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Abstract

The discrete cosine transform (DCT) is one of the major components in many image and

video compression systems. Variable complexity algorithms have been applied successfully to

achieve complexity savings in image/video decoders by reducing the computation cost of the

inverse DCT. These gains can be achieved due to the highly predictable sparseness of the quan-

tized DCT coefficients in natural video/image data. Given the increasing demand for instant

video messaging and two-way video transmission over mobile communication systems running on

general-purpose embedded processors, there is now an increased need for faster forward DCT, so

that overall encoding (and not only decoding) complexity can be reduced. The forward DCT, un-

like the inverse DCT, does not operate on sparse input data, but rather generates sparse output

data. Thus, complexity reduction can also be achieved for the forward DCT, but with different

methods than those used for the inverse DCT. In the literature, two major approaches have been

applied to speed up the forward DCT computation, namely, frequency selection, in which only a

subset of DCT coefficients is computed, and accuracy selection, in which all the DCT coefficients

are computed at reduced accuracy. These two approaches can achieve significant computation

savings with only minor degradation of output quality, as long as the coding parameters are such

that the quantization error is larger than the error due to the approximate DCT computation.

Thus, in order to be useful, these algorithms have to be combined with efficient mechanisms that

can select the “right” level of approximation as a function of the characteristics of the input and

the target rate, a selection that is often based on heuristic criteria. In this paper, we consider

two previously proposed fast, variable complexity, forward DCT algorithms, one based on fre-

quency selection, the other based on accuracy selection. We provide an explicit analysis of the

additional distortion that each scheme introduces as a function of the quantization parameter

and the variance of the input block. This analysis then allows us to improve the performance

of these algorithms by making it possible to select the best approximation level for each block

and a target quantization parameter. We also propose a hybrid algorithm that combines both

forms of complexity reduction in order to achieve overall better performance over a broader

range of operating rates. We show how our techniques lead to scalable implementations where

complexity can be reduced if needed, at the cost of small reductions in video quality. Our hybrid

algorithm can speed up the DCT and quantization process by close to a factor of 4 as compared

to fixed-complexity forward DCT implementations, with only a slight quality degradation in

PSNR.

Keywords

Forward DCT, Variable Complexity Algorithm, Scalable Complexity, Approximate DCT,

SSAVT, Approximation Error Thresholding.
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I. Introduction

The discrete cosine transform (DCT) has been adopted as an essential part of well-known

transform block-based image/video compression standards, such as JPEG, MPEG1-2-4

and ITU’s H.263. Each basis vector in the DCT domain represents a spatial frequency

component of the image. Those bases have been proved to provide good energy compaction

for natural images. Another reason for its popularity is also the availability of several fast

algorithms [3].

The N point DCT X̄ of vector input x̄ = [x(0), x(1), ..., x(N − 1)]T is defined as X̄ =

DN · x̄ where DN is the transformation matrix of size NxN with elements DN(i, j)

DN(i, j) = ci

√

2

N
· cos

(2j + 1)iπ

2N
(1)

where ci =











1√
2

for i = 0

1 for i > 0
Due to the orthogonality property of the DCT, the inverse

transformation can be written as x̄ = DN
T · X̄. For 2-D signals, a separable version of

the transform is used, which can be defined as X = DN · x ·DN
T and x = DN

T ·X ·DN

for forward and inverse DCT, respectively, where X and x are now 2-D matrices. This

means that we can implement the 2-D transform using a simpler 1-D transform along each

direction separately.

Many fast DCT algorithms have been proposed to reduce the number of typical arith-

metic operations (e.g., multiplications and additions) such as [4], [5], [6], etc. The minimal

number of multiplications required for a 1-D DCT transform was derived in [7]. Loeffler

et. al. [8] achieves this theoretical bound for size-8 DCT (11 multiplications). It also has

been shown that a fast algorithm for 2-D DCT requires fewer arithmetic operations than

using 2 fast 1-D algorithms separately ([9],[10], etc.). Several other algorithms have been

proposed aiming for different criteria. For example, the well-known AAN algorithm [11]

computes a scaled version of the DCT with only 5 multiplications per 1-D size 8 DCT.

For lossy coding, the scaling part can be combined with the quantization process.

In this paper, we focus on variable complexity algorithms (VCAs) that can adjust the

forward DCT complexity as a function of the target quantization to be used. Thus, we

will present algorithms that provide faster performance when quantization is coarser. The
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Fig. 1. Frequency of nonzero occurrence of 8x8 quantized DCT coefficients of 10 frames of “foreman” at

QP=10 (a) I-frame and (b) P-frame. At higher QP, more DCT coefficients are quantized to zeros.

histograms of quantized DCT in Fig. 1 show potential complexity savings due to the

sparseness of the coefficients. Computations for zero or small magnitude coefficients can

be safely omitted if the locations of those coefficients are known. In the inverse DCT

case it is straightforward to classify blocks (which contain transformed and quantized

data) in terms of their sparseness, so that an appropriate pruned IDCT algorithm (with

reduced complexity) can be used (e.g., [12], [13], [14]). The forward DCT case, however,

has to address the more challenging problem of predicting the sparseness of the quantized

DCT output, accurately and with minimal complexity overhead, before the transform

and quantization are applied. As a result, before performing the DCT on a particular

8x8 block, the quantization level and the input block characteristics should be taken into

account when choosing a specific reduced complexity algorithm for the DCT. The goal is to

chose a reduced complexity algorithm such that after quantization the difference between

the coefficients obtained using the exact DCT and those obtained using the approximate

DCT is minimal. Clearly, the choice of algorithm (and therefore the complexity) will be

input- and quantization-dependent. Two major types of VCAs for the forward DCT have

been proposed in the literature, namely, those based on frequency selection and those

based on accuracy selection.

