IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 5, MAY 2001 651

Lifting Factorization-Based Discrete Wavelet Transform Architecture Design

Wenging Jiang and Antonio Ortega

Abstract—in this paper, two new system architecturespverlap-  since in these systems cheap but slower communication links

statesequential andsplit-and-mergeparallel, are proposed based are used (as compared with dedicated parallel systems) [12],
on a novelboundary postprocessinggchnique for the computation 18], [13], [14].

of the discrete wavelet transform (DWT). The basic ideais to intro- . - . L - .
duce multilevel partial computations for samples near data bound- The major difficulty in achieving an efficient DWT architec-

aries based on dinite state machinemodel of the DWT derived ture design (both in terms of memory and communication) is
from the lifting scheme. The key observation is that these par- that, with the exception of trivial Haar filters, the DWT is not a
tially computed (lifted) results can also be stored back to their orig- plock transform. When data has to be processed one block (or
inal locations and the transform can be continued anytlme.later as gne image scanline) at a time in sequential systems [1], [6] or
long as these partial computed results are preserved. It is shown -, . .

that such an extension of the in-place calculation feature of the partitioned over mUIt'pI? processors in paraIIeI_ Sy5t6m$ 41, [8l,
original lifting algorithm greatly helps to reduce the extra buffer ~ correct DWT computation near data boundaries requires extra
and communication overheads, in sequential and parallel system buffer and/or extra communication compared to that needed for
implementations, respectively. Performance analysis and experi- a block transform such as the discrete cosine transform (DCT).
mental results show that, for the Daubechies (9,7) wavelet filters, In standard FFT-based filtering approaches, such a boundary

using the proposedboundary postprocessingechnique, the min- . . X . .
imal required buffer size in the line-based sequential DWT algo- 1SSU€ can be easily handled with appropriate data overlapping

