to quantify

the degree of inter-node data correlation. Existing meth-

ods [12] can find a tree that simultaneously maintains a

low sum of edge weights (via the MST) and low path-wise

distance to the sink (via the SPT). Instead, our proposed

method directly balances gains in coding efficiency with

low cost routing by choosing the combination for which

the cost of transform and routing is minimum. Since the

number of combinations grows rapidly with the number of

nodes, we also propose a heuristic approximation algorithm

that is amenable to larger networks in Section 3.2.

3.1 Optimization Algorithm

Note that the edge weights w(m, n) used to construct the

MST can be anything we choose and so the algorithm de-

scribed here can be applied using an arbitrary measure of

inter-node data correlation. For a set of N nodes, let TS

denote the SPT and TM denote an oriented version of the

MST. Let T represent the tree which is our desired combi-

nation of TS and TM , with the children and parent sets for

T defined as in Section 2. An oriented version of the MST

(TM ) is necessary to define a transform as described in Sec-

tion 2. Basically, TM fixes the sink node N + 1 as the root

and directs all edges in the MST towards the sink. We can

represent each tree by defining parent functions ρM
n and ρS

n

for TM and TS respectively. Under this construction, data

at node n is routed to the sink through ρM
n in TM , ρS

n in TS ,

and ρn in T . Thus, we define the edges in each tree by the

ordered pairs (n, ρM
n ) and (n, ρS

n) for TM and TS.

We construct a minimum cost tree by searching among

all feasible combinations of such edges in TM with such

edges in TS. We first explain how to find the smallest pos-

sible set of feasible combinations (i.e., combinations that

result in a connected acyclic graph) in Section 3.1.1. We

then provide an algorithm that searches over this feasible

set to find a minimum cost solution in Section 3.1.2.

3.1.1 Feasible Set Construction

The total number of combinations could be as many as 2N ,

but many such edges in TS and TM will be the same so

we may eliminate those from consideration. Furthermore,

not all combinations of such edges will produce a valid

tree (i.e., some may result in cycles or may disconnect cer-

tain groups of nodes) so the number of combinations can

be reduced even further by eliminating invalid trees. We

consider an edge (n, m) to be the same in both trees if

m = ρM
n = ρS

n (i.e., the parent of node n is the same in

both trees). Thus, we define V ′ = {n|ρM
n 6= ρS

n} and N ′

as the number of nodes in V ′. We also enumerate this set

as V ′ = {n1, n2, . . . , nN ′}. For each node ni ∈ V ′, let

E′(ni) = {
(

ni, ρ
M
ni

)

,
(

ni, ρ
S
ni

)

} be the set of edges from

ni to the parent of ni in either TS or TM . Then the full

set of combinations of edges we consider in TM and TS is

given by:

E = E′(n1) × E′(n2) × . . . × E′(nN ′).

We reduce the search space further by eliminating combi-

nations of edges in E that do not produce a valid tree (i.e.,

graphs that are disconnected or have cycles or both).

We check for tree validity as follows. Let Ẽj ∈ E , where

j indexes the j-th combination of edges in E . Naturally,

Ẽj = {(n1, m1,j), . . . , (n1, mN ′,j)} for the j-th combina-

tion. Let Ẽ be the set of edges in TS that are the same

in TM . Then a combination Ej will be feasible only if the

graph T̃ = (V, Ẽ ∪ Ẽj) is connected and acyclic. This is

done by checking that each leaf node has a non-cyclic path

to the sink (which is sufficient since this process traverses

every node in the network). Otherwise, the graph T̃ does

not form a valid tree. We represent the set of feasible trees

by the Nf × N matrix Tf , where Nf is the number of fea-

sible trees and Tf (m, n) is the parent of node n in the m-th

feasible tree.

