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Abstract

Motion search is by far the most complex operation to be performed in a video encoder. This

complexity stems from the need to compute a matching metric for a potentially large number

of candidate motion vectors, with the objective being to �nd the candidate with the smallest

metric. Most work on fast motion estimation algorithms has focused on reducing the number

of candidate motion vectors that have to be tested. Instead, this paper proposes a novel fast

matching algorithm to help speed-up the computation of the matching (distance) metric used in

the search, e.g. the sum of absolute di�erence (SAD). Based on a partial distance technique, our

algorithm reduces complexity by terminating the SAD calculation early (i.e. when the SAD has

only been partially computed) once it becomes clear that, given the partial SAD, it is likely that

the total SAD will exceed that of the best candidate encountered so far in the search. The key

idea is to introduce models to describe the probability distribution of the total distance given a

measured partial distance. These models enable us to evaluate the risk involved in \trusting"

a distance estimate obtained from a partial distance. By varying the amount of risk we are

willing to take, we can increase the speed, but we may also eliminate some good candidates too

early and thus increase the distortion of the decoded sequence. Because our approach requires

knowledge of the statistical characteristics of the input, we also propose two approaches that

allow these models to be obtained online. Our experimental results (based on an actual software

implementation of an MPEG encoder) demonstrate that signi�cant gains can be achieved with

this approach. For example, reductions in the motion estimation computation time as compared

with the original partial distance search (where computation stops if the partial SAD is already

larger than the SAD of the best candidate so far) can be as high as 45% for 2-D Log search

and 65% for exhaustive full search with a small penalty of 0.1dB degradation in PSNR of the

reconstructed sequences.

Keywords

Motion Estimation, Complexity, Fast Matching, Fast Search, Partial Distance, Hypothesis

Testing.

I. Introduction

Motion estimation (ME) is an essential part of well-known video compression standards,

such as MPEG1-2 [3] and H.261/263 [4]. It is an eÆcient tool for video compression that

exploits the temporal correlation between adjacent frames in a video sequence. However,

the coding gain comes at the price of increased encoder complexity for the motion vector

(MV) search. Typically ME is performed on macroblocks (i.e., blocks of 16 � 16 pixels)
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and its goal is to �nd a vector pointing to a region in the previously reconstructed frame

(reference frame) that best matches the current macroblock (refer to Fig. 1). The most

frequently used criterion to determine the best match between blocks is the sum of absolute

di�erences (SAD).

frame           t-1 t

ith block

mv

+-

DCT/Q
residue

Γ

Fig. 1. Motion estimation of i-th block of frame t predicted from the best block in the search region �

in frame t-1.

A. Example: Conventional Exhaustive Search

We start by introducing the notation that will be used throughout the paper (refer

to Table I). Let us consider the i-th macroblock in frame t. For a given macroblock

and candidate motion vector ~mv, let the sum of absolute di�erence matching metric be

denoted as SAD( ~mv; �), where1

SAD( ~mv; �) =
X

(nx;ny)2�

jIt(nx; ny)� It�1(nx +mvx; ny +mvy)j; (1)

and where � is a subset of the pixels in the macroblock. This notation will allow us to

represent the standard SAD metric based on the set B of all pixels in a macroblock, as

1
Note that, since our approach will be the same for all macroblocks in all motion-compensated frames, we will

not consider explicitly the macroblock and frame indices (i and t) unless necessary.
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TABLE I

Notation Table

It(nx; ny) intensity level of (nx; ny) pixel

relative to the upper-left-corner pixel of the macroblock.

B the set of pixels constituting a macroblock

� a subset of B

~mv = (mvx; mvy) a candidate motion vector

� the set of allowable ~mv in a pre-de�ned search region

e.g., � = f(mvx; mvy) : mvx; mvy 2 f�16;�15:5;�15; :::; 15; 15:5gg:


 a set of ~mv (
 � �) actually tested for a given search scheme

well as partial SAD metrics based on pixel subsets �. A ME algorithm will return as an

output the best vector for the given search region and metric, MV �(
; �), i.e. the vector

out of those in the search region 
 � � that minimizes the SAD computed with � � B

pixels,

MV �(
; �) = arg min
~mv2


SAD( ~mv; �):

In the literature, a search scheme is said to provide an optimal solution if it produces

MV �(�; B), i.e., the result is the same as searching over all possible ~mv in the search

region (�) and using a metric based on all pixels in the macroblock (B), where MV �(�; B)

can typically be found using an exhaustive full search (ES). In this paper, we will term

\exhaustive" any search such that 
 = � regardless of the particular � chosen.

In general, motion search is performed by computing the SAD of all the vectors in the

search region sequentially (following a certain order, such as a raster scan or an outward

spiral), one vector at a time. For each vector, its SAD is compared with the SAD of

the \best found-so-far" vector. Without loss of generality, let us assume that we are

considering the i-th candidate vector in the sequence, ~mvi for i = 1; :::; j�j, and we use B

for the SAD computation. Thus we de�ne the \best found-so-far" SAD as

SADbsf(
i; B) = min
~mv2
i

SAD( ~mv;B)

where 
i =
Si
j=1f ~mvjg � � is the set of vectors that have already been tested up to ~mvi
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and the associated \best found-so-far" vector is denoted by MVbsf (
i; B). Note that when

all vectors in the search region have been tested, MV �(�; B) is equal to MVbsf (�; B).

To complete the encoding process, MV � is transmitted. The residue block, which is

the di�erence between the motion estimated block and the current block, is transformed,

quantized, entropy coded and then sent to the decoder, where the process is reversed to

obtain the reconstructed images.

B. Fast Motion Estimation Techniques

We now provide a quick overview of fast ME techniques. Our goal is to provide a rough

classi�cation of the various strategies that have been used to reduce complexity while

introducing the novel features in our proposed algorithm.

B.1 Fast Search vs. Fast Matching

The total complexity of the ME process depends on (i) the number of candidate vectors

in the search region, �, and (ii) the cost of the metric computation to be performed for each

of the candidates (e.g. computing a SAD based on the set B.) Thus, fast ME techniques

are based on reducing the number of candidates to be searched (fast search) and/or the

cost of the matching metric computation (fast matching).

