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Abstract— We investigate video compression techniques to address
problems that require flexible video decoding. In these, the encoder has
access to a number of candidate predictors that allow it to exploit
source signal correlation, but only a subset of these predictors will
be available at the decoder. Crucially, the encoder does not know
which predictors will be available. Flexible decoding is important in a
number of applications including frame-by-frame forward and backward
video playback, multiview video, bitstreams switching, robust video
transmission, etc. The main challenge to support flexible decoding is that
the encoder needs to compress a current frame under the uncertainty
on the predictor at decoder. An approach based on conventional “closed
loop” prediction, e.g., motion-compensated predictive (MCP) coding in
the case of video, could be developed by including multiple possible
prediction residues in the bitstream, but this would lead to a considerable
coding performance penalty, if all possible predictor combinations are
supported, or to drifting, if only some combinations are. Moreover, it
is not possible in general to guarantee that decoded versions under
different prediction scenarios will be identical. In this paper, we propose
a distributed source coding (DSC) based algorithm to tackle the problem.
The main novelties of the proposed algorithm are that it incorporates
different macroblock modes and significance coding within the DSC
framework. This, combined with a judicious exploitation of correlation
statistics, allows us to achieve competitive coding performance. Using
forward/backward video playback as an example, we demonstrate the
proposed algorithm can outperform a solution based on MCP coding.

I. INTRODUCTION

In this paper we investigate video compression algorithms to
support flexible decoding for a number of emerging applications. In
this problem (see Figure 1) the input source X (a video frame) is to
be communicated to the decoder and a number of correlated sources
Y0, Y1, ..., YN−1 (previously decoded video frames) are available at
the encoder to serve as candidate predictors for compressing X .
But, of these predictors, only one will be available at the decoder.
Crucially, encoder does not know which Yk will be used at the
decoder. Our goal is to develop coding algorithms such that encoder
can operate under this kind of uncertainty about decoder operation.

This flexible decoding problem can arise in a number of appli-
cations. Consider first a video application where both forward and
backward frame-by-frame playback are to be supported, which we
first investigated in [1]. In this application, the user can choose to
play back in either direction, and therefore, when decoding a current
frame, either the “past” or the “future” reconstructed frame will be
available at the decoder to serve as the predictor. However, encoder
does not know which one will be present at decoder.

Flexible decoding may also be useful in multiview video coding. In
this application, the user may navigate between different views during
video playback. Therefore, depending on whether the user is staying
in the same view (Figure 2.a) or switching views (Figure 2.b), either
the previous reconstructed frame of the same view or that of another
view may be available as predictor for decoding the current frame,
respectively. Flexible decoding may also be a useful tool to support
bitstream switching. In this case, user may choose to switch between
different playback qualities, or between different picture sizes. It may
also be useful to support flexible decoding to enhance robustness
in transmission. Here some of the candidate reference frames may
arrive at decoder without error and can be used to decode the current
frame. However, encoder does not know which ones are error-free.
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Fig. 1. Problem formulation for flexible decoding. Either one of the candidate predictors
Y0, Y1, ..., YN−1 will be present at the decoder, but encoder does not know which one.
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Fig. 2. Flexible decoding in multiview video: (a) User plays back the (v+2)-th view.
Y2 is available as predictor for decoding X . (b) User plays back (v + 1)-th view and
switches to the (v + 2)-th view at time t. In this case, Y1 is available for decoding X .

The challenge is for the encoder to compress the current frame such
that it can be recovered using any of the error-free references.

In order to support flexible decoding within conventional motion-
compensated predictive (MCP) video coding systems (e.g., MPEG,
H.26X), the encoder may send all the possible prediction residues
{Zi; i = 0 to N − 1} to the decoder, where Zi = X − Yi

(following the notations in Figure 1), so that X can be recovered
no matter which Yi is available at the decoder. Each Zi would
correspond to a P-frame in these video coding standards. There are
two main problems with such an approach. First, coding performance
is degraded because multiple prediction residues are included in the
bitstream. Specifically, the overhead to support flexible decoding
increases with the number of candidate predictors. Second, this
approach may cause drifting. This is because, in practical video
compression standards, quantized versions of Zi, Ẑi, are sent to the
decoder. Therefore, the reconstructed sources X̂i = Ẑi + Yi are not
identical when different Yi are used as predictors. Drifting may occur
when X̂i is used as reference for decoding future frames.