DRAFT March 6, 2003



LENGWEHASATIT AND ORTEGA: SCALABLE VARIABLE COMPLEXITY APPROXIMATE DCT. 5

A. VCA-DCT based on Frequency Selection

In these approaches, for each block only a subset of the DCT coefficients is computed.

The specific subset that is chosen to be computed depends on the characteristics of the

block. For example, smooth blocks can be approximated by only a few coefficients from

low frequency regions. Xie and Zhu [15] propose a block-wise classification scheme in which

for each input block it is determined whether it will result in an all-zero output block.

The classification is done by comparing the sum of absolute value of the input block with

a threshold which is a function of the quantization step. Even though the overhead due

to the classification cost is minimal, this work has the limitation of being able to identify

only all-zero DCT blocks. Experimental results show that, for typical images, most of

the energy is in the low frequencies as can be seen in Fig. 1. Thus, filtering out the high

frequency coefficients (“zonal filtering”) tends to result in acceptable reconstructed images

at low bit rates. For example, one could approximate the 8x8 DCT block with only DC

(X(0, 0)) and the first two AC components (X(1, 0),X(0, 1)) as in [16] or the lowest 4

coefficients of a size-8 DCT as in [17], [18]. Pao and Sun [19] propose the statistical sum of

absolute value testing (SSAVT) algorithm to classify each input block into one of several

classes based on a first-order Markov model. For each class only a subset of coefficients

is computed. This algorithm performs very well in terms of complexity savings at low bit

rates. However, it is not as efficient at high bit rates because then the majority of input

blocks require a computation of the full DCT and no complexity savings are achieved.

B. VCA-DCT based on accuracy selection

In these approaches, the complexity reduction is achieved by using a simplified approx-

imation to the DCT computation; all DCT coefficients (not just a subset of coefficients)

are computed but with less accuracy (“reduced accuracy”). An example of this approach

can be found in distributed arithmetic techniques, where the DCT coefficients can be rep-

resented as a sum of the output of each input bit-plane [20]. Since the contribution of

the last few significant bit-planes of the input is small, they can be excluded for complex-

ity reduction without much degradation to the output. Recent work by Docef et al [21]

proposed a multiplierless quantizer dependent approximate DCT based on an arithmetic
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decomposition and early termination for all-zero blocks. Another example is our previ-

ous work [1] in which we propose a multiplication-free approximate DCT algorithm. The

level of approximation is made dependent on the quantization to maintain a reasonable

error. These algorithms perform very well at high bit rates, where a DCT block is approx-

imated with low complexity and small approximation error. However, at low bit rates,

the complexity savings are not competitive with those achievable with frequency selection

techniques, such as SSAVT, since all the DCT coefficients are computed, but the high

frequency coefficients are very likely to be quantized to zero.

C. Contributions

In this paper, we start by deriving models for the error introduced by two specific VCA-

DCT techniques, one based on frequency selection (SSAVT [19]) and the other on accuracy

selection (Approx-Q [1]). Consider an input pixel block on which one performs the for-

ward DCT followed by quantization. Our goal is to estimate the additional distortion

in the decoded block due to using an approximate DCT instead of the exact one. Our

models provide estimates of the additional distortion for each specific approximate DCT,

as a function of the block variance and the quantization stepsize. This then makes it

possible to select for each block the approximate DCT that best meets specific additional

distortion targets. Note that, in contrast, Pao and Sun [19] selected the approximation

level (i.e., the subset of DCT coefficients being computed) based on the probability that

the coefficients are quantized to zero. Also, in our previous work [1], the selection of the

specific approximate DCT is based on a simple QP-dependent rule, which does not take

into account the approximation error. Thus, with the analysis we propose here, we can

also introduce modified versions of these two algorithms (Modified-SSAVT and Approx-D)

where the level of approximation is chosen to meet a target approximation error.

Further, we propose a hybrid algorithm, which we call “approximation error thresholding

algorithm”, AET, that combines Modified-SSAVT and Approx-D in order to achieve more

complexity reduction in a wider range of rate-distortion operating points. Essentially AET

uses the abovementioned distortion models to decide whether to use Modified-SSAVT,

Approx-D or a combination of the two algorithms. AET will then be shown to achieve

improved performance at both high rates (where Approx-D would tend to be better than
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Modified-SSAVT) and at low rates (where Modified-SSAVT is better.) Our experimental

results show that the AET technique can achieve a speedup of at least a factor 3 (in the

DCT and quantization process), with less than 0.2 dB degradation for bit rates ranging

from 15 Kbps to 50 Kbps.

An important feature of the AET algorithm is that the complexity can be controlled

by adjusting the level of accuracy of the transform, thus resulting in various levels of

coding performance. This controllable complexity characteristic is appealing in encoders

running on resource limited embedded devices. The remaining battery life and the number

of applications running concurrently are time-varying factors that affect these encoding

applications. By trading off the coding performance with complexity savings better overall

power managements becomes possible, e.g., in low-battery situations reduced complexity

DCT could be used.

Reviews of the SSAVT and Approx-Q algorithms are provided in Section II, in which

the source modeling and basic concepts are introduced. The approximation error analysis

is given in Section III. Based on the error analysis, the design of the proposed AET

algorithm is presented in Section IV. The experimental results are shown in Section V.

Finally, the conclusion is discussed in Section VI.

II. A Review of Approximate DCT Algorithms

A. Laplacian Model for Rate Distortion

In order to analyze the performance of the approximate DCT algorithms considered in

this paper, we need a pixel-level model for both natural images and motion-compensated

residual frames. Similar to [22], we assume that a DCT coefficient in a 2-D block is an

independent random variable with Laplacian distribution, i.e., the p.d.f. of X(u, v) can be

written as fX(u,v)(x) =
λ(u,v)

2
eλ(u,v)|x| , where λ(u,v) is the Laplacian parameter of X(u, v),

the DCT coefficient in position (u, v). This model, with appropriate choices for λ(u, v),

can be applied to both original images and motion-compensated residuals.

