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Lifting Factorization-Based Discrete Wavelet Transform Architecture Design
Wenqing Jiang and Antonio Ortega

Abstract—In this paper, two new system architectures,overlap-
statesequential andsplit-and-mergeparallel, are proposed based
on a novelboundary postprocessingtechnique for the computation
of the discrete wavelet transform (DWT). The basic idea is to intro-
duce multilevel partial computations for samples near data bound-
aries based on afinite state machinemodel of the DWT derived
from the lifting scheme. The key observation is that these par-
tially computed (lifted) results can also be stored back to their orig-
inal locations and the transform can be continued anytime later as
long as these partial computed results are preserved. It is shown
that such an extension of the in-place calculation feature of the
original lifting algorithm greatly helps to reduce the extra buffer
and communication overheads, in sequential and parallel system
implementations, respectively. Performance analysis and experi-
mental results show that, for the Daubechies (9,7) wavelet filters,
using the proposedboundary postprocessingtechnique, the min-
imal required buffer size in the line-based sequential DWT algo-
rithm [1] is 40% less than the best available approach. In the par-
allel DWT algorithm we show 30% faster performance than ex-
isting approaches.

Index Terms—Boundary postprocessing, discrete wavelet
transform, overlap-state, parallel algorithm, sequential algorithm,
split-and-merge.

I. INTRODUCTION

E FFICIENT system architecture design for the discrete
wavelet transform (DWT) has received a lot of attention

recently [2]–[4], [1], [5]–[8] due to the success of DWT-based
techniques in areas as diverse as signal processing, digital
communications, numerical analysis, computer vision and
computer graphics [9]. Two important parameters have been
used to measure the efficiency of practical DWT system
designs: 1) thememorynecessary for the DWT computation
(mostly in sequential algorithms) and 2) thecommunication
overhead required by parallel DWT algorithms. As a matter
of fact, memory efficiencyis one major design factor for
wavelet-based image compression applications in printers,
digital cameras and space-borne instruments where large size
memory leads to high cost and demands more chip design area
[1], [10], [11]. Similarly,communication efficiencyis critical to
the success of parallel DWT systems built upon the network of
workstations (NOWs) or local area multicomputers (LAMs),
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since in these systems cheap but slower communication links
are used (as compared with dedicated parallel systems) [12],
[8], [13], [14].

The major difficulty in achieving an efficient DWT architec-
ture design (both in terms of memory and communication) is
that, with the exception of trivial Haar filters, the DWT is not a
block transform. When data has to be processed one block (or
one image scanline) at a time in sequential systems [1], [6] or
partitioned over multiple processors in parallel systems [4], [8],
correct DWT computation near data boundaries requires extra
buffer and/or extra communication compared to that needed for
a block transform such as the discrete cosine transform (DCT).
In standard FFT-based filtering approaches, such a boundary
issue can be easily handled with appropriate data overlapping
(e.g., theoverlap-saveor overlap-addapproaches [15]). How-
ever, because the DWT consists ofrecursivefiltering operations
on multileveldownsampleddata sequences, direct application
of the overlapping techniques can be very costly in terms of
memory and/or inter-processor communication.

Consider, for example, a-level wavelet decomposition of a
-point input sequence to be performed using two processors

(assuming is even for simplicity). In this case, either the two
processors are given sufficient overlapped data to carry on the
whole computation without communicating with each other, or
alternatively, they have to communicate samples after each level
of the decomposition has been computed. The first approach,
overlapping, requires that input data near the block boundaries
be given to both processors. Since each processor has to com-
pute its own transform for multiple decomposition levels, this
overlap can be quite large. As given in the analysis of the spa-
tially segmented wavelet transform (SSWT) by Kossentini [16],
the buffer size for a -level decomposition of a -point se-
quence is ( is the filter length). As one
can see, the overlap increases exponentially with the increase
of decomposition level , which can become significant if long
wavelet filters are used and the number of levels of decompo-
sition is large. Notice that the in-place lifting algorithm [17] is
already assumed to be used in our work and the focus of this
paper is on the reduction of memory at boundaries below the
level, , required in a standard lifting approach.
To the best of our knowledge, reduction of boundary memory
has not been addressed within a lifting framework until recently.