3.1.2 Feasible Set Search

Since the full set of feasible trees is given by Tf , we could

then find the tree that optimizes routing and transform by

i) fixing a target distortion level D (in our case, distortion

is Mean Squared Error (MSE)) , ii) computing the cost Cj

for performing routing and transform along every possible

tree given in Tf with distortion level D, and iii) choosing

the tree with minimum cost. This is an exhaustive search

over our set of feasible combinations of MST and SPT, and

should therefore provide the minimum cost combination.

Specifically, this is done as follows. Let C∗ be the

cost for the best tree found up to row j and initialize it as

C∗ = ∞. Also let i∗ index the row in Tf corresponding to

C∗ and initialize it as i∗ = 0. Then for each row j of Tf ,

with j = 1, 2, . . . , Nf , do the following. Define the par-

ent function ρj(1 : N) = Tf (j, 1 : N) and compute Cj =
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ComputeCost(ρj,D, TS) (a function that computes the cost

of doing transform and routing along the tree correspond-

ing to ρj with SPT TS overlayed on top). If Cj < C∗,

then C∗ = Cj and i∗ = j. Once all feasible trees are ex-

hausted, we can construct the tree T (which minimizes the

cost for routing and transform over all feasible combina-

tions of MST and SPT) using the parent function defined

by Tf (i∗). In the context of this paper, the cost to route

coefficient n to the sink equals the cost to forward coeffi-

cient n two hops along the tree resulting from ρj (i.e., cost

to route from n to ρj(ρj(n))) plus the cost to route it along

the shortest path from ρj(ρj(n)) to the sink. The function

ComputeCost(ρj,D, TS) simply returns the sum of those

costs for each node.

3.2 Heuristic Approximation Algorithm

For large N , the feasible set found in Section 3.1.1 can

still be very large. This makes the problem intractable for

large N , which motivates the need for a good heuristic al-

gorithm that approximates the minimum cost algorithm in

Section 3.1.

The main goal of a good heuristic should be to choose

links that provide a direct gain in coding efficiency only

if the resulting increase in routing cost does not offset the

gains achieved, so that a desirable balance of low cost rout-

ing and higher compression efficiency can be obtained. This

can be done reasonably well by starting from an initial tree

and searching one node at a time from nodes of greatest

depth (since these nodes will be further from the sink and

will benefit more from efficient coding) and decrementing

depth at each stage until all nodes are covered. In our case

we choose SPT as the initial tree in order to preserve low

routing costs, then for each node we simply determine if

the cost (as defined in Section 1, CT ) to use the next hop in

the MST is lower than the cost to continue along the next

hop in the current tree (e.g. SPT). If so, then the next hop

of such a node will be the next hop along the MST (rather

than the next hop along the SPT). This ensures that, for each

node, any direct gains in coding efficiency will not be off-

set by the resulting increase in routing cost. This is clearly

a greedy algorithm, and so can not guarantee that the opti-

mal combination of an MST and SPT will be found. But at

the very least, it will guarantee that the resulting tree pro-

vides lower cost transform and routing than a transform per-

formed along the SPT.

This algorithm is described formally in Algorithm 1. The

final tree we seek is T and initially T = TS. This allows

us to greedily choose an edge in TM over an edge in TS

only if the direct gain in coding efficiency offsets the in-

crease in routing cost. Naturally, the validity of the tree that

results from switching to an edge in TM is checked before

further steps are taken. We also say that a parent function

ρj yields a feasible tree if the tree defined by ρj is a con-

nected, acyclic graph. The algorithm simply searches each

resulting tree and returns the lowest cost tree it finds as T .