In a variable complexity algorithm, increasing complexity savings are possible as the

number of zero quantized DCT coefficient increases. Given the quantization matrix,

q(u, v), and quantization parameter, QP, assigned to X(u, v), the quantizer dead-zone
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is in the range [−QP · q(u, v), QP · q(u, v)]. Therefore, from the Laplacian model the

probability of X(u, v) being quantized to zero can be written as

pz(u, v) = Pr{|X(u, v)| < QP · q(u, v)} = 2(1− e−λ(u,v)QP ·q(u,v)) (2)

Furthermore, in the case of residue frames, the model parameter λ(u,v) can be obtained

directly from the spatial domain. In [19], it has been observed that the correlation between

pixels in residue frames can be expressed1 as r(m, n) = σ2ρ|m|ρ|n|, where m and n are

horizontal and vertical displacements, ρ is the one-dimensional correlation coefficient, and

σ2 is the pixel variance.2 Let the correlation matrix be denoted by R and written as

R =



























1 ρ ρ2 ρN−1

ρ 1 ρ · · · ρN−2

ρ2 ρ 1 ρN−3

...
. . .

...

ρN−1 ρN−2 · · · 1



























. (3)

Therefore, from [23], the variance of the DCT coefficients can be derived as

[σ2
X(u,v)] = σ2[DNRDt

N](u,u)[DNRDt
N](v,v) = σ2[ΓN(u, v)] (4)

where DN is again the DCT matrix of size N , and the scaling factor ΓN(u, v) is defined

as a short notation for the multiplication result of the 2 brackets. Therefore, from the

relationship λ(u,v) =
√

2/σX(u,v), we can write the probability as

pz(u, v) = 2(1− e
−
√

2QP ·q(u,v)√
ΓN(u,v)σ ).

B. Statistical Sum of Absolute Value Thresholding

In [19], the key to complexity reduction comes from the fact that, based on the model

above, if the step-size is equal to 3σ there is a 99% chance that the coefficient will be

quantized to zero, and thus we can skip the computation without significantly affecting

the final quality. For each coefficient, the testing would then consist of checking if

3σX(u,v) = 3σ
√

ΓN(u, v) < QP · q(u, v). (5)

1For simplicity, we also apply this correlation model to pixels of INTRA frames.
2From our observation on five H.263 test sequences (“Miss America”, “Suzie”, “Mother&Daughter”, “Foreman”

and “Salesman”), the average ρ ranges from 0.9 to 0.97.
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From (4), we can find the variance of a DCT coefficient as a scaled version of the spatial-

domain variance. From the assumption of the distribution of the spatial domain signal,

the variance in spatial-domain can be computed from the Sum of Absolute Value (SAV)

as

σ ≈
√

2 · SAV/N2 (6)

where SAV =
∑

(i,j)∈Blk |x(i, j)|, and N2 is the number of pixels in an NxN block. In the

case of a residual frame, the SAV can be obtained as a by-product of the motion estimation

in the form of the Sum of Absolute Difference (SAD) which is computed and compared in

order to find the best motion vector. Therefore, the test in (5) can be rewritten as

SAV < (QP · q(u, v) ·N 2)/(3
√

2ΓN(u, v)) (7)

From (4), one can find that the variances decrease from the DC to the higher frequency

AC coefficients. This implies that we do not have to perform the test for every DCT

coefficient. If testing proceeds from low to high frequencies, as soon as we encounter a

coefficient that is deemed likely to be quantized to zero (based on our model), we know that

all higher frequency (and thus lower variance) coefficients will also be within the treshold,

and will be at least as likely to be quantized to zero. As a result, classification can be done

by testing the SAV with a set of thresholds which corresponds to classifying the output

8x8 DCT block to i) all-zero, ii) DC-only, iii)3 low-2x2, iv) low-4x4, and v) full-DCT.

For each of the tests, Γ8(0, 0), Γ8(1, 0), Γ8(2, 0), and Γ8(4, 0) are used in (7), respectively.

These values come from the largest Γ8(u, v) among the DCT coefficients outside the class

of interest.

It has been shown in [19] that this method achieves significant complexity reduction due

to the sparseness of the DCT coefficients for low to medium bit rate coding. At high bit

rate (low QP), the threshold is smaller resulting in the more frequent occurrence of the

full-DCT class. In Section III, we will provide an analysis of the distortion introduced by

SSAVT.

3In the original paper [19], this class is not used.
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C. Quantizer Dependent Approximate DCT

Now we review the Approx-Q algorithm we proposed in [1], in which rational multipli-

cations are approximated with additions and binary shifts. In [1], five levels of approxi-

mations are used. The general structure of the proposed approximate DCT is shown in

Fig. 2. This structure is modified from the structure of the fast algorithm in [5]. For exact

DCT, the matrix P contains non-rational multiplication factors. We have proposed [1]

that one can approximate the multiplications with binary shifts and additions. We can

produce several algorithms with different levels of approximation by replacing the matrix

P, with one of several approximate matrices, denoted as Pj for j = 1, ..., J , where J is

the number of levels of approximation. The equivalent transformation matrix using Pj is

denoted by D̂j. Two examples of the resulting transformation matrix are shown below

for the coarsest (D̂1) and the finest (D̂5) approximation levels. As can be clearly seen,

computing D̂1 will be significantly faster than computing D̂5, but will result in a worse

approximation to the result produced by the exact DCT.

x0

x1

x2

x3

x4

x5

x6

x7

Pj

W0Y0

W4Y4

W2Y2

W6Y6

W5Y5

W1Y1

W7Y7

W3Y3

Fig. 2. Approximate DCT algorithm where the matrix Pj , j = 1...J , can be one of several approximations,

with J being the number of approximations, P1 being the coarsest approximation, and PJ the finest.