As one alternative, theoverlappingtechnique has been also
applied at each decomposition level rather than once for all as in
SSWT. Examples of this approach include the recursive pyramid
algorithm (RPA) by Vishwanath [3], and the reduced line-based
compression system by Chrysafiset al. [1], [10]. These ap-
proaches reduce significantly the buffer size to
for a -level decomposition of a -point sequence. Unfortu-
nately, this is still a quite large overlap for some applications,
for example, the line-based wavelet image compression system
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Fig. 1. Example dataflow chart of a three-level wavelet decomposition. Solid
lines: completely transformed data. Dashed lines: boundary samples from the
neighboring block. Operations 1,3,5: communicate boundary data samples to
neighboring blocks. Operations 2,4,6: transform for current level.

described in [1], [10]. In that system, image lines are stored in
memory only while they are used to generate output coefficients
and are released from memory when no longer needed. This
leads to and the amount of memory is
image lines (due to line downsampling) at each stage. Consider
a color image of size , such that each color com-
ponent sample is stored as a 4 bytes floating point number for
DWT computation. In this case, one image scanline requires 48
kB. Using the Daubechies (9,7) wavelet filterbank ( ), for
a three-level decomposition, the total memory would be 588 kB.
In this paper, we propose a novel technique which can help to
reduce the memory to only 296 kB.

In the second approach,nonoverlapping,to parallel DWT
implementation, input data is not overlapped so the memory
requirement is relaxed. But boundary samples need to be
exchanged at each decomposition level. Such an approach is
used, for example, in the design of mesh and hypercube parallel
DWT architectures by Fridmanet al. [4]. Their analysis shows
that, for a -level wavelet decomposition, data exchanges
are needed between neighboring processors [4] (see Fig. 1 for
a three-level example). In order to reduce the communication
overhead, Yanget al. [12] proposed to use boundary extensions
in their DWT system configured from a cluster of SGI worksta-
tions. This, however, computes incorrect wavelet coefficients
near data boundaries, which causes performance degradation
in low-bit rate image coding applications [18].

This provides the motivation to study the problem of block-
based DWT computation and its implications on memory and
communication overhead in practical system designs. In this
paper, we present a novel technique,boundary postprocessing,
which can help to achieve significant memory and communica-
tion savings. The idea is motivated by the standardoverlap-add
technique whichfirst performs filtering operations on neigh-
boring data blocks independently and completes the computa-
tion laterby summing the partial boundary results together [15].
We extend this idea to the case of multilevel wavelet decomposi-
tions using the lifting framework formulated by Daubechies and
Sweldens [17]. In the proposed approach, the DWT is modeled
as afinite-state machine, in which each sample is updated pro-
gressively from the initial state (the original data sample) to the
final state (the wavelet coefficient) with the help of samples in
its local neighborhood. Obviously, samples near data boundaries

cannot be fully updated due to lack of data from neighboring
blocks. Rather than leaving them unchanged, as was done in
previous approaches, we propose to update these samples into
intermediate states and preserve these partially transformed re-
sults (state information) for later processing. The FSM model
thus ensures that correct transform can still be achieved for these
boundary samples using the preserved state information. Be-
cause of the partial computation and the state preservation, we
will show that the buffer size in sequential algorithms and the
communication overhead in parallel algorithms can be reduced.

Some recent works have also explored (independently of our
work) the use of lifting factorizations for memory savings in
sequential DWT implementations [19]–[21]. The novelty of
our work is that, first, we introduce partial computations for
boundary samples at multiple decomposition levels for memory
savings and second, we propose that processors exchange
data after multilevel decompositions for communication sav-
ings. Application of the proposedboundary postprocessing
technique results in two new DWT system architectures, the
overlap-statesequential, and thesplit-and-mergeparallel. We
will show how the proposed technique can be used to reduce
the memory requirement and the interprocessor communication
overhead in the architecture designs.

We mention that, throughout this paper, we focus on the
Mallat tree-structured [22] multilevel octave-band wavelet de-
composition system with critical sampling using a two-channel
wavelet filterbank. The extensions of our work to other DWT
systems, includingstandardDWTs [23], multichannel wavelet
filterbank, and wavelet packet decompositions are straight-
forward. The rest of the paper is organized as follows. In the
next section, thefinite state machinemodel is introduced for
the DWT and theboundary postprocessingtechnique for the
transform near block boundaries is presented. The proposed
sequential and parallel architectures are given in Sections III
and IV, respectively, along with performance analysis and
experimental results. Section V concludes our work.