rithm [1] is 40% less than the best available approach. In the par- (€.9., theoverlap-saveor overlap-addapproaches [15]). How-
allel DWT algorithm we show 30% faster performance than ex- ever, because the DWT consists@fursivefiltering operations
isting approaches. on multileveldownsamplediata sequences, direct application
Index Terms—Boundary postprocessing, discrete wavelet Of the overlapping techniques can be very costly in terms of
transform, overlap-state, parallel algorithm, sequential algorithm, memaory and/or inter-processor communication.
split-and-merge. Consider, for example, &-level wavelet decomposition of a
N-point input sequence to be performed using two processors
(assumingV is even for simplicity). In this case, either the two
processors are given sufficient overlapped data to carry on the
E FFICIENT system architecture design for the discreignole computation without communicating with each other, or
wavelet transform (DWT) has received a lot of attentiojternatively, they have to communicate samples after each level
recently [2]-{4], [1], [5]-[8] due to the success of DWT-baseg the decomposition has been computed. The first approach,
techniques in areas as diverse as signal processing, digj@riapping requires that input data near the block boundaries
communications, numerical analysis, computer vision amg given to both processors. Since each processor has to com-
computer graphics [9]. Two important parameters have begfie its own transform for multiple decomposition levels, this
used to measure the efficiency of practical DWT syste@yerlap can be quite large. As given in the analysis of the spa-
designs: 1) thenemorynecessary for the DWT computationjg|ly segmented wavelet transform (SSWT) by Kossentini [16],
(mostly in sequential algorithms) and 2) tkemmunication tne puffer size for a/-level decomposition of av-point se-
overhead required by parallel DWT algorithms. As a mattfuence iV + (27 — 1)(L — 2) (L is the filter length). As one
of fact, memory efficiencyis one major design factor for can see, the overlap increases exponentially with the increase
wavelet-based image compression applications in printegsgecomposition leve¥, which can become significant if long
digital cameras and space-borne instruments where large ${z&elet filters are used and the number of levels of decompo-
memory leads to high cost and demands more chip design agg@n is large. Notice that the in-place lifting algorithm [17] is
[1], [10], [11]. Similarly, communication efficiends critical to  5)ready assumed to be used in our work and the focus of this
the success of parallel DWT systems built upon the network Béper is on the reduction of memory at boundaries below the
workstations (NOWSs) or local area multicomputers (LAMS)eye|, (27 — 1)(L — 2), required in a standard lifting approach.
To the best of our knowledge, reduction of boundary memory
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Block 1 @ Block 2 cannot be fully updated due to lack of data from neighboring
blocks. Rather than leaving them unchanged, as was done in
previous approaches, we propose to update these samples into
intermediate states and preserve these partially transformed re-
sults (state information) for later processing. The FSM model
thus ensures that correct transform can still be achieved for these
boundary samples using the preserved state information. Be-
cause of the partial computation and the state preservation, we
Level3 @ will show that the buffer size in sequential algorithms and the
communication overhead in parallel algorithms can be reduced.
Some recent works have also explored (independently of our
Fig. 1. Example dataflow chart of a three-level wavelet decomposition. Solfi0rK) the use of lifting factorizations for memory savings in
lines: completely transformed data. Dashed lines: boundary samples from ggquential DWT implementations [19]-[21]. The novelty of
ne!ghboring block. Operati(_)ns 1,3,5: communicate boundary data sampleﬁ@r work is that, first, we introduce partial computations for
neighboring blocks. Operations 2,4,6: transform for current level. . "
boundary samples at multiple decomposition levels for memory
savings and second, we propose that processors exchange
described in [1], [10]. In that system, image lines are stored ¢ata after multilevel decompositions for communication sav-
memory only while they are used to generate output coefficienfgys. Application of the proposetioundary postprocessing
and are released from memory when no longer needed. Thighnique results in two new DWT system architectures, the
leads taV = 0 and the amount of memory#1—-2-7)(L-2)  overlap-statesequential, and theplit-and-mergeparallel. We
image lines (due to line downsampling) at each stage. Consiggfl show how the proposed technique can be used to reduce
a color image of sizd096 x 4096, such that each color com-the memory requirement and the interprocessor communication
ponent sample is stored as a 4 bytes floating point number fferhead in the architecture designs.
DWT computation. In this case, one image scanline requires 48)/e mention that, throughout this paper, we focus on the
kB. Using the Daubechies (9,7) wavelet filterbak< 9), for  Mallat tree-structured [22] multilevel octave-band wavelet de-
athree-level decomposition, the total memory would be 588 kBemposition system with critical sampling using a two-channel
In this paper, we propose a novel technique which can help\{@avelet filterbank. The extensions of our work to other DWT
reduce the memory to only 296 kB. systems, includingtandardDWTs [23], multichannel wavelet
In the second approacmonoverlappingo parallel DWT filterbank, and wavelet packet decompositions are straight-
implementation, input data is not overlapped so the memotward. The rest of the paper is organized as follows. In the
requirement is relaxed. But boundary samples need to hext section, thdinite state machinenodel is introduced for
exchanged at each decomposition level. Such an approackhis DWT and theboundary postprocessinigchnique for the
used, for example, in the design of mesh and hypercube parajtahsform near block boundaries is presented. The proposed
DWT architectures by Fridmaet al. [4]. Their analysis shows sequential and parallel architectures are given in Sections I
that, for aJ-level wavelet decomposition/ data exchanges and IV, respectively, along with performance analysis and
are needed between neighboring processors [4] (see Fig. 1drperimental results. Section V concludes our work.
a three-level example). In order to reduce the communication
overhead, Yanet al.[12] proposed to use boundary extensions Il. FINITE-STATE MACHINE MODEL FORDWT

in their DWT system configured from a cluster of SGI worksta- |, this section. we first introduce the ESM model for DWT

tions. This, however, computes incorrect wavelet coefficientised on the lifting factorization. Then we discuss a postpro-
near data boundaries, which causes performance degradagigdsing technique for DWT computation near block boundaries.
in low-bit rate image coding applications [18].

This provides the motivation to study the problem of blockA. The Finite-State Machine Model
based DWT computation and its implications on memory and o polyphase matri®(z) of any FIR wavelet filterbank has

communication overhead in practical system designs. In thiSactorization form ([17, Theorem 7]) as
paper, we present a novel technigbeundary postprocessing '

A —

which can help to achieve significant memory and communica- melrg 5°(2) 1 0l TK o
tion savings. The idea is motivated by the standaserlap-add P(z) = H 0 1 ti(z) 1|0 % (1)
technique whicHfirst performs filtering operations on neigh- =1

boring data blocks independently and completes the compuighere(s'(z), #'(z)) are Laurent polynomials, which are called
tion later by summing the partial boundary results together [15prediction and updatingoperations, respectively. Without loss
We extend this idea to the case of multilevel wavelet decomposf-generality, we use’(z) to represent the elementary matrices.
tions using the lifting framework formulated by Daubechies arithat is
Sweldens [17]. In the proposed approach, the DWT is modeled ‘ 1 si(2) ‘ 1 0
as afinite-state machindgn which each sample is updated pro- e'(z) {0 1“ } or e'(z)= [ti(;«) 1} .
gressively from the initial state (the original data sample) to the )