The H.264 video compression standard has defined SP- and SI-
frames to support functionalities such as random access or error
recovery that were originally supported by I-frames [2]. Essentially
SP-frames follow the MCP coding approach we just discussed, but
with modifications such that X̂i can be identically reconstructed
from different Yi’s using its corresponding Zi (here Zi corresponds
to a primary or secondary SP-frame). This is achieved by using a
different prediction loop from those in conventional P-frames (e.g.,
SP-frames compute the prediction residue in the transform domain
whereas P-frames would compute that in the pixel domain [2]).
However, this causes some penalty in coding performance, and the
compression efficiency of SP-frames is in general worse than that
of P-frames [2]. To support flexible decoding, different SP-frames
bits (each corresponding to a different Yi) need to be generated and
sent to the decoder, similar to the conventional MCP coding, and
therefore, H.264 SP-frames would incur a comparable amount of
overhead as that in conventional MCP coding. It should be noted



that most H.264 SP-frame applications assume the availability of
feedback from the decoder (e.g., [3]), so that the encoder does know
which predictor is available at the decoder and transmits only one of
the Zi. In short, H.264 SP-frames were not originally designed for
the flexible decoding problem, where there exists uncertainty at the
encoder about predictor availability at the decoder.

In this paper, we propose to address the general flexible video
decoding problem using a distributed source coding (DSC) ap-
proach [4], [5]. Specifically, we propose a DSC-based video encoding
algorithm where the encoder has access to the various predictors,
Yk, which will play the role of side information (SI) at the decoder,
but there is uncertainty as to which one will be used for decoding.
One of the main challenges for DSC-based applications has proven
to be achieving competitive compression efficiency [6]. To address
this challenge, our proposed algorithm incorporates novel macroblock
modes and significance coding into the DSC framework. This, along
with careful exploitation of correlation statistics allows to achieve sig-
nificant performance improvements. Using forward/backward video
playback as an example, we demonstrate the proposed algorithm can
outperform, in terms of coding efficiency, technique based on MCP
coding technique based on the ideas discussed above. Moreover,
the proposed algorithm incurs only a small amount of drifting. In
particular, DSC-coded macroblocks lead to the same reconstruction
no matter which predictor candidate Yk is used.

DSC has been studied extensively for enabling low-complexity
video encoding, e.g., [7], [8]. However, there are significant differ-
ences between low-complexity encoding and flexible decoding, as
summarized in Table I, which will lead us to a different solution.
DSC has also been proposed to address compression of image-based
rendering data/light fields to provide random access [9], [10]. This
prior work, however, assumes that the encoder has knowledge of
predictor status at decoder, notably through using feedback, while
in our case the encoder needs to operate with unknown predictor
status. A recent work [11] has proposed a DSC-based approach to
address the problem of robust video transmission by allowing a video
block to be decoded using more than one predictor blocks. While the
general problem setting and philosophy is similar to ours, different
assumptions are made. In particular, this work assumes encoder
knows the probability that each predictor will be used, as determined
by the packet erasure probability (whereas we assume all predictors
are equally-likely to be used). This information is exploited to reduce
the coding rate. In addition, the specific tools used are different from
those proposed here. Our previous work [1] has also proposed to
apply DSC to enable forward/backward video playback. This paper
presents, however, a considerably different and significantly more
efficient algorithm to address the general flexible decoding problem.
Among the key improvements are the introduction of macroblock
modes and significance coding, a different approach to exploit the
correlation between source and side-information, a different way to
partition the input symbols and estimate the source bit’s conditional
probability, and a minimum MSE dequantization.

This paper is organized as follows. In Section II we discuss how
DSC can address flexible decoding. In Section III we present the pro-
posed compression algorithm. Section IV presents the experimental
results and Section V concludes the work.

II. FLEXIBLE DECODING BASED ON DSC: INTUITIONS

In conventional MCP coding, the encoder computes a prediction
residual Z = X−Y , between source X and predictor Y , and sends it
to decoder (Figure 3.a). DSC approaches the same compression prob-
lem taking a “virtual communication channel” viewpoint [6], [12].