The approximate DCT output is X̂i = wiYi for i = 0...7 where wi is a scaling factor which can be

incorporated into the quantization. The arrow lines represent multiplication by -1 before addition

D̂1 =
1

2
√

2

























1 1 1 1 1 1 1 1

1 1 1 0 0 −1 −1 −1

1 0.5 −0.5 −1 −1 −0.5 0.5 1

1 0 −1 −1 1 1 0 −1

1 −1 −1 1 1 −1 −1 1

1 −1 0 1 −1 0 1 −1

0.5 −1 1 −0.5 −0.5 1 −1 0.5

0 −1 1 −1 1 −1 1 0

























∗

























1.0

1.1162

1.2617

1.1162

1.0

1.1162

1.2617

1.1162
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D̂5 =
1

2
√

2

























1 1 1 1 1 1 1 1

1.25 1.0625 0.6875 0.1875 −0.1875 −0.6875 −1.0625 −1.25

1 0.3750 −0.3750 −1 −1 −0.3750 0.3750 1

1.0625 −0.1875 −1.25 −0.6875 0.6875 1.25 0.1875 −1.0625

1 −1 −1 1 1 −1 −1 1

0.6875 −1.25 0.1875 1.0625 −1.0625 −0.1875 1.25 −0.6875

0.3750 −1 1 −0.3750 −0.3750 1 −1 0.3750

0.1875 −0.6875 1.0625 −1.25 1.25 −1.0625 0.6875 −0.1875

























∗

























1.0

1.1196

1.3234

1.1196

1.0

1.1196

1.3234

1.1196

























where the ∗ represents a scalar multiplication to every entry in the same row (wi). Note

that all elements in the first matrices can be implemented with only additions and binary

shift operators. The scalar multiplications can be coupled with the quantization. In

the Approx-Q algorithm, the level of approximation varies depending on the QP value.

For a large QP, a coarse approximation is used because the quantization noise will be

large and will mask out the error introduced by the approximate DCT. Conversely, finer

approximation is used when QP is small. For example, if the rate control algorithm

assigns QP less than 10 to a macroblock, D̂5 will be used as a transformation for all

blocks in that macroblock whereas for QP greater than 20, D̂1 will be used instead. In

general, five different ranges of the QP are mapped to a corresponding approximate DCT.

From our preliminary observations, the Approx-Q approach is not as fast as the SSAVT

approach at low bit rates because SSAVT will compute fewer coefficients according to the

SAV threshold testing. However, at high bit rates, SSAVT tends to compute many full-

DCT blocks, and therefore the Approx-Q approach outperforms SSAVT thanks to the fast

approximation4. In [1], the selection of the approximation level is empirically designed.

In the next section, we propose a systematic selection of the approximate DCT algorithm

based on the error analysis; this error analysis can be applied to improve the algorithm

selection in both SSAVT and Approx-Q.

III. Error Analysis

In this section, we will model the approximation error that each of the subsets of SSAVT

and each of the matrices in Approx-Q introduce, as compared to the exact DCT algorithm,

so as to have a complete knowledge of the characteristics of these algorithms in a rate,

distortion, and complexity sense. This will then be used to enable real-time selection

among these various algorithms. From the Laplacian model presented in Section II, we

4As will be seen in the experimental results in SectionV.
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can compute the rate and distortion characteristics for uniform quantization given mid-

point reconstruction in each quantization bin. In this paper, we assume that uniform

quantization with step-size 2QP is used for all coefficients. The probability that the DCT

coefficients are in bin [2QPi, 2QP (i + 1)] can be expressed as pi =
∫ 2QP (i+1)
2QPi fX(u,v)(x)dx.

Therefore, the coefficient distortion D(u, v) and block distortion Dblk can also be derived

as

D(u, v) =
∑

i6=−1,0

∫ 2QP (i+1)

2QPi
(x−QP (2i + 1))2fX(u,v)(x)dx +

∫ 2QP

−2QP
x2fX(u,v)(x)dx

= σ2ΓN(u, v)− 2QPe−2λQP (3− e−2λQP )

λ(1− e−2λQP )
− 3e−2λQPQP 2 (8)

where λ =

√
(2)

σ
√

ΓN (u,v)
.

A. SSAVT

We now analyze the distortion introduced by the SSAVT approach. For each outcome

of the SAV test, a corresponding reduced output DCT is applied. We can consider the

reduced output DCT as an approximation of the exact DCT. For example, the equivalent

transform matrix of the low-4x4 DCT is







I4 0

0 0





D8 where I4 is the 4x4 identity matrix.

As in equation (7) the threshold for SAV testing can be expressed as a function of QP.

Let {T0, T1, ..., TG−1} be a set of thresholds classifying the input into G classes. The n-

th reduced output DCT (Bn, where B0 = ∅, B1 = {X(0,0)}, B2 = {X(i,j)|i, j = {0, 1}},
B3 = {X(i,j)|i, j = {0, 1, 2, 3}} and B4 = {X(i,j)|{i, j = 0, ..., 7}) is computed if Tn ≤
SAV < Tn+1 (TG = ∞). From (7) and the assumption that q(u, v) = 2 (as in H.263), we

then have

Tn =
2QP ·N2

3
√

2
√

max
(u,v)/∈Bn

ΓN(u, v)
(9)

for 0 ≤ n ≤ G = 4. Therefore, the block distortion of a class n input can be expressed as

Dssavt(Bn) =
∑

(u,v)∈Bn

D(u, v) +
∑

(u,v)/∈Bn

σ2ΓN(u, v) (10)

where D(u, v) are from (8).