B.1.a Fast search (FS). In order to improve the eÆciency of the search, fast ME algo-

rithms can restrict the search to a subset of vectors 
 � �. This subset of vectors can be

pre-determined and �xed as in [5] or it can vary as dictated by the speci�c search strategy

and the characteristics of the macroblock. Examples of the latter case are 2-D log search

[6], conjugate directions and one-at-a-time search [7], new three step search [8], gradient

descent search [9], center-biased diamond search [10] which exploit in various ways the

assumption that the matching di�erence is monotonically increasing as a particular vector

moves further away from the desired global minimum. A good initial point can also be

used to reduce the risk of being trapped in local minima. Approaches to �nd a good initial

point include hierarchical and multiresolution techniques [11], [12], [13], [14], [15]. Another

successful class of techniques seeks to exploit the correlations in the motion �eld, e.g., MVs

of spatially and temporally neighboring blocks can be used to initialize the search as in

[16] and [17].
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B.1.b Fast matching (FM). Another approach for fast ME, which can also be combined

with a FS technique, consists of devising matching criteria that require less computation

than the conventional sum of absolute di�erence (SAD) or mean square error (MSE). One

example of this approach consists of computing a partial metric, e.g., the SAD based

on � � B [5]. Of particular relevance to our work are the partial distance search tech-

niques, which have also been proposed in the context of VQ [18], [19]. In a partial distance

approach the matching metric is computed on successively larger subsets of B but the com-

putation is stopped if the partial metric thus computed is found to be greater than the total

metric of \best found-so-far" vector. For example if SAD( ~mvi; � � B) > SADbsf(
i�1; B)

there is no need to complete the metric computation and calculate SAD( ~mvi; B). Many

implementations of FS algorithms include this partial distance technique to speed up their

metric computation. Other early termination criteria have been proposed in [20]. Alter-

natively, matching metrics other than SAD or MSE can also be used. For example, in

[21], adaptive pixel truncation is used to reduce the power consumed. In [22], the original

(8-bit) pixels are bandpass �ltered and edges are extracted, with the �nal result being a

binary bit-map that is used for matching. Other approaches include hierarchical feature

matching [23], normalized minimum correlation techniques [24], and minimax matching

criterion [25].

In this paper, we will focus on FM approaches based on the partial distance technique.

The novelty of this work is the probabilistic stopping criterion of the partial distance

computation. It should be emphasized that the FM techniques we propose can be applied

along with any FS strategy. We also note that, while our experimental results are provided

for a software implementation, focusing on FM approaches may also be attractive in a

hardware environment. For example, from a hardware architecture point of view, some

FS designs have the drawback of possessing a non-regular data structure, given that the

blocks that have to be searched in the previous frame depend on the selection of initial

point, and thus vary from macroblock to macroblock. Conversely, ES algorithms have

the advantage of operating based on a �xed search pattern (this could also facilitate

parallelizing the algorithm). In general, FS algorithms such as that in [16] will have to be

modi�ed for hardware implementation, with one of the main goals being to minimize the
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overhead due to the non-regularity of the algorithm. As an alternative, if the goal is an

eÆcient hardware design one may choose to design an eÆcient FM approach (e.g., [21],

[26], [27], [28], [29]) and combine it with a simple search technique, such as ES.

B.2 Fixed vs. Variable Complexity

We can also classify ME techniques into �xed complexity algorithms (FCAs) and variable

complexity algorithms (VCAs). The complexity in FCAs is input-independent and remains

constant (e.g. a ME technique with �xed � and 
), while in this work we will consider

VCAs, where complexity is input dependent (e.g. � and 
 are di�erent for each macroblock

and/or frame.) The goal when designing a VCA is then to achieve low complexity in the

average case. Thus, we expect the \worst case" complexity of the VCA to be higher than

that of a comparable FCA, but hope that on the average, a VCA will have lower complexity.

In practice, this is done by making reasonable, though typically qualitative, assumptions

about the characteristics of typical sequences. For example, consider the algorithm of [16],

which, as indicated earlier, exploits the correlations in the motion �eld. For this algorithm,

performing ME in a scene with smooth motion (e.g. a scene with panning) tends to require

less complexity (and to be closer to the optimal ES result) than �nding the motion �eld

for a scene with less correlated motion (e.g. a scene with several independent moving

objects). Thus, such an algorithm provides a good average case performance under the

assumption that typical video sequences have predominantly smooth motion. For similar

reasons, algorithms in [6], [7], [8], [10] perform well for sequences with low motions.

A second example of a VCA algorithm can be found in the partial distance approach

discussed earlier. The underlying assumption here is that the distribution of SADs for

typical blocks has large variance, with few vectors having SAD close to the minimum (i.e.

the SAD of the optimal vector). Thus, on average one can expect to eliminate many

bad candidate vectors early (those having large metric) and thus to achieve a reduction

in overall complexity. Once again this is an implicit assumption about the statistical

characteristics of these matching metrics for typical blocks. In this paper we argue that

substantial gains can be achieved by making these assumptions explicit, and therefore our

novel probabilistic stopping criterion for the metric computation will be based on explicit

statistical models of the distribution of SAD and partial SAD values.
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B.3 Computationally Scalable Algorithms

Finally, we consider the computational scalability property, which is being considered as

a desirable feature in many applications (e.g. to operate the same algorithm in di�erent

platforms, or to run at various speeds in the same platform). Computational scalability

allows to trade-o� speed with performance (e.g. the energy of the prediction residue in

the case of ME). There has been some recent interest in computation scalability in the

context of video coding in general (e.g., our work on DCT/IDCT [30], [31]) and ME in

particular. For example, [32] addresses computationally constrained motion estimation

where the number of vectors to be searched (the size of 
) is determined by a complexity

constraint based on a Lagrangian approach. This technique adopts an idea similar to that

in [33] but using complexity rather than rate as a constraint.