Specifically, X is viewed as an input to a channel with correlation
noise Z, and Y is the output of the channel (Figure 3.b). Therefore,
to recover X from Y , encoder would send parity information to the
decoder. Compression is achieved by using fewer bits in the parity
information than the number of bits that would be needed to send
X directly. Note that this parity information does not depend on
a specific Y being observed, and the encoder does not need Y to
generate the parity information - only the statistics of Z are required
for determining the amount of parity information to be sent. The
decoder will be able to recover X as long as a sufficient amount of
parity information has been received.

To understand how DSC can tackle flexible decoding, consider N
virtual channels which each corresponds to a predictor candidate Yi

(Figure 3.c). Each channel is characterized by the correlation noise
Zi = X−Yi. To recover X from any of these channels, the encoder
could send an amount of parity information corresponding to the
worst Zi. Doing so, X can be recovered no matter which Yi is
available at the decoder. Note that encoder only needs to know the
statistics of all the Zi to determine the amount of parity information,
and this is feasible since X and all Yi are accessible at encoder. In
particular, the encoder does not need to know which Yi is actually
present at decoder. Comparing with the MCP approach where the
overhead to handle flexible decoding increases with N , in the DSC
approach, the overhead depends mainly on the worst-case Zi.
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Fig. 3. Compression of input source X: (a) MCP coding; (b) DSC from the virtual
channel viewpoint; (c) DSC approach to the flexible decoding problem.

III. PROPOSED ALGORITHMS

Figure 4 depicts the proposed video encoding algorithms to support
flexible decoding based on DSC.

A. Motion estimation and macroblock classification

Each macroblock (MB) M in the current frame first undergoes
standard motion estimation w.r.t. each candidate reference frame
fi, and the corresponding motion information (one per reference
frame, fi) is included in the bitstream. Denote Ai the best motion-
compensated predictor for M obtained in fi. If the difference between
M and Ai is sufficiently small M may be classified to be in a skip
mode w.r.t. fi. In such cases, the overhead in including multiple
prediction residues could be small, and M would be encoded using
conventional MCP coding (similar to standard H.26X algorithms)
w.r.t. the candidate reference frames which do not have skipping.
However, for the majority of the macroblocks, there would be no
skipping w.r.t. all fi, and we would encode them using DSC.

Note that choosing between MCP and DSC for a given macroblock
can be achieved using rate-distortion (RD) based mode selection
(as in H.264): The RD costs of MCP and DSC are computed
and the one achieving the minimum RD cost is selected. Such
RD optimized mode decision algorithm can achieve a better coding
performance, at the expense of requiring higher encoding complexity.
In our comparison with H.263 (Section IV) we did not use this RD



TABLE I
COMPARE DSC-BASED LOW-COMPLEXITY ENCODING AND FLEXIBLE DECODING.

DSC-based low-complexity encoding [7], [8] DSC-based flexible decoding
Key objective Low complexity video encoding for mobile video, video sensors, etc. Generate robust bitstream to facilitate flexible decoding for for-

ward/backward video playback, multiview video, etc.
Encoder complexity Most target applications require low-complexity, real-time encoding. Not primary issue. Most target applications use off-line encoding.
Encoder access to SI SI not accessible by encoder due to complexity constraint. Encoder has access to all the SI candidates. However, the exact one

to be used at decoder is unknown to encoder.

optimized mode decision. As will be discussed, we implemented our
proposed algorithms mainly based on H.263 coding tools.
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Fig. 4. (a) Proposed encoding algorithms; (b) Encoding macroblock M using DSC.
Here “Q” denotes scalar quantization.

B. Direct coefficient coding (DCC)

For those macroblocks M to be encoded with DSC, we first
apply standard 8 × 8 DCT to the pixel data to obtain the vector
of transform coefficients X , and we then quantize X to obtain the
quantization index W (Figure 4.b). This is similar to intra-frame
coding in standard H.26X algorithms. Denote Yi the DCT coefficient
in Ai corresponding to W (recall Ai is the best motion-compensated
predictor from each fi). We compress W by exploiting its correlation
with the worst case Yi, so that it can be recovered with any Yi that
may be present at the decoder.