The first term on the right side of (10) is the sum of the distortion of coefficients that

are computed while the second term corresponds to the coefficients that are not computed
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nor coded. Let us introduce the normalized additional distortion, which we define as the

ratio between the additional distortion and the distortion due to quantization. We denote

this ∆ssavt, which can be written as

∆ssavt =

∑

(u,v)/∈Bn
(σ2ΓN(u, v)−D(u, v))
∑

∀(u,v) D(u, v)
(11)

when Tn ≤ SAV < Tn+1.

10
0

10
1

10
2

10
3

0

0.02

0.04

0.06

0.08

0.1

0.12

Normalized Additional Distortion for SSAVT, ∆
ssavt

pixel variance σ2

QP=20

QP=30

Fig. 3. Normalized additional distortion, ∆ssavt, when using SSAVT at various levels of the pixel variance

σ2 assuming that the variance can be determined accurately from the SAV.

Fig. 3 shows ∆ssavt as a function of σ2 for a fixed QP. We assume that the variance of the

signal is known, and therefore the distortion can be obtained directly from (10). It can be

seen that the increase in distortion has a zigzag shape as a function of the pixel variance.

This can be explained as follows. For each spike, the input is classified to a certain class

in which a subset of the coefficients is computed. As the variance increases, the additional

distortion also increases. Once the variance exceeds a threshold, the input is classified

to another class which computes more DCT coefficients thus pushing the distortion down

and creating the zigzag contour of Fig.3.

B. Approx-Q

First consider Fig. 4, which shows the rate-distortion (RD) performance on real data

using each of the five different approximate DCT algorithms (one for each approximation
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to the matrix P) and the Approx-Q (which switches between those matrices based on

the quantization values). These results are compared to the RD values obtained for the

exact DCT. One can see that the performance gap between the approximate DCTs and

the original DCT grows larger as the bit rate increases. However, at low bit rates all

approximation levels perform equally well. Therefore, the Approx-Q algorithm in [1] shows

that by adjusting the approximation accuracy as a function of QP (somewhat related to the

bit rate since the rate control is done through QP assignment) one can achieve performance

close to that obtained with the exact DCT. We can observe that the accuracy is increased

as the QP becomes finer, so that a small degradation can be maintained over a wider range

of bit rates.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
26
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Rate−Distortion of approximate DCT for "lenna" image
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Bit per pixel

:Exact DCT

:Approx−Q
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:Approx #4

:Approx #3

:Approx #2

:Approx #1

Fig. 4. Rate-Distortion curve of 512x512 lenna image JPEG coding using approximate DCT algorithms.

Note that at high bit rate coarser approximate algorithm performances deviate from the exact DCT

performance dramatically. Approx-Q can maintain the constant degradation level over wider range

of bit rate.

However, as will be seen later, degradation is also dependent on the content. Therefore,

our final goal is to select the level of approximation to ensure that the resulting additional

distortion does not exceed a certain level not only for a given QP, but also for the σ2 that

characterizes each block. In order to achieve this goal, an approximation error analysis

is needed. We can now use techniques similar to those used in the above SSAVT error
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analysis. Let us denote the transform matrix of the j-th approximate DCT by D̂j where

j = 1, 2, .., 5 (number of approximation levels). Let the input spatial domain block be x,

and the DCT computed by this reduced matrix be denoted X̂j = D̂jxD̂t
j . Therefore, the

approximation error can be expressed as the difference between the exact and approximate

output.

ej = D̂jxD̂t
j −DxDt

ē′j = ((D⊗Dt)− (D̂j ⊗ D̂t
j))x̄

′ (12)

where ⊗ is the Kronecker tensor product, x̄′ and ē′j are size N2 vectors obtained from raster

scanning (row-then-column) the input block x and error block e. Let Êj = ((D⊗Dt)−
(D̂j ⊗ D̂t

j)), then the covariance matrix of the approximation error can be written as

E{ē′jē′tj } = ÊjE{x̄′x̄′t}Êt
j

= σ2Êj(R⊗R)Êt
j (13)

where R is the correlation matrix (3). The variance of each DCT coefficient error can

then be found on the diagonal elements of (13) as

σ2
e(u, v) = σ2[Êj(R⊗R)Êt

j ](Nu+v,Nu+v) (14)

It can be seen that the variance of the approximation error is simply a scaled version

of σ2. Let us rewrite (14) as σ2
e(u, v) = σ2φ2

j(u, v) where the scaling factor φ2
j(u, v) =

[Êj(R⊗R)Êt
j ](Nu+v,Nu+v).

At this point, we assume that the error introduced in the DCT approximation and the

quantization can be modeled as additive white noise, i.e., the transformed quantized DCT,

X̃, can be written as

X̃ = X + nq + ej

where nq represents noise from quantization. We also assume that the quantization noise is

uncorrelated to the approximation error noise. Therefore, the distortion can be expressed

in terms of the sum of the original quantization distortion and the distortion due to the

approximation in the transform computation

DAPPROX = E{(X− X̃)2}
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= E{(nq + ej)
2}

=
∑

(u,v)

D(u, v) + De(j) (15)

where D(u, v) is from (8) and the additional distortion due to the approximation is:

De(j) = σ2
∑

(u,v)

φ2
j(u, v) (16)

is the total block approximation error. Let us denote the normalized additional distortion

as

∆approx =
De(j)

∑

(u,v) D(u, v)
(17)

In general φ2
j(u, v) is desired to be much smaller than ΓN (u, v) such that the effect of DCT

approximation is proportionally masked out by the quantization effect.
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Fig. 5. (a) Normalized additional distortion at QP = 20 using approximate DCT algorithms #1 (’o’),

#2 (’x’), #3 (’+’), #4 (’∗’), #5 (’�’), and Approx-D (’2’) at various pixel variance σ2. Dashed-line

represents Approx-D at QP = 10. Approx-D changes level of approximation for the desired additional

distortion at 0.05. (b) Corresponding normalized complexity of Approx-D at QP=20 and QP=10.