final state (the wavelet coefficient) with the help of samples in Let us consider the time domain filtering operations corre-
its local neighborhood. Obviously, samples near data boundarsgending toe’(z). By definition, we havel(z) = h.(2?) +
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27 ho(#?) where(h.(2), ho(2)) are the two polyphase compo- e /{; ¢ e
nents of filterh(z). Eache’(z) corresponds to two time domain X @ N 0 Y
filters N A\ AR @
\ v
{h"(z) =1+ {h"(z) —1 e e e
3 _ ,—1 3 __ i 2 —1
g'(z) = = g'(z) =t'(2%) + = ) Fig. 2. State transition diagram of DWT as a FSM.
where hi(~) and g'(») are the low- and high-pass filters in boundary
the analysis filterbank, respectively. In time domain, thi 4 A
corresponds to In time domain, this corresponds to 1 r- 1 (L]
A A | A A A
a:%i(n) |2 h(k)x*(2n — k) ' @) ~B Bl |B| |Bl wB VrAl~{al (8] [B] T
Lo (”) Ek gz(k)xz(%l - k) iyt Yy iyt vi il il yibyilvilwilyilyt [yilyilyilyt a‘
XXX XXX X x| xUx pXOX X Xx0 X
For a N-point input sequence (assumeé is even),zt(n) = 08 w4 W4 W2 W W2 M {6 28
z%(2n) andzi(n) = z*(2n + 1). The state transition in vector oy |
form for the upper triangular elementary matrix (similar forn " >y ¥ state Y s ¥ newboundary
for the lower triangular elementary matrix) is (@
_ it+1 - r i . — — — — —
w4+1(0) 2'(0) S r I Y I R f
2" (1) 29 (k) (k) ’X—]»
xz+1(2) xz(2) —— il xnlxnl Xn Xl X. X' X' XI x; X‘ x. xl X‘ x»lx|¢l|}njx|+1 —_———
21(3) Yo d(k)z(2—k) w8 w4 24 22 2 22 WM 246 2048
. . I ,
I = i . new boundary ¢ state 'Y new boundary
o' (2m) ' (2m) ®
2 (2m + 1) S g (B) (2m — k)
. Fig. 3. State transitions across block boundary usinga) Partial computa-
) : ] ] : tions near boundaries. (b) After updating, boundary samples stay in intermediate
L x”"'l(N — 1) i _Zk gz(k)xZ(N -2 k) ] states. The “new boundary” separates fully updated output coefficients from

partially computed ones.

Obviously, each and every elementary matfik~) in the fac-
torization of the polyphase matrRR(z) can be modeled as suchcan be stopped at any intermediate stage. As long as the state
a state transition process. information is preserved, the computation can be continued at

Consider the input(n) as a column vector, and define the inany later time. This is the key reason that one can defer the
termediate states in the process of transformatiditn), ¢ = transform for block boundary samples and still can obtain the
0,1,...,2m + 1}, wherez'(n) is the result of applying the correct result.
operatione’~*(z) to z'~1(n), and where the initial input is
1°%(n) = x(n). There are two important observations. B. Boundary Postprocessing

1) Every time we generaté (n), we only need to store this In Fig. 3, we show oneupdating operation for input

set of values, i.e., we do not need to know any of the othsequencez’(n) where even-indexed samples are updated

#(n), for j < i, in order to compute the output (the finalas zi+(n) = z'*1(2n) = 3, h'(k)z'(2n — k). Denote

wavelet coefficients). Hi(z) = Y"___ hi(n)z" (a' > 0,b° > 0), then
2) Each sample is updated using samples only from the

other polyphase component and itself. Consequently, - -1 ‘

each sample can be updatétiependently fully or et 2n) = Y hi(k)at(2n - k)

partially, and written back to its original location, an k=—a’

extended in-place computation feature of the lifting A(}'n)

algorithm. For example, the updatinggf 1) (may only bi

be partially updated because insufficient boundary data +2(2n) + Z Ri(k)a' (2n — k)

is available) will not affect the updating af (3) at this ]

stage. ~

For the polyphase matrix factorization, this requires that the Bem

elementary matrix’(z) can only be in the form of lower/upper whereA(2n) andB(2n) are respectively the contributions from
triangular matrices with constants on the diagonal entries. Thimge anticausal and causal part of filter