The quantized values of the K lowest frequency DCT coefficients
(along a zig-zag scan order) are encoded with direct coefficient
coding (DCC), and for the rest we use significant coefficient coding
(SCC). In DCC, we form the k-th frequency coefficient vector by
grouping together the kth (0 ≤ k ≤ K − 1) frequency coefficients
from all the 8×8 blocks in a frame (except those in skip modes). Then
each of these vectors is converted into a bit-plane representation, and
the bit-planes are passed to a Slepian-Wolf (SW) coder, where inter-
frame correlation is exploited to compress the bit-planes losslessly.

C. Significant coefficient coding (SCC)

The quantized values of the k-th highest frequency coefficients,
k ≥ K, are encoded using SCC. Specifically, we first use a
significance bit s to signal if the quantized value of a coefficient
is zero (s = 0) or not (s = 1), so that only the value of a non-
zero coefficient needs to be sent to the decoder. The significance
bits for the kth frequency coefficients from all the 8 × 8 blocks in
a frame (except those in skip modes) are grouped together to form
a significance bit-plane to be compressed by the SW coder. On the
other hand, the non-zero coefficients are grouped together to form
coefficient vectors where all the DCT frequencies are combined, as
we found that the correlation statistics of non-zero coefficients are
similar at different frequencies.

SCC is introduced as an alternative to DCC to reduce the number of
source bits to be handled in SW coding. Specifically, assume DCC
leads to Lk bitplanes for the the kth frequency coefficient vector.
Therefore, each kth frequency coefficient contributes Lk source bits
in DCC, regardless of whether the coefficient is zero or not. With
SCC, a zero coefficient contributes one source bit (significance bit),
while a non-zero coefficient contributes approximately 1+Lk bits. If
pk is the probability that the kth frequency coefficient will be zero,
then the expected number of source bits using SCC is 1× pk +(1+
Lk)× (1− pk), and SCC can lead to source bits saving (compared

with DCC) if this expected number is less than Lk, or equivalently
if pk > 1

Lk
holds. Therefore, the value of K (where SCC starts) can

be determined using this equation and some statistics of the video
sequences.

D. Bit-plane compression

Bit-planes extracted from the K coefficient vectors produced in
DCC along with those produced in SCC are compressed by a SW
coder, starting from the most significant bit-planes. Denote a bit in
the bit-plane at l-th level of significance by a binary r.v. b(l), where
l = 0 corresponding to the least significant level. That is, b(l) is the
l-th significant bit in the quantization index W . Binary r.v. b(l) is to
be compressed using Yi and decoded bits b(l+1), b(l+2), ... as side
information. Specifically, this is performed by a low density parity
check (LDPC) based SW encoder, which computes the syndrome bits
from the original bit-planes and sends to the decoder [13].

E. Model and conditional probability estimation

SW decoding needs the conditional probability p(b(l)|Yi, b(l +
1), b(l + 2), ...) estimated from SI to aid recovering b(l). The
probability can be estimated as follows. The encoder estimates the
conditional p.d.f. fX|Yi

(x|yi) for each coefficient vector and for each
candidate predictor. Assuming a system model X = Yi + Zi, and
under the assumption of independence of Yi and Zi, we have

fX|Yi
(x|yi) = fZi(x− yi) (1)

We assume Zi is Laplacian distributed, i.e., fZi(zi) = 1
2
αie

−αi|zi|,
and estimate the model parameters αi at the encoder using maximum
likelihood estimation (MLE) and send to the decoder. Note that in
flexible decoding problem, the encoder can access to all the candidate
SIs. Therefore, the model parameters can be readily estimated.
This is not the case in typical DSC applications, where there are
constraints on accessing side-information at the encoder making
model estimation a non-trivial problem [14].