Fig. 5 (a) shows the normalized approximation error results of the 5 approximate DCT

algorithms. It can be seen that not only the approximation error depends on the QP, but it

also increases as the pixel variance σ2 grows, i.e., for a fixed QP, the additional error ratio

increases with pixel variance. To understand why this is the case, recall that for a given

QP the distortion scales on slightly as the variance increases. This is because for each
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coefficient we use uniform quantization and there is practically no overload quantization

error, even when the variance increases. There may be slight increases in overall distortion

due to the fact that the number of coefficients being transmitted increases and the QPs

are slightly higher (due to perceptual weighting) for the higher frequency ones. Contrast

this, however, with the behavior of the error due to using different matrices. To simplify,

assume that one particular coefficient α is approximated by α + ∆α. Then, clearly, as the

variance of the input signal increases, the variance of the error, which is proportional to

∆α also increases. In short, the distortion due to the matrix approximation increases much

faster with the input variance, than the distortion due to quantization. This explains the

behavior seen in Fig. 5. Furthermore, for a fixed pixel variance, the additional error ratio

decreases as quantization step-size increases. It can be seen that, for a given approximate

algorithm, QP still plays a bigger role in the resulting error.

IV. Approximation Error Thresholding

Given the above analysis, we now have a tool to select which approximation to use given

the desired level of additional distortion which is derived as a function of QP and σ2 in

previous section. As a result, the Approx-Q algorithm can be modified such that the level

of approximation now depends on both the quantization and the block variance. This will

enable us to guarantee that the additional distortion will remain below a desired threshold.

The modified algorithm is then as follows for each block:

Algorithm 1 (Approx-D)

Step 1: Let J be the number of approximation algorithms and let the level of accuracy

be in ascending order with respect to j. The J-th algorithm is the exact-DCT. Set j = 0.

Step 2: Compute ∆approx of the j-th algorithm where ∆approx is defined in (17).

Step 3: If ∆approx ≤ η where η is the level of desired additional error, select the j-th

algorithm. Otherwise, increment j.

Step 4: If j = J , stop. Otherwise, go back to Step 2.

For example, when coding a frame with fixed QP for all blocks, low variance blocks (asso-

ciated with low activity) require less accurate DCT approximation whereas high variance

blocks must use finer approximation in order to maintain the same level of additional

error throughout the entire frame. Shown in Fig. 5 (a) are the Approx-D results with
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η = 0.05 or 5% of the quantization error. In Fig. 5 (b), the normalized complexity –

compared to the full-DCT complexity5– of the Approx-D algorithm is shown. We can see

that, for a given QP, the Approx-D algorithm switches from one level of approximation to

another as variance increases, according to the approximation error in (16). Due to the

multiplication-free property of the Approx-D algorithm, the resulting complexity saving

can be significant, i.e., between 40% to 65%.

We can apply the same principle to SSAVT, so that the SAV is used to compute the

additional approximation error, ∆ssavt, and the subset of coefficients is chosen so as to

meet a desired level of accuracy, η. The modified SSAVT algorithm performs the following

operations for each block:

Algorithm 2 (Modified SSAVT)

Step 1: Let N be the number of SSAVT algorithms in which the set of computed DCT

coefficients grows with respect to n. The N-th algorithm is the full-DCT. Set n = 0.

Step 2: Compute ∆ssavt of the n-th algorithm where ∆ssavt is defined in (11).

Step 3: If ∆ssavt ≤ η where η is the level of desired additional error, select the n-th

algorithm. Otherwise, increment n.

Step 4: If n = N , stops. Otherwise, go back to Step 2.

Fig. 6 (a) shows the result of modified SSAVT. As compared to Fig. 3, it can be seen

that the normalized additional distortion is kept under 0.05 by switching to a finer ap-

proximation algorithm, i.e., in this case, more DCT coefficients are computed. Eventually,

as σ2 increases, the additional distortion becomes zero after the full-DCT is used, and the

complexity approaches that of the baseline algorithm as the variance increases. Fig. 6 (b)

shows the normalized complexity of SSAVT and modified SSAVT. We can see that modi-

fied SSAVT switches to finer approximation earlier than SSAVT for low variance blokcs,

but it switches later than the original SSAVT for high variance blocks. This is beneficial

in a complexity-distortion sense since the complexity difference between the algorithms

providing coarser approximation is much smaller than that between the algorithms pro-

viding finer approximation. For example, the absolute increase in number of coefficients

5The complexity is estimated by a weighted sum of arithmetic operations involved in the algorithms. In this

paper, we use 3 for a multiplication, and 1 for an addition or a binary shift as it is considered to be a good

approximation by [24].

DRAFT March 6, 2003



LENGWEHASATIT AND ORTEGA: SCALABLE VARIABLE COMPLEXITY APPROXIMATE DCT. 19

10
0

10
1

10
2

10
3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Normalized Additional Distortion for modified SSAVT, ∆
ssavt

pixel variance σ2

QP=20

QP=30

(a)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Complexity comparison between the SSAVT and modified SSAVT

pixel variance σ2

:SSAVT

:modified SSAVT

(b)

Fig. 6. (a) Additional distortion from approximation error ∆ssavt for modified SSAVT at QP = 20 and

30 as a function of σ2. As the approximation error grows larger than the specified threshold, η = 0.05,

the algorithm switch to finer approximation, more coefficients computed. (b) Normalized complexity

cost comparison between SSAVT and modified SSAVT.

computed is 3 when going from 1x1 to 2x2, but it becomes 48 when going from 4x4 to

8x8.