II. FINITE-STATE MACHINE MODEL FORDWT

In this section, we first introduce the FSM model for DWT
based on the lifting factorization. Then we discuss a postpro-
cessing technique for DWT computation near block boundaries.

A. The Finite-State Machine Model

The polyphase matrix of any FIR wavelet filterbank has
a factorization form ([17, Theorem 7]) as

(1)

where are Laurent polynomials, which are called
predictionandupdatingoperations, respectively. Without loss
of generality, we use to represent the elementary matrices.
That is

or

Let us consider the time domain filtering operations corre-
sponding to . By definition, we have
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where are the two polyphase compo-
nents of filter . Each corresponds to two time domain
filters

or

(2)
where and are the low- and high-pass filters in
the analysis filterbank, respectively. In time domain, this
corresponds to In time domain, this corresponds to

(3)

For a -point input sequence (assume is even),
and . The state transition in vector

form for the upper triangular elementary matrix (similar form
for the lower triangular elementary matrix) is

...

...

...

...

Obviously, each and every elementary matrix in the fac-
torization of the polyphase matrix can be modeled as such
a state transition process.

Consider the input as a column vector, and define the in-
termediate states in the process of transformation

, where is the result of applying the
operation to , and where the initial input is

. There are two important observations.

1) Every time we generate , we only need to store this
set of values, i.e., we do not need to know any of the other

, for , in order to compute the output (the final
wavelet coefficients).

2) Each sample is updated using samples only from the
other polyphase component and itself. Consequently,
each sample can be updatedindependently, fully or
partially, and written back to its original location, an
extended in-place computation feature of the lifting
algorithm. For example, the updating of (may only
be partially updated because insufficient boundary data
is available) will not affect the updating of at this
stage.

For the polyphase matrix factorization, this requires that the
elementary matrix can only be in the form of lower/upper
triangular matrices with constants on the diagonal entries. This
key property of the lifting factorization guarantees that the
FSM structure applies. Thus, the wavelet transform based on
the polyphase factorization can be modeled as afinite state
machine, as depicted in Fig. 2, where each elementary matrix

updates the FSM state to the next higher level .
The significance of such a FSM model is that the transform

Fig. 2. State transition diagram of DWT as a FSM.

Fig. 3. State transitions across block boundary usinge . (a) Partial computa-
tions near boundaries. (b) After updating, boundary samples stay in intermediate
states. The “new boundary” separates fully updated output coefficients from
partially computed ones.

can be stopped at any intermediate stage. As long as the state
information is preserved, the computation can be continued at
any later time. This is the key reason that one can defer the
transform for block boundary samples and still can obtain the
correct result.

B. Boundary Postprocessing

In Fig. 3, we show oneupdating operation for input
sequence where even-indexed samples are updated
as . Denote

( ), then

where and are respectively the contributions from
the anticausal and causal part of filter.

Now let us consider the computations near the block
boundary at point . Take sample , for example. It
is obvious that it cannot be updated into state because
the anticausal filtering result cannot be computed due
to lack of data samples from the other block, i.e., samples

, as shown in Fig. 3(a).
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A typical approach used in most existing DWT algorithms is
to buffer and wait until the future samples are available,
see, e.g., [3], [1], [4]. This direct buffering approach, however,
forces one also to buffer whatever samples are necessary in
the current block for the computation of , i.e., samples

in this case. Clearly, for the future
updating of sample , the buffer should at least be large
enough to hold three samples.

Observing the fact that is readily available (all sam-
ples needed are in the same block as ), we propose to
first update into and then buffer this
partially computed result at the same location of . Notice
that can be over-written (i.e., in-place computation) be-
cause no samples in the current block or the other block need the
original value for their updating operations as described
before. As soon as samples
become available, can be computed and can be
updated into . Clearly,
in this case we only need a one sample size buffer to store the
partially computed result at sample locationfor the future up-
dating. Thus compared to the case of direct buffering of ,
buffering partially transformed coefficients helps to reduce the
memory requirement.

The same analysis also applies for other samples at both
sides of the block boundary. The end state after the application
of is shown in Fig. 3(b). As one can see, the physical
boundary splits into two and extends inwards in both blocks.
The next stage state transition will operate against these two
new boundaries. Notice that locations of these two new bound-
aries can be derived easily using the filtering tap information

and before the stage updating operation. As a matter
of fact, given the lifting factorization of the polyphase matrix

, one knows exactly the end state number of each sample
in the input data sequence. Therefore, the state number of each
sample needs not to be stored for future processing.