key property of the lifting factorization guarantees that the Now let us consider the computations near the block
FSM structure applies. Thus, the wavelet transform based loundary at point2n. Take sampler’(2n), for example. It
the polyphase factorization can be modeled dige state is obvious that it cannot be updated into state 1 because
machine as depicted in Fig. 2, where each elementary matrilke anticausal filtering resulti(2n) cannot be computed due
e’ updates the FSM state’ to the next higher levek‘t!. to lack of data samples from the other block, i.e., samples
The significance of such a FSM model is that the transforf?(2n + 1),2°(2n + 3),z*(2n + 5)}, as shown in Fig. 3(a).
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A typical approach used in most existing DWT algorithms is Block 1 Block 2
to bufferz*(n) and wait until the future samples are available, T . = !
see, e.g., [3], [1], [4]. This direct buffering approach, however, Leel Statel Statel
forces one also to buffer whatever samples are necessary in | ———+71 @ -t
the current block for the computation &f(2n), i.e., samples Level2 Stated State?
{z*(2n — 3),2*(2n — 1)} in this case. Clearly, for the future Tt I
updating of sample:’(2n), the buffer should at least be large  LewB Stated
€ State3

enough to hold three samples. X -+

Observing the fact thaB(2n) is readily available (all sam- l l
ples needed are in the same blocks4&n)), we propose to p¥-tt L { Ly 1
first updatez?(2n) into z%(2n) + B(2n) and then buffer this l@ @
partially computed result at the same location:t{Pn). Notice —Y

thatz*(2n) can be over-written (i.e., in-place computation) be-

cause no samples in the current block or the other block need ti#e4. Example dataflow chart of a_three-l(_evel Wave!et Qecomposition using

original values (2n) fortheir updating operations as describeqf5, opeseBouncar postrocessnteainique, Sold Ines, compltely

before. As soon as samplgs' (2n+1), z*(2n+3),2°(2n+5)}  block transforms its own allocated data independently and state information

become availabled(2n) can be computed anﬂ(Zn) can be is buffered. Operation 2: state information is communicated to neighboring

updated intOxi"'l(Qn) _ x”(2n) + A(2n) + B(2n). Clearly, blocks. Operation 3: complete transform for the boundary data samples.

in this case we only need a one sample size buffer to store the

partially computed result at sample locatibnfor the future up- {1 Ovs Sweam

dating. Thus compared to the case of direct bufferingi ¢2n), N

buffering partially transformed coefficients helps to reduce th I___I

memory requirement. = e !
The same analysis also applies for other samples at bc Xy pwr

sides of the block boundary. The end state after the applicatic E T

. N S

of e*(z) is shown in Fig. 3(b). As one can see, the physics P s T R o :

boundary splits into two and extends inwards in both blocks e aion

The next stage state transition will operate against these tv L S

new boundaries. Notice that locations of these two new boun 0

aries can be derived easily using the filtering tap informatiol l (.

a" and b before the stage updating operation. As a matter

of fact, given the lifting factorization of the polyphase matrix 7 m——

P(=), one knows exactly the end state number of each sample

in the input data sequence. Therefore, the state number of eBighb. The proposed sequential architecture for DWT.

sample needs not to be stored for future processing.
Consequently, the buffer size at staigeB?, is only deter-

mined by the number of samples that need to be stored. For

given filters(h(z), ¢*(#)), B* = I — 2 wherel’ is the number  InFig. 5, the proposedverlap-statesequential DWT system

of taps of the longest of the two filters. Assuming a totakof architecture is shown. The input data sequence is segmented into

state transitions, then the total buffer sizes= > 7" " B?. nonoverlapping blocks of lengtN and fed into the DWT/FSM

For the (9,7) filters using the factorization given in [17], on@ne block atatime. The state information is overlapped between

can obtain® = /' =[?> =3 = 3and thusB = 4. Thatis, only consecutive blocks. The computed wavelet coefficients are con-

four partially transformed samples need to be preserved ratGgtenated together to give the final result.