Comparing Fig. 5 (b) and Fig. 6 (b), it can be seen that for a given QP, in the high

variance region the modified SSAVT requires higher complexity than Approx-D, since

more coefficients are computed for SSAVT, whereas a fine level approximation, which

provides a good compromise between accuracy and speedup, is used by Approx-D. On the

other hand, in the low variance region, SSAVT is faster than Approx-D since most of the

coefficients are to be quantized to zeros. Note that this comparison is performed under a

desired level of approximation error constraint, η = 0.05.

This leads to our proposed approximation error thresholding (AET) algorithm, which

combines the strengths of the modified SSAVT and the Approx-D algorithms. The idea

behind this approach is illustrated as follows. In the low variance region where it is

relatively easier to achieve speedup with acceptable accuracy, the AET employs the zonal

filtering approach (SSAVT) which takes advantage of the sparseness of the coefficients. In

high variance areas, the resulting class from SSAVT tends to be the same as full-DCT,

the AET still achieves complexity savings coming from the Approx-D part.
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Furthermore, we apply the reduced-accuracy scheme on top of the zonal-filtering ap-

proach by approximating the subset of DCT coefficients instead of computing the exact

values of the full set of the DCT coefficient. In this case, the distortion can be modeled

as a sum of quantization noise, zonal filtering noise, and approximation noise. Again, if

we assume that these noises are uncorrelated the distortion can be expressed as

DAET (Bn, j) =
∑

(u,v)∈Bn

[D(u, v) + σ2φ2
j(u, v)] +

∑

(u,v)/∈Bn

σ2ΓN(u, v) (18)

for the (n, j)− th approximation level, where the pair (n, j) denotes the combination class

Bn in SSAVT and the j-th class in Approx-D. The first summation on the right side

is the distortion plus approximation error of the approximated coefficients. The second

term is for non-computed coefficients from zonal filtering. Let ∆aet denote the normalized

additional distortion for the AET which can be expressed as

∆aet =

∑

(u,v)∈Bn
σ2φ2

j(u, v) +
∑

(u,v)/∈Bn
(σ2ΓN(u, v)−D(u, v))

∑

(u,v) D(u, v)
(19)

In order to determine which level of approximation is to be used, ∆aet is compared with

the target error threshold, η.

The AET algorithm thus can be stated as follows.

Algorithm 3 (Approximation Error Thresholding (AET) Algorithm)

Step 1: Let (n, j) represents an algorithm computing the n-th subset of the DCT coef-

ficients with the j-th level of accuracy. n ranges from 0 to N and j ranges from 0 to J .

(N, J)-th algorithm is the full-DCT. Set (n, j) = (0, 0)

Step 2: Compute ∆aet of the (n, j)-th algorithm where ∆aet is defined in (19).

Step 3: If ∆aet ≤ η where η is the level of desired additional error, select the (n, j)-th

algorithm. Otherwise, increment j.

Step 4: If j = J , set j = 0, increment n, and go back to Step 2. Otherwise, if

(n, j) = (N, J), stop.

Fig. 7 (a)&(b) show the approximation error according to (19) and the normalized com-

plexity of the AET algorithm compared to modified SSAVT and Approx-D, respectively.

As expected, it can be seen that at low variance, the AET selects the SSAVT approach over

Approx-D. As the variance increases, the AET goes through several transitions among the
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approximation levels in the same zonal filtering level before moving on to larger frequency

zone. Eventually, at high variance, all the coefficients are approximated following the

Approx-D approach. In the mid variance range, the AET complexity curve deviates from

that of SSAVT and converges to the Approx-D complexity curve. However, as can be seen

in Fig. 7 (b), there is a complexity discrepancy between the AET and the Approx-D at

high bit rates due to classification overhead, i.e., there are multiple approximation levels

for 2x2, 4x4 and 8x8 DCT, but only one choice to perform all-zero and DC-only DCT.

Note that the DC-only class can be computed exactly since the DC value is only a scaled

sum of pixels in the 8x8 block.
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Fig. 7. (a) Approximation errors as a function of σ2 of AET, modified SSAVT and Approx-D at QP =

20 for a given approximation error threshold, η = 0.05. (b) Normalized complexity cost comparison

between the AET, modified SSAVT and Approx-D.

V. Experimental Results

In this section, practical implementation issues are discussed. We will demonstrate that

input classification cost is low enough that the computation overhead is almost negligible

compared to the complexity saving gains. According to (19), the value inside the bracket

can be pre-computed for all possible (n, j) pairs. A look-up table can be used to access

these pre-computed value during the classification phase. From the Laplacian model, σ

can also be obtained from the SAD as a by product from the motion estimation module

for INTER frames. For the denominator of (19) which refers to the distortion from quan-
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Fig. 8. Distortion from the Laplacian model for ρ = 0.9 where x-axis is QP and y-axis is the ratio of

distortion (per pixel) and σ. Each curve represents different σ values. Note that one can approximate

the distortion function by the first order polynomial model.

tization, the model of distortion of (8) is used in our experiment. However, our goal is

to estimate the distortion before the actual encoding operation, therefore, to avoid heavy

computation, a first-order model is used to approximate (8) as follows,

D̂

σ
= min(k ·Q + c , σ) (20)

where k and c are model parameters which can be obtained from linear regression of the

previous frame. Fig. 8 shows the average pixel distortion computed from (8). One can

see that the ratio between the distortion and σ can be approximated by a linear function

which saturates at high QP approaching the source standard deviation (i.e., distortion

converges toward the source variance).

For simplicity, in our implementation we introduce a modification to the AET algorithm.

Our experiments show that AET does not exhaust all approximation levels for 2x2-DCT

and 4x4-DCT classes before moving on to the next frequency zone, as can be seen in

Fig. 7, thus allowing us to limit the number of approximation options in these 2 classes.