Consequently, the buffer size at stage, , is only deter-
mined by the number of samples that need to be stored. For
given filters , where is the number
of taps of the longest of the two filters. Assuming a total of
state transitions, then the total buffer size is .
For the (9,7) filters using the factorization given in [17], one
can obtain and thus . That is, only
four partially transformed samples need to be preserved rather
than seven samples as before. We emphasize that the buffer size
reduction is based on a typical assumption in in-place lifting
algorithms that each sample (including original data samples
and partially transformed samples) needs the same amount of
storage space. Since lifting factorization of a given polyphase
matrix is not unique, one would choose the factorization which
gives the minimum if the amount of memory is limited.

We thus call this approach of preserving intermediate state
information and completing the transform later theboundary
postprocessingtechnique. Fig. 4 shows an example three-level
wavelet decomposition using the proposed technique. Com-
pared to the approach shown in Fig. 1, one can see that, only
one data exchange is necessary between the two blocks. The
amount of data exchanged is also reduced due to the partial
computation as described above.

Fig. 4. Example dataflow chart of a three-level wavelet decomposition using
the proposedboundary postprocessingtechnique. Solid lines: completely
transformed data. Dashed lines: partially transformed data. Operation 1: each
block transforms its own allocated data independently and state information
is buffered. Operation 2: state information is communicated to neighboring
blocks. Operation 3: complete transform for the boundary data samples.

Fig. 5. The proposed sequential architecture for DWT.

III. OVERLAP-STATE SEQUENTIAL ARCHITECTURE

In Fig. 5, the proposedoverlap-statesequential DWT system
architecture is shown. The input data sequence is segmented into
nonoverlapping blocks of length and fed into the DWT/FSM
one block at a time. The state information is overlapped between
consecutive blocks. The computed wavelet coefficients are con-
catenated together to give the final result.

As shown in the last section, the memory requirement de-
pends on the specific lifting factorization used in the implemen-
tation. Table I provides memory requirements for commonly
used wavelet filterbanks, including the Daubechies (9,7) filters,
the (2,10) filters, and the cubic B-Splines CDF(4,2) filters; their
factorizations can be found in [24]. A direct extension of 1-D
DWT becomes the strip-sequential 2-D DWT as shown in Fig. 6,
where the input data is transformed one strip at a time with
state information overlapped only vertically (boundary exten-
sions are used horizontally). The buffer sizefor the state in-
formation in a -level decomposition can be computed as

(4)
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TABLE I
COMPARISON OFMEMORY REQUIREMENTS IN 1-D DWT

N: SEQUENCELENGTH. L: FILTER LENGTH. J: DECOMPOSITIONLEVEL.
B: NUMBER OF PARTIALLY COMPUTED SAMPLES AT EACH LEVEL

Fig. 6. The strip-sequential 2-D DWT system on data of sizeW � H . The
input is transformed one strip at a time from top to bottom. State information is
overlapped vertically only.

where is the data width (subscript “ ” stands for
bottom side of the data strip) is the number of rows partially
computed at level.

A special case of this strip-sequential 2-D DWT system is the
line-based DWT system described in [1], [10], which assumes
all completely transformed coefficients are not buffered. Based
on this assumption, for one level decomposition using a-tap
filterbank, only rows need to be buffered in SSWT or
RPA (if counting the two new input rows, the total buffer size
should be ). The memory requirement in the proposed system
is always upper-bounded by that of RPA and can have substan-
tial reduction (approximately 40%) for commonly used wavelet
filterbanks, as shown in Table II. For example, using the (9,7)
filters, the proposed system only needs to buffer four rows (i.e.,

) of data at each level while RPA needs to buffer 7 rows
of data. The constant is due to line downsam-
pling at each decomposition level. Refer to [24] for more details
on memory requirements and other 2-D DWT systems (e.g., the
block sequential system).