Our proposed probabilistic stopping criterion approach is the �rst that provides a com-

putational scalability for the FM approaches. In our approach we still compute partial

distances and use those to determine when a candidate vector should be eliminated. The

basic idea is to stop the computation of the matching metric when the partial metric indi-

cates that the total metric is likely to exceed that of the best candidate so far. when \bad"

candidate vectors are being tested, since these can be discarded before the B-pixel metric

has been computed. To achieve this goal we formalize a hypothesis testing framework

where the decision to stop the metric computation is done based on probabilistic models

of the distribution of the actual metric based on the calculated partial metric. We select

a given probability of error (i.e. missing a \good" vector) based on these models and by

varying this probability we can achieve a computationally scalable calculation. Our results

show signi�cant complexity reduction, e.g., 35% compared to the original partial distance

search with insigni�cant degradation in distortion, e.g., loss of 0:01dB in PSNR. The com-

plexity can be made variable by adjusting a threshold which determines the probability

of eliminating good MVs. When this threshold is lowered we can speed-up the matching

(e.g. by 50%) at the cost of a further, but still slight, increase in distortion (e.g. less than

0:1dB loss in PSNR).

Following the above categorizations, this paper contributes to fast motion estimation

an algorithm which is FM, VCA and computationally scalable. The paper is organized
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as follows. In Section II, the original partial distance algorithm is reformalized and a

new macroblock partitioning is introduced. In Section III, we introduce the proposed

hypothesis testing framework that forms the basis of our algorithm. There, we assume all

necessary statistics of a particular sequence are known to the encoder. In Section IV, we

propose eÆcient techniques to obtain those statistics for a particular sequence adaptively

during the encoding. In Section V, we show the results of our proposed algorithm with

adaptive parameter estimation, as compared to the original partial distance search using

ES, 2-D Log search [6] and ST1 search [16]. Finally, concluding remarks are given in

Section VI.

II. A Review on Partial Distance Fast Matching

In this paper, we use SAD as the matching criterion2. In all our experiments SAD

calculations are based on at most 128 pixels out of the 256 pixels of a macroblock. As in

[5], this subset �q � B is obtained by subsampling using a quincunx grid (see Fig. 2.) As

shown by Fig. 3, this particular subsampling tends to provide suÆcient accuracy for the

SAD calculation (see [5], [16]), i.e., the overall MSE does not increase signi�cantly if we

use �q instead of B.

Our work is based on splitting each set �q into b subsets of pixels, yi, for i 2 f1; 2; :::; bg,

such that
Sb
i=1 yi = �q and yi \ yj = � for i 6= j (see for example Fig. 2). Let us de�ne

xi =
Si
j=1 yj. During the SAD calculation of ~mvj, we compare the partial calculation of

the SAD, SAD( ~mvj; xi) with the best SAD obtained out of all previously tested candi-

dates, SADbsf (
j�1; �q). If the partial SAD is greater than SADbsf , we can terminate the

computation and continue to the next vector. Otherwise, we compute SAD( ~mvj; xi+1)

for the next stage and perform the test again. If no early termination occurs, the process

repeats until the �nal stage, b, is reached.

There are many possible ways to partition �q into subsets yi. In this paper, we propose

two methods, which both have jyij = 8, 8i, and thus result in 16 stages of testing: these

are the uniform partition (UNI)3 and the row-by-row partition (ROW) shown in Fig.2(a)

2
Note, however, that our approach could be easy generalized to other additive distance metrics such as MSE

(see for example our work in applying this approach to searching of a Vector Quantizer codebook [2]).
3
During the review process of this paper, we became aware of the work by Cheng and Sun [34] which indepen-

dently proposed using a uniform partition (dithering pattern pixel decimation). It is important to note, however,
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and 2(b), respectively. In Fig.2(a), the partition is designed such that the correlation

between SAD( ~mv; �q) and SAD( ~mv; xi) is maximum, given that pixels are uniformly

spaced. This results in fewer pixel comparisons on the average, since early termination

is more likely. However, for a hardware implementation, UNI may not be desirable as

it results in more irregular memory access patterns. Conversely, ROW (see Fig.2 (b))

provides a more regular memory access that could simplify the implementation, although

we can expect ROW to be worse than UNI in terms of producing a reliable estimate of

the total SAD.

1 5 1 5 1 5 1 5

9 13 9 13 9 13 9 13

7 3 7 3 7 3 7 3

15 11 15 11 15 11 15 11

2 6 2 6 2 6 2 6

10 14 10 14 10 14 10 14

8 4 8 4 8 4 8 4

16 12 16 12 16 12 16 12

1 5 1 5 1 5 1 5

9 13 9 13 9 13 9 13

7 3 7 3 7 3 7 3

15 11 15 11 15 11 15 11

2 6 2 6 2 6 2 6

10 14 10 14 10 14 10 14

8 4 8 4 8 4 8 4

16 12 16 12 16 12 16 12

(a)

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10

11 11 11 11 11 11 11 11

12 12 12 12 12 12 12 12

13 13 13 13 13 13 13 13

14 14 14 14 14 14 14 14

15 15 15 15 15 15 15 15

16 16 16 16 16 16 16 16

(b)

Fig. 2. Subset partitionings for 128 pixels subsampled using a quincunx grid into 16 subsets for partial

SAD computation. Only highlighted pixels are used to compute SAD. Two types of subsets are

used (a) uniform subsampling (UNI) and (b) row-by-row subsampling (ROW). Partial distance tests

at the i-th stage are performed after the metric has been computed on the pixels labeled with i

(corresponding to yi).

To simplify the notation, when there is no ambiguity we omit to write the terms ~mvj,


j�1 and B. Also we use PSADi to represent the partial SAD at stage i, i.e., SAD( ~mv; xi)

for i = 0; :::; b� 1. Note that the partial SAD can be computed recursively as

PSADi+1 = PSADi + SAD( ~mv; yi) (2)

where PSAD0 = 0 and PSADb = SAD.

that neither this or other FM works use a variable number of pixels for matching.
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Fig. 3. Complexity-Distortion of reduced set SAD computation with ROW DTFM ('dotted') and without

DTFM ('solid') using (a) ES and (b) ST1 search, averaged over 5 test sequences. Points in each curve

from right to left correspond to j�j = 256, 128, 64 and 32, respectively. Note that there is a minimal

di�erence between computing the SAD based on 256 and 128 pixels. For this reason in all the

remaining experiments in this paper we use at most 128 pixels for the SAD computation.