Algorithm 1 Find Heuristic Tree

1: T = TS and ρj = ρS
j , ∀j ∈ I

2: k = max(depth) and C = ∞
3: while k ≥ 1 do

4: Ik = {m ∈ I : depth(m) = k}
5: for each n ∈ Ik do

6: ρt
n = ρM

n and ρt
j = ρj , ∀j ∈ I\{n}

7: if ρt
j yields a feasible tree then

8: Ct = ComputeCost(ρt,D, TS)
9: if Ct < C then

10: Update T and ρj using ρt
j

11: C = Ct

12: end if

13: end if

14: end for

15: k = k − 1
16: end while

17: return T

4 EXPERIMENTAL RESULTS

For our experiments, we used simulated data generated

from a second order AR model and empirical data from a

real wireless sensor network deployment. The simulation

data consists of two 600× 600 2D processes generated by a

second order AR model with low and high (spatial) data

correlation (ergo, nodes that are a certain distance away

have higher inter-node correlation for the high correlation

data than for the low correlation data). The nodes were

placed in a 600 × 600 grid, with node measurements cor-

responding to the data value from the associated position in

the grid. The set of empirical data is from a subset of 19

sensors from a habitat monitoring deployment [13] on the

Great Duck Island. The dataset used is for 200 temperature

readings taken at each sensor location on August 1, 2003

at roughly 5 minute intervals. We also generate smooth

pseudo-stationary data by applying a fixed set of horizontal

and vertical lines of discontinuity to the same simulated 2D

data as above. The data along one side of a line of discon-

tuity is made significantly different than the corresponding

data along the other side to ensure that data correlation is

not fully isotropic throughout the network. Such data will

be locally stationary (within the boundaries of lines of dis-

continuity), but will be highly non-stationary near lines of

discontinuity.

The specific parameters used in our experiments are as

follows. We use the same edge costs for transform opti-

mization found in [5] and our transform optimization only
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allows for up to 2-levels of decomposition. For our joint

routing and transform optimization methods, the SPT used

is based on edges defined by squared inter-node distances

and the MST is based on edges defined by inter-node data

correlation (i.e. edge weights given by w(n, m) = 1 −
rn,m). The performance metrics considered are the total

cost (detailed in Section 3.1.2) and the Mean Squared Er-

ror (MSE) between the original and reconstructed data (ex-

pressed in terms of Signal to Noise Ratio (SNR)). These

are only empirical Cost-Distortion curves where bits are al-

located to sensors using standard techniques in [9], where

allocations are based on the variances of wavelet coeffi-

cients. Basically, we use a set of training data to compute

wavelet coefficients, compute the variances of these coeffi-

cients, and then apply these variances to the methods in [9].

Section 4.1 compares our proposed transform against

the transforms in [3, 20] for two different network config-

urations, assuming SPTs only. This shows that our pro-

posed transform outperforms existing methods in terms of

a cost-distortion trade-off and also that the optimal trans-

form of Section 2.3 performs the best. Section 4.2 com-

pares the compression performance (in a Rate-Distortion

(RD) sense) of an MST against the optimal tree (also in

RD sense) found by searching over all possible spanning

trees. This shows that the MST is near, but not necessarily,

optimal for exploiting correlation. This motivates the need

for more sophisticated tree construction methods to use as a

starting point for our algorithms. Section 4.3 evaluates the

performance of our proposed joint routing and transform

optimization algorithms, where the cost-distortion curves

shown compare 1-level transforms run on an SPT, the min-

imum cost trees (with SPT overlay), and the trees gener-

ated by our heuristic (also with SPT overlay). These re-

sults show that gains in cost-distortion performance can be

achieved by using appropriate combinations of an MST and

SPT. Our results also show that our proposed heuristic trees

are comparable to our minimum cost trees for randomly de-

ployed 40-node networks using simulation data and also for

the real 19 node network.

4.1 Evaluation of Proposed Transform

The experiments in this section compare the perfor-

mance of our proposed transform against the optimal path-

wise transform in [3] and 1-level of decomposition of the

transform in [20]. Our transform is performed along a short-

est path routing tree, as is the transform in [3]. The struc-

ture of the transform in [20] invokes a particular localized

routing structure where many nodes must transmit data in a

bi-directional manner to fully compute the transform, a cost

we include with the routing cost. Once transform coeffi-

cients for [20] are fully computed, they are forwarded along

the shortest path routing tree to the sink.