than seven samples as before. We emphasize that the buffer siZ shown in the last section, the memory requirement de-

reduction is based on a typical assumption in in-place liftingends on the specific lifting factorization used in the implemen-

algorithms that each sample (including original data samplégion. Table | provides memory requirements for commonly

and partially transformed samples) needs the same amountu®gd wavelet filterbanks, including the Daubechies (9,7) filters,

storage space. Since lifting factorization of a given polypha#iee (2,10) filters, and the cubic B-Splines CDF(4,2) filters; their

matrix is not unique, one would choose the factorization whidactorizations can be found in [24]. A direct extension of 1-D

gives the minimumB if the amount of memory is limited. DWT becomes the strip-sequential 2-D DWT as shownin Fig. 6,
We thus call this approach of preserving intermediate stamaere the input data is transformed one strip at a time with

information and completing the transform later theundary state information overlapped only vertically (boundary exten-

postprocessingechnique. Fig. 4 shows an example three-levéions are used horizontally). The buffer sizgfor the state in-

wavelet decomposition using the proposed technique. Cofarmation in aJ-level decomposition can be computed as

pared to the approach shown in Fig. 1, one can see that, only

one data exchange is necessary between the two blocks. The J—1

amount of data exchanged is also reduced due to the partial B, = Z Wngg—J (4)

computation as described above. =0

I1l. OVERLAP-STATE SEQUENTIAL ARCHITECTURE
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TABLE | TABLE I
COMPARISON OFMEMORY REQUIREMENTS IN1-D DWT COMPARISON OFMEMORY REQUIREMENTS IN LINE-BASED SYSTEMS
N: SEQUENCELENGTH. L: FILTER LENGTH. J: DECOMPOSITIONLEVEL. W: Row WIDTH. B: NUMBER OF PARTIALLY COMPUTED SAMPLES
B: NUMBER OF PARTIALLY COMPUTED SAMPLES AT EACH LEVEL AT EACHLEVEL. o = (27 —1). 3 = (1 —277)
SSWT[16] RPA[3] |Proposed SSWT[16]] RPAJ3] |Proposed
Ltap [N+(2'-1)(L-2)N+J(L-2)|N+JB Ltap |Wa(L - 2)2WB(L = 2)] 2W BB
9,7 N+7(27-1) N+7J | N+4J ©.7) We 1AW 3 WA
(2,10) N+8(27-1) N+8J | N+4J (2,10) Wa 16W 43 8Wa
CDF(4,2)] N+5(27-1) N+5J | N+3J CDF(42)| 5Wa 10W 3 W o
114 »- i tuput Data Stream { ] l- : :
N;I First Strip l '
B ] n-Point 1-Point n-Point o n-Point
Current Strip DWT/FSM DWT/FSM DWT/FSM DWT/FSM
| slidmg H | Imermediate resh : -
|
_____________:_ ______________ DwiEsm [ Dwtism [ DuTisv [ — ==~ buirsy
Lest Suip e o o a
r IOutput Data Sln%im] ] o [ I I I
i T i Fig. 7. Proposed parallel architecture for DWT.
| Wei !
' |
- ' m’;, y + Dblocks and allocated ontp available processors. Each pro-
PLo L) Iwe | cessor computes its own allocated data up to the required
: W =|JT i

Y o ___ i wavelet decomposition level. This stage is calfgplit The
output from this stage consists of: 1) completely transformed
5, I 20 D e gt e oot and 2) the i formation (partely updatd
ov‘;rlapped vertioally oy, P P ' Boundary samples). In the second staiferge a one-way
communication is initiated and the state information is trans-
p fered to the neighboring processors. The state information from
where I is the data widthiVy, (subscript 1" stands for the neighbor processor is then combined together with its own
bottom side of the data strip) is the number of rows partiallyorresponding state information to complete the whole DWT
computed at levef. transform. This is further illustrated by Fig. 8, where it can be
A special case of this strip-sequential 2-D DWT system is th@en how the operations in each processor are carried as far as
line-based DWT system described in [1], [10], which assumggssiple in the split operation, while in the merge operation the

all completely transformed coefficients are not buffered. Basgghcessor will combine the available information to update the
on this assumption, for one level decomposition usingt@ap partially computed outputs.

filterbank, only L — 2 rows need to be buffered in SSWT or

RPA (if counting the two new input rows, the total buffer sizg,  communication Delay
should bel). The memory requirement in the proposed system L ) i .