It is clear from (2) that PSADi � SAD, for 8i. Therefore, if PSADi is greater than

the SADbsf , there is no need to complete the SAD computation and we can move on to

evaluate the next vector. Otherwise, we compute PSADi+1 and perform the test again.

As a result theMV � obtained by the partial distance method is obviously the same as that

obtained by computing directly the full metric. Thus we call this technique a deterministic

testing fast matching (DTFM), as it deterministically provides the optimal solution. Note

that in this paper the \optimal" motion vector is based on SAD computed from �q (i.e.,

128 pixels), and therefore of a solution based on xi � �q will tend to be \sub-optimal"

since we cannot guarantee that it will produce the same motion vector selection obtained

using �q. The DTFM approach can be summarized as follows

Algorithm 1 (DTFM)

Step 1: At the beginning of motion search for a particular block, compute the SAD of

the �rst candidate MV, assign it to SADbsf and set MVbsf accordingly.

Step 2: Every time a new ~mv is considered, as dictated by the FS strategy, set SAD to

zero. Set i = 0. If there is no next unevaluated vector, MV � =MVbsf .
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Step 3: Compute PSADi

Step 4: If i < b, go to step 5, else let SAD = PSADb and go to step 6.

Step 5: If PSADi � SADbsf , we eliminate the current candidate and go to step 2.

Otherwise, let i = i + 1 and repeat step 3.

Step 6: If SAD < SADbsf , SADbsf = SAD and MVbsf = ~mv. Go to step 2.

The partial distance technique, we have just described is well-known and is implemented

in many actual software implementations, where ROW subsampling is typically used (e.g.

[35],[36]). The complexity savings of this technique come from the possibility of early

termination in Step 5. The amount of complexity reduction varies depending on the nature

of the sequence. Also, since we can use DTFM with any FS algorithm, the eÆciency of the

FS algorithm will a�ect the savings stemming from DTFM. For example, for eÆcient FS

algorithms the tested MVs are likely to have small SAD and their SAD values will tend

to be fairly similar. Therefore there is less chance to terminate the matching computation

at an early stage, and the bene�ts of DTFM will be reduced. In general, the complexity

reduction contributed by DTFM can be signi�cant, e.g., about 3-5 times speedup in ES

case. In Fig.3, complexity-distortion (C-D) results with and without DTFM are compared.

The C-D curves are obtained by changing the set �. One can observe that the relative

gain in using DTFM is lower when a fast search algorithm is used.

TABLE II

Profile of MPEG2 encoder on the \mobile&calendar" sequence comparing ES and ST1.

component ES ES-DTFM ST1 ST1-DTFM

Motion estimation 86.6% 69.3% 22.9% 20.2%

Quant. + Inv.Quant 3.7% 8.3% 20.0% 21.7%

DCT + IDCT 1.9% 5.9% 13.0% 12.6%

Others 7.8% 16.5% 44.1% 45.5%

Relative total time 1 0.44 0.2142 0.2106

An example of the CPU time pro�les of the major components in an MPEG2 encoder

using a FS algorithm (the ST1 algorithm in [16]) and ES are shown with DTFM and

without DTFM in Table II. The last row shows relative total complexity of each algorithm.
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We can see that DTFM reduces the ME complexity signi�cantly in the ES case while the

reduction is modest when used with a FS.

III. Hypothesis Testing Fast Matching

In this section, we propose a new algorithm, hypothesis testing fast matching (HTFM),

that enables additional complexity savings as compared to DTFM by allowing an early

termination of the SAD calculation based on the likelihood that the SAD will be greater

than SADbsf , given the current PSADi. This complexity reduction over DTFM comes

with the cost of potentially not �nding the best motion vector for some blocks, which leads

to an increase in the energy of the motion compensated predicted frame.

In our formulation, we will use the mean absolute di�erence (MAD) de�ned as MAD =

SAD=jBj, where jBj is the number of pixels in set B. Similarly, we write the \best-found-

so-far" MAD as MADbsf = SADbsf=jBj and the partial MAD as PMADi = PSADi=jxij.

It is worth noting that SAD is always greater than or equal to PSADi but MAD can be

either greater or smaller than PMADi.

Our proposed approach comes from the observation that the PMAD becomes increas-

ingly correlated with the MAD as the partial metric computation proceeds to more stages,

i.e., more and more pixels are used. For example, consider Fig.4(a) where scatter plots of

MAD vs. PMADi are shown. It can be seen that there is a high correlation and PMADi

is an increasingly good estimate of MAD as i grows. The histograms of the di�erence

between MAD and the PMADs are also shown in �gure 4(b). From these �gures we

can conclude that the following are good approximations: (i) the partial MAD is a good

estimate of the �nal MAD, i.e., EfMADjPMADig � PMADi, and (ii) there exists a

reliable model for the error, and this model is about the same for any values of PMAD,

i.e., pMADjPMADi
(x) � pMAD�PMADi

(x� PMADi).

In DTFM, we stopped the metric computation as soon as PSADi is greater than SADbsf .

In HTFM, given the PMADi at the i-th stage we want to decide whether theMAD is likely

to be larger than MADbsf . If that is the case, we can terminate the matching distance

computation early, with the risk that the actual MAD may turn out to be smaller than

MADbsf . We refer to this risk as the probability of false alarm, PF . More formally, our

goal is
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Fig. 4. (a) Scatter plot betweenMAD (y-axis) and PMADi (x-axis) and (b) corresponding histograms of

MAD�PMADi. These are plotted for 16 stages of UNI subsampling, with number of pixels ranging

from 8 (top left) to 128 (bottom right). We use UNI subsampling and ES on the \mobile &calendar"

sequence. Similar results can be obtained with other sequences, search methods and subsampling

grids.
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Formulation 1 (HTFM) Given PMADi at the i-th stage (i = f1; 2; :::; bg) and MADbsf ,

we want to decide between the following two hypotheses:

H0 : MAD < MADbsf

H1 : MAD �MADbsf

such that the constraint

PF � Pr(H0jdecide H1) < Pf is satis�ed.

where Pf is the targeted PF .