IV. SPLIT-AND-MERGEPARALLEL ARCHITECTURE

In Fig. 7, the proposed parallel DWT architecture is shown.
The input data is uniformly segmented into nonoverlapping

TABLE II
COMPARISON OFMEMORY REQUIREMENTS IN LINE-BASED SYSTEMS

W: ROW WIDTH. B: NUMBER OF PARTIALLY COMPUTED SAMPLES

AT EACH LEVEL. � = (2 � 1). � = (1� 2 )

Fig. 7. Proposed parallel architecture for DWT.

blocks and allocated onto available processors. Each pro-
cessor computes its own allocated data up to the required
wavelet decomposition level. This stage is calledSplit. The
output from this stage consists of: 1) completely transformed
coefficients and 2) the state information (partially updated
boundary samples). In the second stage,Merge, a one-way
communication is initiated and the state information is trans-
fered to the neighboring processors. The state information from
the neighbor processor is then combined together with its own
corresponding state information to complete the whole DWT
transform. This is further illustrated by Fig. 8, where it can be
seen how the operations in each processor are carried as far as
possible in the split operation, while in the merge operation the
processor will combine the available information to update the
partially computed outputs.

A. Communication Delay

The communication delay is the time used for communicating
data between adjacent processors. Let be the communi-
cation setup time, e.g., the handshake time in an asynchronous
communication protocol. For a level wavelet decomposition,
the total communication [4] is

(5)

where is the time to transfer one data sample and
is the number of boundary samples exchanged to adjacent pro-
cessor at each level. In the proposed approach, however, only
one communication setup is necessary to communicate the state
information between adjacent processors. Furthermore, the size
of the state information at each decomposition levelis upper
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Fig. 8. An examplesplit-and mergeparallel DWT architecture using the Daubechies (9, 7) filters for two level decompositions. Shaded boxes represent partially
updated samples to be exchanged between processors in themergestage. Notice that samples {25, 26, 27} are left unprocessed for clarity and the block boundary
can be at any one of these three samples.

bounded by [24]. So the upper bound of the communi-
cation delay is

(6)

As one can see, using theboundary postprocessingapproach,
the communication overhead for link setup is reduced. Notice
that the comparison is based on the assumption that all data
samples which have to be buffered and exchanged (be it an orig-
inal data sample or a partially computed intermediate sample)
require the same storage space. This is a reasonable assump-
tion when the in-place lifting algorithm is used to compute the
wavelet transform. The reduction of the communication time
certainly contributes to the total DWT computation time reduc-
tion. However, we mention that the overall contribution depends
on the relative weight of the communication overhead in the
total DWT computation. In general, more gain can be achieved
for parallel systems with slow communication links.

To test the efficiency of the proposed parallel architecture,
four different DWT algorithms are implemented using two
SUN ULTRA-1 workstations running the LAM 6.1 parallel
platform developed in Ohio Supercomputer Center [14]. The
algorithms compared are the sequential lifting algorithm,
parallel standard algorithm (subsample-filtering approach),
parallel lifting scheme, and our proposed parallel scheme. The
test wavelet filters are the (9,7) filters and the test image is
the Lena grayscale image of size . A 2-D separable
wavelet transform is implemented with strip data partition [4]
between processors (refer to Fig. 6). We implemented all the al-
gorithms ourselves with no specific optimizations on the codes

TABLE III
DWT RUNNING TIME AND SPEEDUP OFDIFFERENTPARALLEL ALGORITHMS

(IN SECONDS). S: SEQUENTIAL. P: PARALLEL . L: LIFTING

except for the compiler optimization. Further improvement of
algorithms performances is certainly possible through more
rigorous code optimizations. To compare the performances, the
relative speedup is computed and the averaged
results over 50 running instances for 1–5 decomposition levels
are given in Table III.

It can be seen from the results that our proposed parallel algo-
rithm can significantly reduce the DWT computation time even
compared with the fastest available parallel algorithm, i.e., the
parallel lifting algorithm. Notice that the improvement is not
linear with the increase of the decomposition level. The reason
is that, though the communication overhead increases with the
decomposition level, the total numerical computation also in-
creases. Another observation is that the improvement of the pro-
posed algorithm at one level decomposition is even greater than
that at multiple level decompositions. It suggests that, in our
experimental system setup, the gain due to saved amount of ex-
changed data is greater than that due to saved number of com-
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munication setups, though, future work is needed to further in-
vestigate this issue.

V. CONCLUSIONS

To conclude, we have proposed a newboundary post-
processingtechnique for the DWT computation near block
boundaries. Performance analysis and experimental results
show that the auxiliary buffer size for boundary DWT and the
communication overhead can be significantly reduced by using
the proposed technique. The results presented here can be easily
extended to 2-D or higher dimensional wavelet transforms by
using separable transform approaches [24].
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