Given all the model parameters αi, the decoder can estimate the
conditional probability for any Yi available at decoder using the
following procedure (Figure 5). Denote W̃ the numerical value of the
concatenation of the sequence of the decoded bits b(l+1), b(l+2), ...,
i.e., W̃ = b(l + 1) × 20 + b(l + 2) × 21 + .... Given the decoded
bits, the quantization index W can range only from W̃ × 2l+1 to
W̃ × 2l+1 + 2l+1 − 1. When W ∈ [Wr, Ws], b(l) = 0, and when
W ∈ [Wt, Wu], b(l) = 1, where Wr, Ws, Wt, Wu are given by (in
the cases when W̃ ≥ 0):

Wr = W̃ × 2l+1 ; Ws = W̃ × 2l+1 + 2l − 1;

Wt = W̃ × 2l+1 + 2l ; Wu = W̃ × 2l+1 + 2l+1 − 1. (2)

Equations for W̃ < 0 are similar. Therefore, the decoder can
estimate the probabilities that b(l) will be zero and one by integrating
fX|Yi

(x|yi) over the intervals [Xr, Xs] and [Xt, Xu] respectively,
where [Xr, Xs] is the inverse quantization mapping of [Wr, Ws],
and [Xt, Xu] is that of [Wt, Wu].

Note that each Yi exhibits different levels of correlation with
respect to b(l). To ensure that b(l) can be recovered with any of
the predictor candidates Yi, the encoder sends R syndrome bits to
the decoder, where R = max Ri, and Ri is number of syndrome



bits required to recover b(l) when Yi is used as predictor. By doing
so, each bit-plane can be exactly recovered no matter which Yi is
available at the decoder, and therefore, W can be losslessly recovered
and X reconstructed to the same value when any of the Yi is used
as predictor. This eliminates drifting in DSC-coded macroblock.
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Fig. 5. Estimate the conditional probability p(b(l)|Yi, b(l + 1), b(l + 2), ...).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents simulation results using forward/backward
playback as an example. We compare with a H.263 inter-frame coding
system where both forward predicted P-frames and backward pre-
dicted P-frames are included, i.e., P-frames are duplicated. Note that
this can be seen as a MCP-based solution for the forward/backward
playback application (i.e., analogous to SP frames for this particular
case). As discussed, such system may incur drifting, since in general
the reconstructed forward and backward predicted P-frames are not
identical. We compare the systems with GOP sizes equal to 15.
Our implementation of the proposed algorithm is based on H.263
coding tools, e.g., half-pixel accuracy motion estimation, H.263 mode
decision, etc. We also include all the overhead in communicating the
macroblock mode, model parameters and the encoding rate of each
bit-plane. We test the systems with sequences Coastguard and Stefan,
which have considerable amounts of motion and picture details.
Figure 6 shows the comparison results. As shown in the figure, the
proposed algorithm outperforms the scheme with duplicate P-frames,
with about 1-2dB gain in the medium/high picture quality range (33-
36dB). We also show the results of H.263 intra-frame coding and
inter-frame coding (same GOP sizes). Note that inter-frame coding
cannot support flexible decoding. The results are shown here for
reference only.

We also compare the approaches in terms of drifting with the
following experiment: in forward decoding, a backward predicted
frame is used for frame number 1 and as a reference for decoding
the following frame. This is similar to what would happen when
decoding direction switches. As shown in the results in Figure 7, the
proposed algorithm incurs a negligible amount of drifting.

Additional results on multiview video (reported in [15]) further
demonstrate the competitive performance of the proposed approach.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a video compression algorithm to support
flexible decoding, based on DSC. The proposed algorithm integrates
macroblock mode and significance coding to improve coding perfor-
mance. In addition, we have discussed how correlation models can
be used to estimate the conditional probability of the source bits
at the decoder. Simulation results using forward/backward playback
demonstrate the proposed DSC-based algorithm can outperform the
MCP approach. In addition, the proposed system suffers only a small
amount of drifting, as all the DSC-coded macroblocks would be iden-
tically reconstructed. Future work includes investigating improved
model estimation methods.
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Fig. 6. Simulation results: (a) Coastguard; (b) Stefan. The sequences are in CIF format
encoded at 30 fps, and results are reported for the first 30 frames.
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Fig. 7. Drifting experiment using Stefan sequence: (a) MCP; (b) DSC. The figure
shows the PSNR of the reconstructed frames in the first GOP. Note that with DSC, the
PSNR are almost the same in the switching and non-switching cases.
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