If H1 is chosen, we stop the SAD computation. Otherwise, we compute PMADi+1 and

perform another hypothesis testing at the i+1-th stage. Note that we could formulate the

problem using the Neyman-Pearson criterion in which Pr(decide H1jH0)Pr(H0) (prob-

ability of false alarm) is constrained and Pr(decide H0jH1)Pr(H1) (probability of miss

detect) is minimized. However, the resulting decision rule turns out to be the same. Also,

we treat MADbsf and PMADi as constants rather than assuming some prior distribution

for them. Thus, we only need to consider and model the conditional probability of MAD

given PMADi. PF can then be rewritten as (see also Fig. 5),

PF =
Z MADbsf

�1

pMADjPMADi
(x)dx =

Z MADbsf�PMADi

�1

pMAD�PMADi
(x)dx

Given this probability, we can �nd a threshold parameter, Thi, such that PF is less than

some threshold Pf , Z
�Thi

�1

pMAD�PMADi
(x)dx = Pf (3)

so that the decision rule becomes (see Fig.5)

PMADi �MADbsf

H1

>
<

H0

Thi (4)

Now we can replace the PSAD testing at step 5 of Algorithm 1 (DTFM) by (4). As

illustrated in �gure 5, Pr(H0jdecide H1) is the area under the p(MADjPMADi)(x) function

to the left of MADbsf . In general, we could select di�erent Pf thresholds for each stage

in the hypothesis testing. However, for simplicity, we �x Pf to a constant at all stages in

our experiments.

From the histogram in Fig.4(b) we can model the di�erence between MAD and PMADi

as a random variable with Laplacian distribution, i.e., p
(MAD�PMADi)

(x) = �i
2
e��ijxj where

April 3, 2000 DRAFT



16 IEEE TRANSACTIONS ON CIR. AND SYS. FOR VIDEO TECHNOLOGY, SUBMITTED, APRIL 1999

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

Hypothesis testing at stage i

MAD
bsf PMAD

i

Th
i

MAD−PMAD
i

P
err

P
f
 − P

err

Fig. 5. Empirical pdf of MAD � PMADi (estimation error) obtained from histogram of training data

(solid line) and the corresponding parametric model (dashed line). HTFM terminates the matching

metric computation at stage i if PMADi �MADbsf > Thi.

�i is the Laplacian parameter for stage i. We found that this model is accurate for many

test sequences and FS methods. With a Laplacian model, the threshold (3) can be written

as a function of �i and Pf as follows

Thi =

8><
>:

� 1

�i
ln(2Pf) Pf � 0:5

� 1

�i
ln2(1� Pf) Pf > 0:5

(5)

Note that the Thi of each stage is di�erent because the model (and therefore �i) is di�erent

even if the same Pf is used for each stage.

So far, we have formalized a hypothesis testing framework based on likelihood testing of

PMAD. However, there is a situation where it is useful to combine HTFM and DTFM. In

some cases PSADi is already larger than SADbsf but our probabilistic estimate indicates

that PMADi is not large enough to be eliminated (for example if Pf is very small),

i.e., PSADijXj=jxij � SADbsf < ThijXj but PSADi > SADbsf . This would result in

computing successive re�nements of PMAD. This situation happens more in the last few

stages and when SADbsf has a small value, i.e., when we are close to �nding the best point

in the search region . Therefore, in order to take full advantage of all information available

at a certain stage, our HTFM also incorporates the partial SAD test in conjunction with

the likelihood test at each stage. The HTFM, thus, can be summarized as

Algorithm 2 (HTFM)
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Same as Algorithm 1 except that Step 5 is replaced by:

Step 5 If PSADi � SADbsf or PMADi > MADbsf + Thi, we eliminate the current

candidate and go to step 2. Otherwise, let i = i + 1 and repeat step 3.

The proposed HTFM technique reduces matching metric computation cost, but intro-

duces an overhead due to the hypothesis test at each stage (one more comparison and two

additions). While this additional complexity is outweighed in general by the gain from

early termination, it is also possible to optimize the testing. Thus some tests could be

pruned with the goal of minimal overall complexity for a speci�c data with known statis-

tics, i.e., the probability mass distribution of being terminated at certain stage as in [1].

For simplicity, in this paper we perform the test in every stage without any optimizations.

IV. Online Parameter Estimation

In section III, we assumed that the conditional p.d.f. of MAD given PMADi at stage

i is known, so that the appropriate thresholds can be derived from this distribution. In

practice, however, these statistics are not known a priori for a particular sequence. A

possible solution would be to select in advance these probability distributions, through

training over a set of video sequences. However, we have observed that the statistics of

di�erent sequences can di�er signi�cantly, depending on the frequency content of each

frame, motion of objects in a frame and the FS techniques used. For example, a frame

consisting of only low spatial frequency components tends to have less MAD estimation

error than a frame with high frequency components. A frame with many moving objects

causing uncorrelated motion vector also gives higher MAD estimation error. Moreover,

with initialization-re�nement approaches to FS (e.g. [16]), the MAD estimation error is

smaller than for ES because the statistics based on a set of candidate vectors that are

already expected to be good (i.e., their SAD will be close to the optimal one). For these

reasons, we focus on approaches that estimate the probability models online, with updates

taking place every few frames in a video sequence, under the assumption that the statistics

do not change rapidly over a small group of frames.

We model the conditional density to be a Laplacian distribution with parameter �i.

Thus we will only need to estimate the �i's in order to update the HTFM thresholds.

Furthermore, �i is related to the variances, �2i = Ef(MAD � PMADi)
2g, and the �rst
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order absolute moments, �i = EfjMAD � PMADijg by

�i =
q
2=�2i = 1=�i (6)

Therefore, obtaining any one of these three parameters is equivalent. Obviously, obtaining

exact statistics would require that we compute the full MAD for each block, so that no

fast matching speed up would be possible for the training frame. We now propose two

training techniques for fast approximation of the threshold parameters for both ROW and

UNI subsampling. In both techniques, our goal is to maintain the speed up due to DTFM

while estimating the statistics reliably.