is always upper-bounded by that of RPA and can have substan--rhe communlcgtlon delayis the time used forcommumc:?mng
tial reduction (approximately 40%) for commonly used wavel&2t@ between adjacent processors. #.gt,, be the communi-
filterbanks, as shown in Table Il. For example, using the (9,(7‘?t|on se_tup_ume, €.0., the handshake time in an asyn(_:hronous
filters, the proposed system only needs to buffer four rows (i_g_(?mmumcatlon pr.oto.col. Ford I_evel wavelet decomposition,
W, = 4) of data at each level while RPA needs to buffer 7 rowde total communicatiomoq [4] is

of data. The constart = (1 — 277) is due to line downsam-
pling at each decomposition level. Refer to [24] for more details Dot = J(tserup + (L = 2)tc) ®)

on memory requirements and other 2-D DWT systems (e.g., th . .
block sequential system). wheret. is the time to transfer one data sample &hd— 2)

is the number of boundary samples exchanged to adjacent pro-
cessor at each level. In the proposed approach, however, only
one communication setup is hecessary to communicate the state

In Fig. 7, the proposed parallel DWT architecture is showimformation between adjacent processors. Furthermore, the size
The input data is uniformly segmented into nonoverlappingf the state information at each decomposition |e¥és upper

IV. SPLIT-AND-MERGE PARALLEL ARCHITECTURE
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Fig. 8. An examplesplit-and merggarallel DWT architecture using the Daubechies (9, 7) filters for two level decompositions. Shaded boxes represent partially
updated samples to be exchanged between processorsetpestage. Notice that samples {25, 26, 27} are left unprocessed for clarity and the block boundary
can be at any one of these three samples.

bounded by L — 2) [24]. So the upper bound of the communi- TABLE Il
cation deIayD is DWT RUNNING TIME AND SPEEDUP OFDIFFERENT PARALLEL ALGORITHMS
new (IN SECONDS. S: SEQUENTIAL. P: PARALLEL . L: LIFTING

Drew < tsetup + J(L — 2)tc. (6) J | SL PStandard PLifting PProposed

t 8 t s t s

0.364 | 0.311 | 17% | 0.274 | 33% | 0.204 | 78%
0.365 | 0.327 | 11% | 0.290 | 26% | 0.234 | 56%
0.395 | 0.349 | 13% ] 0.294 | 34% | 0.237 | 67%
0.403 | 0.351 | 15% | 0.304 | 34% | 0.238 | 69%
0.404 { 0.367 | 9% | 0.316 | 28% | 0.242 | 67%

As one can see, using theundary postprocessirapproach,
the communication overhead for link setup is reduced. Notice
that the comparison is based on the assumption that all data
samples which have to be buffered and exchanged (be it an orig-
inal data sample or a partially computed intermediate sample)
require the same storage space. This is a reasonable assump-
tion when the in-place lifting algorithm is used to compute the
wavelet transform. The reduction of the communication timexcept for the compiler optimization. Further improvement of
certainly contributes to the total DWT computation time redu@lgorithms performances is certainly possible through more
tion. However, we mention that the overall contribution dependigorous code optimizations. To compare the performances, the
on the relative weight of the communication overhead in thelative speeduffiia/Tnew — 1 is computed and the averaged
total DWT computation. In general, more gain can be achieveesults over 50 running instances for 1-5 decomposition levels
for parallel systems with slow communication links. are given in Table III.

To test the efficiency of the proposed parallel architecture, It can be seen from the results that our proposed parallel algo-
four different DWT algorithms are implemented using twaithm can significantly reduce the DWT computation time even
SUN ULTRA-1 workstations running the LAM 6.1 parallelcompared with the fastest available parallel algorithm, i.e., the
platform developed in Ohio Supercomputer Center [14]. Thmarallel lifting algorithm. Notice that the improvement is not
algorithms compared are the sequential lifting algorithnlinear with the increase of the decomposition level. The reason
parallel standard algorithm (subsample-filtering approach$,that, though the communication overhead increases with the
parallel lifting scheme, and our proposed parallel scheme. Ttiecomposition level, the total numerical computation also in-
test wavelet filters are the (9,7) filters and the test image ¢seases. Another observation is that the improvement of the pro-
the Lena grayscale image of sig&2 x 512. A 2-D separable posed algorithm at one level decomposition is even greater than
wavelet transform is implemented with strip data partition [4hat at multiple level decompositions. It suggests that, in our
between processors (refer to Fig. 6). We implemented all the ekperimental system setup, the gain due to saved amount of ex-
gorithms ourselves with no specific optimizations on the codebanged data is greater than that due to saved number of com-

U o N =
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munication setups, though, future work is needed to further in-[g]
vestigate this issue.

(9]

V. CONCLUSIONS [10]

To conclude, we have proposed a ndeundary post-
processingtechnique for the DWT computation near block [11]
boundaries. Performance analysis and experimental resultg)
show that the auxiliary buffer size for boundary DWT and the
communication overhead can be significantly reduced by usin
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