Figure 7 shows the performance comparisons for two

sample 100 node deployments for the uniform and clustered

network on the left and right respectively. For both net-

works, our proposed transform outperforms those in [5,20].

As expected, our optimal transform is also superior to us-

ing either our 1-level or 2-level transform throughout the

network. In any case, our transform outperforms those

in [5, 20] since the unidirectional computation eliminates

costly backward transmissions without sacrificing critical

sampling and 2D data de-correlation.

The transform in [20] actually performs worse than raw

data transmission for higher rates (costs). This is consis-

tent with experimental results in [19] where a similar ver-

sion of the transform in [20] actually consumes more energy

than a raw data dump for networks of 200 or fewer nodes.

However, the authors do provide a number of nodes beyond

which the transform outperforms raw data dump. As ex-

plained in [19], for these “smaller” networks, the amount

of energy savings gained in de-correlating data is not suffi-

ciently high to offset the local communication cost incurred

for distributed transform computation.

4.2 Evaluation of MST Performance

As discussed in Section 3, the MST is not necessarily the

best tree to minimize the distortion (i.e. maximize SNR) for

a given rate. This is mainly due to its lack of merges (as

compared to an SPT). For the sake of computational fea-

sibility, we consider a small 20 node network as shown in

Figures 3 and 4 where nodes are indexed by the number

next to them. We perform an exhaustive search of all possi-

ble spanning trees for the best RD tree and the performance

curves are shown in Figure 5. For each fixed rate we com-

pute the distortion for each tree and choose the tree with the

minimum distortion.
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and RD Optimal Tree

The optimal RD tree shown in Figure 4 has one more

merge (node 12) than the MST shown in Figure 3 and also

has a different merge with different neighbors (node 17),

resulting in reconstruction quality shown in Figure 5. The

increase in quality is not so significant in this case, but it

may be more significant as the network density grows. The

fact that adding a merge improves performance is consistent

with our previous discussion.

These results suggest that having more merges at a given

node will generally provide better performance. This is rea-

sonable if the data considered is spatially stationary and

is highly correlated across space. As discussed before,

adding more neighbors to a predict node will tend to pro-

duce smaller residual energy. Conversely, an update coeffi-

cient (low pass) will provide a smooth approximation to the

original data and so adding more residues (i.e. predicts) can

increase smoothness which would also reduce the number

of bits. All things considered, an MST can provide a good

approximation to the optimal RD tree but it is clearly not

optimal, mainly because it does not have many merges and

because the merges it does have may not occur in the right

places in the tree. We are currently investigating the design

of trees that can eliminate the shortcomings of MSTs.

4.3 Evaluation of Optimization Algo-
rithms

The experiments in this section compare the perfor-

mance of our joint optimization algorithm against our

heuristic method and a transform performed along an SPT.

For the sake of computational tractability, we only run our

joint optimization algorithm for networks of 40 nodes and

for the real 19 node network. We also only compare the

performance of 1-level transforms.

The performance comparisons for our optimization

methods and the SPT is shown in Figure 8 for a sample

uniform and clustered network. In both cases the heuris-

tic and minimum cost tree both outperform the SPT. This

is because both trees utilize shorter edges in the MST for

nodes further away from the sink, which is reasonable since

it is worthwhile for distant nodes to use edges that provide

more de-correlation in exchange for longer paths. Further-

more, the heuristic algorithm finds trees that are very close

to the minimum cost trees in both cases. Thus, it provides

a reasonable approximation to our minimum cost algorithm

for these networks. The heuristic algorithm actually finds

the minimum cost tree for the real data network as shown in

Figure 9.