A. Model Estimation for ROW

Assume that when using DTFM for one block, the SAD calculation is terminated at

stage t. In this case we have no information about PMADi for i > t, but, given that we

terminated early, the corresponding PMADt can be thought to be a good approximation

of the overall true MAD. Thus, our estimate ~�2i for �
2
i can be computed by assuming that

for each block MAD ' PMADt, so that our estimated error variance is

~�2i = Etjif(PMADt � PMADi)
2g for t > i

� 2EtjifjPMADt � PMADijg
2 with the Laplacian assumption (7)

The update algorithm then becomes

Algorithm 3 (Variance estimation for ROW)

Step 1:For a selected training frame, for every tested MV, perform DTFM in SAD

calculation but also save jPMADt � PMADij for i < t where t is the stage of DTFM

termination.

Step 2:Compute ~�2i from 2EtjifjPMADt � PMADijg
2.

Step 3:Compute �i =
q
2=~�2i and update thresholds for HTFM using this new estimate

set of variances and (5).

Thus for the training frames, we collect PMAD data only before the DTFM termination.

The result of variances obtained this way is shown in Fig.6 averaged over 150 frames for

each of the test sequences (ES is used in the experiment).
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Two main observations can be made from Fig.6. First, it can be seen that ~�2i is obviously

lower than the �2i , thus resulting in smaller value of Thi for a given targeted Pf which

means that Pr(SAD < SADbsf jdecide H1) is larger. Therefore, in order to obtain the

same probability of error, Pf must be set to a smaller value. Second, we can further reduce

the complexity of the data collection/manipulation by using linear interpolation to �nd

~�2i for i 6= f1; 2; 4; 8g and only computing ~�21; ~�
2
2 ; ~�

2
4, and ~�28.

B. Model Estimation for UNI

In general, we can still use Algorithm 3 to approximate the model parameters for UNI

subsampling. However, a better estimate �̂2i of the true variance �2i can be obtained in

this case. Let us consider the pixel at position ~k = (kx; ky) and denote d(~k) the pixel

di�erence at that position,

d(~k) = jIt(~k)� It�1(~k + ~mv)j

We can write PMADi as

PMADi =
X
~k2xi

d(~k)=jxij (8)

Consider the �rst two stages, PMAD1 and PMAD2. Because the pixels are uniformly

spaced we can assume that the pixel di�erence, d(~k), is an i.i.d. random sequence with

average MAD and variance �2d. Hence, PMAD1 and PMAD2 can be viewed as time

averages. Therefore, we have

Ef(PMAD1 � PMAD2)
2g = �2d(jx2j � jx1j)=jx2jjx1j

= �21(jx2j � jx1j)=jx2j (9)

= �22(jx2j � jx1j)=jx1j

where �2i for i = 1; 2 are as de�ned previously. Therefore, using (9) for the �rst two test

stages (jx2j = 16 and jx1j = 8), we can approximate �21 as 2Ef(PMAD1 � PMAD2)
2g.

Besides, PMAD1 � PMAD2 can also be modeled to have Laplacian distribution. Hence

its variance can be obtained without a square operation from the �rst order moment

(expected absolute value), i.e., we can approximate �21 by

�21 ' 4EfjPMAD1 � PMAD2jg
2 = �̂21 :
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Fig. 6. (a)�2i and (b) ~�2i of ROW computed from the de�nition (mean square) ('solid') and computed

from the �rst order moment ('dashed'). The left-most points in (a) are Ef(PMAD1 � PMAD2)
2g

and 2EfjPMAD1 � PMAD2jg
2.
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Our experiments (see Fig. 7(a)) show that this is a fairly accurate approximation. To

approximate the variances at other stages, �̂2i , we observe that (see Fig.7(b)) the ratios

between the �rst stage variance �21 and other �2i are almost constant regardless of the

sequence and FS scheme used (see Fig. 7(b)). This can be justi�ed based on the i.i.d.

assumption of the pixel residue. From (8), it can be derived that if d(~k) is i.i.d. then the

ratio of variances of PMADi and PMADj does not depend on �2d but is a function of

only i and j. Since the i.i.d. assumption is good enough under UNI, it makes sense to see

consistent ratios among all test sequences. As a result, in our approach we only estimate

�̂21 and obtain the remaining �̂2i by applying the scaling factors shown in Fig. 7(b). We

also note (see Fig. 7(a)) that the variances can be estimated accurately from the �rst order

moment, �2i . This can be justi�ed from the Laplacian modeling shown in Fig. 5.

Therefore, the algorithm to estimate model parameter for UNI can be summarized as

Algorithm 4 (Variance estimation for UNI)

Step 1: For a selected training frame, for every tested MV, always compute PMAD1

and PMAD2 and save jPMAD1�PMAD2j. (DTFM or HTFM tests can be used for the

following stages.)

Step 2: Compute �̂21 = 4EfjPMAD1� PMAD2jg
2. Compute other �̂2i by dividing 2�̂21

with the ratios in Fig. 7(b).

Step 3: Compute �i =
q
2=�̂2i and update thresholds for HTFM using this new estimate

set of variances and (5).

This variance approximation technique is fast because the only data we have to collect

is PMAD1 � PMAD2 and we can apply DTFM test (when no previous statistics are

available) or HTFM test (using previous HTFM test parameters) at stage 2, 3 and so on,

i.e., we still gain some computation saving while performing the training. Once again, the

limitation of Algorithm 4 is that the i.i.d. assumption is only reasonable when using UNI.

For ROW, it is obvious that we cannot apply the UNI parameter estimation technique.

To demonstrate the e�ectiveness of our online training scheme we show in Fig. 8 a

comparison between the � obtained by online training and the actual error variances for the

corresponding frames. Our results show that these methods provide a good approximation

without a signi�cant impact in the complexity of the training frames. In our experimental
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Fig. 7. (a) �2i ('solid') and 2�2i ('dashed') of MAD estimate error at 15 stages using ES and UNI,

respectively. The left-most points shows Ef(PMAD1�PMAD2)
2g and 2EfjPMAD1�PMAD2jg

2

for each sequence. (b) Ratio of �2i =�̂
2

1
for each sequence. Note that this ratio is nearly the same for

all sequences considered.
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Fig. 8. Example of tracking of statistics �i under UNI subsampling. Note that the approximated values

track well the actual ones, even though the parameters do change over time. We use several di�erent

sequences to provide the comparison. This serves as motivation for using online training, rather than

relying on precomputed statistics.

results these training techniques will be used as appropriate and the corresponding training

overhead will be included in the measured computation cost.