Taking into consideration the tradeoffs among classification overhead, complexity, and

approximation error, we use only Approx#5 for the 2x2-DCT and Approx#4 for the 4x4-

DCT class, respectively. The reason behind these choices is due to the fact that since only

a few coefficients are computed, a finer approximation algorithm does not significantly
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Fig. 9. Complexity of DCT + Quant vs. PSNR at different target bit rates (20, 30, 40 and 50 Kbps) on

249 frames of (a) “foreman” and (b) “carphone” sequences where the complexity is normalized by the

complexity of the baseline DCT (’
⊕

’). Shown here are the results of SSAVT (’�’), Approx-Q (’2’),

AET (’*’), and Girod’s 3-DCT algorithm (’o’).

cost more than the coarser ones.

Experiments have been performed using the baseline H.263 TMN8 [14]. The original

DCT module using Chen’s algorithm [6] is replaced with the AET algorithm. The rate

control is turned on to keep constant bit rate such that we can compare the complexity-

distortion performance for fixed bit rate. The Visual C++ compiler with optimization

option is used. The C function clock() is used to measure CPU clock cycles spent. Both

the DCT and quantization are measured because the quantization for zero coefficients can

be omitted as well. The experiment was run on a Pentium 4 733 MHz machine running

WindowsNT 4.0. Note that RISC-based processors have become more commonly found in

embedded devices, therefore, the results from a PC can be used as a good representative

of the overall performance improvement.

In Fig. 9, it can be seen that the complexity savings by SSAVT range from 40 to 60%

from high rate to low rate. As the rate gets higher, there are more nonzero coefficients to

be coded due to smaller quantizer thus resulting in less complexity reduction. For Approx-

Q, the quantization still has to take place since all DCT coefficients are computed, though

not exactly. However, the speedup from the DCT part is very significant, as can be seen

in Fig. 9, where the complexity saving ranges from 40 to 65%. It is interesting to point

out that at high bit rates, Approx-Q performs a little better than SSAVT since there are
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many nonzero coefficients whereas SSAVT performs better in the low rate region due to

the fact that a lot of zero coefficients are omitted by SSAVT. Note that these complexity

numbers also include the classification overhead. Thus, it verifies our previous statement

that the classification cost is negligible.

Zero 1x1 2x2 4x4 8x8/App1 App2 App3 App4 App5

1494 7935 10932 16096 12251

50K 378 4158 11964 27558 4650

1330 8107 10980 15975 0 9534 910 199 1673

2362 8811 11381 15343 10217

40K 3552 5892 13188 24678 804

2093 9027 11399 15433 0 7799 479 207 1677

3750 10033 11743 14350 7644

30K 8364 8586 17088 13284 198

3624 10153 11917 14278 0 5566 220 383 1379

5896 10939 11285 11483 4353

20K 18390 9984 13674 1830 78

5881 11016 11242 11474 0 2574 87 595 1087

TABLE I

Frequency of occurrence of different input classes of “carphone”

Table I and II show the number of input classes classified by SSAVT, Approx-Q and

AET (the first, second and third line in the same bit rate category) for “carphone” and

“foreman”, respectively, at different bit rates. The class Zero, 1x1, 2x2, 4x4 and 8x8

are for the reduced output classes from the SSAVT algorithm. The class App1 to App5

represent 5 level of approximations used by the Approx-Q algorithm. For AET, our

experiments use only one level of approximation for each of the all-zero, 1x1 (dc-only),

2x2 and 4x4 classes, and 5 levels of approximation for the 8x8 (full-DCT) class. Therefore,

Table I and II represent all possible classes of input in out experiments.

It can be seen that, in general, as the bit rate decreases, coarser approximations are
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Zero 1x1 2x2 4x4 8x8/App1 App2 App3 App4 App5

1213 7858 9580 15798 13665

50K 642 5034 26784 15654 0

1438 8072 9082 15857 0 10807 1100 107 1651

2446 8686 9974 15750 10664

40K 3216 11346 29868 3090 0

2472 8904 9599 16010 0 8283 501 107 1644

3649 10030 10258 15321 7074

30K 12426 21822 12084 0 0

4158 9905 10177 15005 0 5231 148 241 1467

6462 10685 10367 10722 3938

20K 37002 4380 792 0 0

6820 10150 10090 10661 0 1997 21 576 1265

TABLE II

Frequency of occurrence of different input classes of “Foreman”

selected as a result of higher QP contribution to the thresholds. The hybrid AET algorithm

extends the range of rates at which we can achieve reductions in complexity as can be seen

in Fig. 9, where the complexity savings range from 67 to 73%, e.g., 68% at 50 Kbps and

77% at 20 Kbps for “foreman” sequence and 67% at 50 Kbps and 72% at 20 Kbps for

“carphone” sequence. In terms of quality degradation, AET performs only slightly worse

than SSAVT and Approx-Q by staying within -0.15 dB from the exact DCT case. In terms

of perceptual quality, there is almost unnoticeable difference between the AET and the

exact DCT. We also show the result of Girod’s 3-DCT algorithm with θ = 40 (see [16] for

details) where the complexity reduction is between 10 to 30% while the PSNR degradation

is up to 0.5 dB. Note that the complexity of Girod’s algorithm can be further reduced by

increasing θ, however, the quality degradation is also expected to be higher.
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VI. Conclusions

Based on the approximation error analysis using Laplacian model, we propose variants

to the well-known two approaches, frequency selective SSAVT [19] and accuracy selective

Approx-Q [1] such that the additional distortion is explicitly addressed. From these two

new versions, we then propose a fast computationally scalable approximation error thresh-

olding (AET) DCT algorithm which combines the advantage of SSAVT and Approx-Q in

terms of the speedup vs. accuracy tradeoff in various bit rate ranges. Its performance

shows up to 73% complexity reduction with only 0.2 dB PSNR degradation. In a video

compression standard such as MPEG where the DCT contributes around 10-30% of the

total encoding time, a DCT speedup at this magnitude can significantly affect the overall

encoding speed.
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