To show that this heuristic algorithm still provides per-

formance improvements for different numbers of randomly

deployed nodes and varying levels of data correlation, we

compare the average costs of uniformly deployed networks

for high and low data correlation. Figure 6 plots the ra-

tio of the cost for using a transform (along both an SPT

and our heuristic tree) and the cost of transmitting raw mea-

surements directly to the sink (along an SPT) averaged over

multiple random networks. The solid lines denote this rela-

tive cost for the SPT and the dashed lines denote the relative

costs for our heuristic trees. Even on the average, it is clear

that the transform along our heuristic tree still outperforms

our transform along the SPT.

It is also worth noting that the reduction in relative cost

that our heuristic tree provides over an SPT is smaller for

the low correlation data (only about 1-2%) than for the high

correlation data (about 3-8%). This is reasonable since link-

ing nodes closer together will not improve coding efficiency

much if data is not very well correlated. This is also con-

sistent with the findings in [14]. In the case of our pseudo-

stationary data (which is only locally stationary), the reduc-
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tion in cost over an SPT is a bit higher (about 4-10%) for all

numbers of nodes. However, there is a point beyond which

the reduction for the pseudo-stationary data approaches that

for the high correlation stationary data (around 200 nodes).

This makes sense since there are many discontinuities in our

pseudo-stationary data, so that the number of nodes around

these discontinuities will increase as the network becomes

denser, thereby mitigating the gains in coding efficiency

that can be attained near discontinuities. The reduction in

cost (with respect to an SPT) is also highest for the non-

stationary data, mainly because there can be edges (n, m)
in the MST that do not cross lines of discontinuity but in the

SPT the corresponding edge (n, m̃) may do so. It would ob-

viously be inefficient to filter and encode data across lines of

discontinuity and using alternate edges in the MST allows

us to avoid such situations (whereas if only a single tree is

used we can not avoid this), hence the increase in cost re-

duction. Clearly these reductions in cost are diminishing

for larger networks (more than 200 nodes) for all data con-

sidered, mainly because nodes will already be spaced close

together and so data correlation is already inherently higher

across any possible routing tree. The inter-node distances

are also smaller on average, which mitigates the effect of

local communication cost on total cost.

0 25 50 75 100 150 200 300 400 500 600
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Num. Of Sensors

R
e

la
ti
v
e

 C
o

s
t

Ratio of Cost for Various Trees to Cost for Raw Tx.

Low Corr. SPT
Low Corr. Heuristic
High Corr. SPT
High Corr. Heuristic
Non−Stationary SPT
Non−Stationary Heuristic

Figure 6. Relative Cost Comparisons

5 CONCLUSIONS

We have presented a framework for finding a routing

topology and transform that jointly minimizes energy con-

sumption in an irregular 2D sensor network. A heuristic

routing optimization algorithm was also developed that per-

forms comparably to our proposed optimization algorithm.

Simulation results have verified that our jointly optimized

routing topology and transform always performs best across

various network sizes and different types of data. Our re-

sults are also consistent with our intuition that a shortest

path tree will not always provide the best trade-off between

distortion and energy consumption, and is therefore not al-

ways best from a joint routing and compression standpoint.

A number of issues can still be addressed. An optimal

combination of a shortest path routing tree and a minimum

spanning tree may not always provide the lowest cost rout-

ing tree. Instead, it may be better to design trees that di-

rectly maximize data correlation between adjacent nodes

while keeping routing costs to a minimum. Additionally,

our proposed lifting filters only exploit correlation effec-

tively for very smooth fields. The de-correlation capability

of our transform could be increased by designing filters that

adapt to piece-wise planar data. More realistic cost func-

tions could also be incorporated into our system design to

reflect the performance of a real system more accurately.
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(b) Performance Comparisons (Uniform)
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Figure 8. Performance Comparisons of SPT, Heuristic, and Minimum Cost Tree for Simulated Data
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Figure 9. Performance Comparisons of SPT, Heuristic, and Minimum Cost Tree for Real Data
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