V. Experimental Results

We discuss the conditions of our experiments �rst. We use 5 test sequences, namely,

\mobile&calendar", \football", \
ower", \cheer" and \bicycle". All of them consist of

150 frames of size 360 by 240. We encode them with an MPEG2 coder based on the

\mpeg2encode" source code of [36]. We use frame prediction mode only (in MPEG2 there

are other modes of motion compensation such as �eld and dual-prime prediction). The

range of motion search is -15 to 15. We set the target rate at 5 Mbps. All the results are

generated on a Pentium II 300 MHz processor.

In addition to ES for the best motion vector, we also use 2-D log search [6] and ST1 al-

gorithm [16] as fast search techniques. We compare results between these three techniques

with and without our HTFM using either UNI or ROW. This allows us to assess how our

FM algorithm performs when a more eÆcient FS is also used. We note again that our FM

algorithm could be combined with other FS approaches.
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2-D log search starts from a small set of vectors uniformly distributed across the search

region and moves on to the next set more densely clustered around the best vector from

the previous step (if there is a change in direction, otherwise, the next set would be the

same farther apart). The ST1 algorithm employs the spatial and temporal correlation of

motion vectors of adjacent macroblocks. It starts with the best candidate motion vectors

from a set of neighboring macroblock both spatially and temporally, if available. Then

it performs local re�nement on a small 3x3 window search until it reaches the minimum

point. In general, ST1 algorithm achieves a higher speed-up than 2-D log search, with

also lower overall residue energy.

We use each one of these three FS algorithms at integer pel motion accuracy. In order

to obtain half-pel motion accuracy, we perform a one step search over a small 3x3 window

(on half-pel grid) around the best integer motion vector from the FS algorithms.

A. UNI versus ROW
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Fig. 9. Complexity-distortion of HTFM with ES and variance estimation on-the-
y, ROW ('solid')

and UNI ('dashed'), (a) PSNR degradation vs. clock cycle and (b) residue energy per pixel vs.

number of pixel-di�erence operations. Both clock cycle and number of pixel-di�erence operations are

normalized by the result of ES with ROW DTFM. It can be seen that UNI HTFM performs better

than ROW HTFM. The transform coding mitigates the e�ect of the increase of residue energy in

the reconstructed frames. The testing overhead reduces the complexity reduction by about 5%. The

complexity reduction is up to 65% at 0.05 dB degradation.
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In Figure 9 (a), we show the complexity-distortion of 5 test sequences using ES motion

estimation with the HTFM. The unit of complexity is the actual CPU clock cycles spent

in motion estimation normalized by the same quantity using ROW DTFM. The distortion

is given in terms of PSNR degradation from the DTFM (both ROW and UNI result in

the same quality). If UNI is applied to DTFM, the resulting complexity is higher, as can

be seen by isolated points on 0 dB line. However, with HTFM, the UNI complexity is

less than ROW by about 15% as the pixel di�erence saving overcomes the data access

complexity and the likelihood of making wrong decision is smaller due to the reduced

estimation error variance.

Figure 9 (b) presents the same results as 9 (a) but with the number of pixel-di�erence

operations is shown instead of the CPU clock cycle, and the average energy of residue

pixel instead of the reconstructed PSNR degradation. It can be seen that the savings

measured in terms of number of pixel-di�erence are always greater by about 5% because

this measure does not take the complexity of search strategy, the test (DTFM or HTFM

test), and parameter estimation into account. Therefore, it can be seen that the DTFM

with UNI yields lower number of pixel-di�erence operations than ROW, but the actual

CPU clock cycle is higher. It can also be seen that the decrease in reconstructed frame

quality is less than the increase in residue energy. This happens because the resulting

smoother motion �eld requires fewer bits for coding and therefore allows more bits to be

used to code the residue, increasing the overall quality. Since, as mentioned earlier UNI

performs better than ROW, in Fig 10(a) and 10(b), we only show complexity-distortion

using UNI HTFM for 2-D Log search and ST1 search, respectively.

B. Scalability

Figs.9 and 10 illustrate the computational scalability of the HTFM. In order to obtain

a complexity-distortion curve we plot the complexity and distortion pair at di�erent Pf

values (ranging from 0.05 to 0.30 for UNI, and 0.01 to 0.20 for ROW.) For ROW we have

to select lower Pf due to the underestimation of �2i by ~�2i , and thus the real probability

of error is larger than the targeted Pf . The statistics are updated every GOP of size 15.

Both complexity and distortion are normalized by the complexity and distortion values of

ROW DTFM.
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Fig. 10. Complexity-distortion of UNI HTFM with variance estimation on-the-
y of (a) 2-D Log search

and (b) ST1 search. The axes are clock cycle and PSNR degradation normalized/compared to the

2-D Log search (a) or ST1 search (b) with ROW DTFM. The complexity reduction is up to 45% and

25% at 0.05 dB degradation for 2-D Log and ST1 search, respectively.

We can see that even though the gain is not as large as in the ES case, the complex-

ity reduction can still be achieved with FS algorithms. For example, we achieve a 45%

complexity reduction with around 0.05 dB loss for 2-D Log search and a 25% complexity

reduction for ST1 search. In terms of subjective quality, we observe no perceptual di�er-

ence between DTFM and the HTFM at this level of degradation. In all experiments, one

can see that the complexity-distortion performance of HTFM on the \football" sequence is

the worst because the high motion content results in high MAD estimation error variance.

Therefore, ideally the HTFM works the best for sequence with low MAD estimation error

variance. In other words, the residue has to be relatively smooth, which implies smooth

moving object with a smooth background content.

C. Temporal Variation

Fig. 11, 12 and 13 show frame by frame speedup in clock cycle average of \mobile" and

\football" using ES, 2-D Log search and ST1 search, respectively. Speedup is computed

by comparing with the original FS algorithm (2-D Log or ST1 search) without FM. The

Pf for HTFM is set to 0.1 or 10% for ES, 20% and 30% for 2-D Log and ST1 search,

respectively. One can see that with fast model parameter estimation which takes place
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in the �rst P-frame of a GOP (size 15), we still perform almost as well as DTFM. By

comparing Figs. 11 and 13, we can see that with an eÆcient FS algorithm, the extra

speedup from DTFM is smaller, and thus speedup from HTFM algorithm is more diÆcult

to get. Otherwise, the Pf can be set to larger value for greater speedup but that comes

with the price of relatively larger distortion increase. It can also be seen from Fig. 13 that

in some frames, the DTFM results in slower motion estimation (speedup less than 1). This

is because the candidates being evaluated by ST1 are all good, thus resulting in almost no

early terminations. This case is not observed by HTFM because the probabilistic testing

still terminates candidates. In such case, the Pf can be set to as high as 40-50% without

much PSNR degradation since any of the candidates evaluated by the FS are equally good.

0 50 100 150
0

2

4

6

8

10

12
Speeding up gain in full search

frame number

:HTFM, P
f
 0.1

:DTFM

Fig. 11. Frame-by-frame speedup factor for ES using ROW and '�': DTFM, and 'o': ROW HTFM with

Pf = 0.1 and 0.01 dB degradation.

D. Overall Performance

Table III and IV show the results in terms of total encoding time (seconds) needed to

encode 150 frames of the 5 test sequences using i) jBj = 128 pixels without FM, ii) jBj =

128 pixels with ROW DTFM iii) jBj = 64 pixels with ROW DTFM, iv) jBj = 32 pixels

with ROW DTFM, v) UNI HTFM Pf = 20%, vi) UNI HTFM Pf = 30% , and vii) UNI

HTFM Pf = 40% (all HTFM results are based on 128 pixels). Note that for DTFM with
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Fig. 12. Frame-by-frame speedup factor for 2-D Log search using ROW and '*': no FM, '�': DTFM,

and 'o': ROW HTFM with Pf = 0.2 and 0.04 dB degradation.

jBj = 64 (and 32), the number of pixels in each stage is 8 (4) and the number of stages

reduces to 8 (8) while in HTFM the number of pixels used in each stage and number of

stages are �xed to 8. Once again, we can see that the relative speedup due to FM is much

more signi�cant when using ES rather than a FS. Furthermore, we can see that in general

our HTFM with Pf = 30% provides speedup as good as or better than using 64 pixels

with ROW DTFM but with less distortion.

VI. Conclusion

In this paper, we have proposed a fast ME by using FM in a variable complexity frame-

work, in which the complexity is input-dependent and is adjustable by the degree of

probability to make wrong decision. We formalize the problem with the assumption of

the knowledge of the distribution of the MAD estimation error. Then hypothesis testing

is applied to minimize the probability of error. We call this novel algorithm HTFM. We

presented fast \on the 
y" model parameters estimation to cope with statistical change

within a single sequence and can be universally applied to any sequences and any FS. For

a very eÆcient FS, we achieve even further complexity reduction beyond the already fast

result.
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Fig. 13. Frame-by-frame speedup factor for ST1 algorithm using ROW and '*': no FM, '�': DTFM, and

'o': ROW HTFM with Pf = 0.3 and 0.12 dB degradation.
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TABLE III

Total time for encoding 150 frames and PSNR.

sequence FM ST1 Log ES

sec. PSNR sec. PSNR sec. PSNR

128 pels 37.78 32.46 43.79 32.15 472.75 32.37

DTFM (128 pels) 35.42 32.46 39.33 32.15 152.37 32.37

DTFM (64 pels) 33.63 32.12 35.54 31.37 98.25 31.95

DTFM (32 pels) 32.58 31.93 33.59 30.97 71.05 31.69

HTFM 20% 34.44 32.45 35.14 32.16 84.59 32.36

HTFM 30% 33.78 32.42 34.50 32.14 80.39 32.34

mobile

HTFM 40% 33.52 32.35 34.11 32.08 77.88 32.27

128 pels 39.05 40.43 44.72 40.05 449.64 40.52

DTFM (128 pels) 37.75 40.43 42.19 40.05 231.80 40.52

DTFM (64 pels) 34.40 40.24 36.34 39.77 129.63 40.32

DTFM (32 pels) 32.69 40.16 33.62 39.68 88.31 40.23

HTFM 20% 36.39 40.33 36.70 39.89 102.43 40.46

HTFM 30% 35.16 40.26 35.64 39.85 93.38 40.43

football

HTFM 40% 34.25 40.19 34.92 39.79 87.94 40.39

128 pels 37.75 35.30 44.67 34.62 466.02 35.31

DTFM (128 pels) 35.75 35.30 40.69 34.62 148.64 35.31

DTFM (64 pels) 33.19 35.04 35.71 33.77 94.88 35.02

DTFM (32 pels) 32.37 34.93 33.41 33.29 68.80 34.91

HTFM 20% 34.67 35.28 35.81 34.63 92.80 35.29

HTFM 30% 34.00 35.25 35.24 34.61 87.78 35.25


ower

HTFM 40% 33.50 35.19 34.66 34.58 82.23 35.17
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TABLE IV

cont. Total time for encoding 150 frames and PSNR.

sequence FM ST1 Log ES

sec. PSNR sec. PSNR sec. PSNR

128 pels 42.61 35.04 47.30 35.00 464.34 35.01

DTFM (128 pels) 40.67 35.04 43.34 35.00 175.66 35.01

DTFM (64 pels) 37.96 34.94 39.26 34.88 107.44 34.91

DTFM (32 pels) 36.77 34.91 37.37 34.85 77.58 34.86

HTFM 20% 39.21 35.01 39.30 34.96 92.25 35.00

HTFM 30% 38.31 34.97 38.60 34.93 86.29 34.99

cheer

HTFM 40% 37.66 34.92 37.85 34.90 83.32 34.97

128 pels 42.28 35.17 47.58 34.44 461.28 35.19

DTFM (128 pels) 40.47 35.17 45.04 34.44 224.13 35.19

DTFM (64 pels) 36.78 34.89 38.99 34.07 128.43 34.84

DTFM (32 pels) 35.06 34.75 36.16 33.96 87.87 34.68

HTFM 20% 37.66 34.96 39.56 34.39 102.76 35.16

HTFM 30% 36.89 34.86 38.42 34.35 93.73 35.11

bicycle

HTFM 40% 36.18 34.75 37.53 34.29 87.95 35.04
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