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Abstract—To account for the unique characteristics and limita- is currently no consensus on which derived quality metric is
tions of the human visual system (HVS) when perceiving image  best. Given perceived quality is also influenced by the vi@wve
a variety of perceptual quality metrics have been proposedn the visual attention, driven by a complicated mixture of low-

literature. Tailoring rate-distortion (RD) optimization for each . . ) . N
metric is cumbersome and time-consuming. In this paper, we level visual stimulus and contextual information [3], tHeest

propose a general RD-optimization strategy called “transbrm  quality metric is often application- and context-depertdand
domain bounding box” (BB) that can easily adapt to different there likely will never be one single metric that is optimat f
quality metrics for JPEG-like block-based encoding of ima@s. g|| cases.

First, we define an objective function that is a weighted sum®  Gjyen this state of affairs, individually optimizing image-
the lp-norm of the transform coefficients (a proxy for rate) and . . . .

distortion from the transform domain representation. Next, for a coding for a variety Of_ quallt_y metrics becomes a.necessairy b
given distortion target 7, we define a don’t care region (DCR) that Cumbersome and painstaking process. To aleviate the burden
specifies a search region of representations with distortio < 7.  of tailoring coding optimization for each quality metrig, this

We then showi that the sparsest transform domain rgpresenta’ﬂn paper we propose a general rate-distortion (RD) optinunati
(lowest encoding rate) inside a BB that tightly contains theDCR strategy calledransform domain bounding box (BB) that can

can be constructed efficiently. Varyingr to induce different DCRs . . . . .
and corresponding BBs results in a set of constructed sparse easily adapt to different quality metrics for JPEG-like die

representations of different sparsity counts, and the onehat Pased encoding of images. First, leveraging on our previous
optimally trades off rate and distortion can be easily idenified as work on transform domain sparsification (TDS) [4], we define

solution to our objective. We show that our proposed BB straégy  an objective function that is a weighted sum of tigenorm
can be easily re-targeted for three common quality metricsMSE, of the transform coefficients of representatign(a proxy for

MSE-HVS-M and SSIM. Experimental results show that our BB di ¢ d distortion due t lected A
strategy outperformed unoptimized JPEG compression by upd coding rate) and distortion due to selected representafion

1dB in PSNR when distortion metric is MSE, up to 2dB when Neéxt, we define adon’'t care region (DCR) that specifies a
metric is MSE-HVS-M, and up to 0.005 when metric is SSIM.  search regioi&(7) of representations with distortion less than

or equal to a distortion target GivenS(7), we then construct
|. INTRODUCTION a BB B that tightly containsS(7) and whose sides are either

It is now well accepted in the signal processing communiﬂf"ra”e' or perpendu:_ular_to _the transform axes. Finding th
that classical signal distortion metrics such as mean squ&P2rsest representatian” inside BB turns out to be easy,
error (MSE) do not correspond well to how human visua® |f_we perform this operation iteratively for Qn‘fer_em we
system (HVS) perceives quality in images or videos. FGA" |d_ent|fyaset of sparse represgntatm{r‘fs with different _
example, spatial regions with larger intensities havengiep SParsity counts. The one that optimally trades off rate with
error-masking effects [1], and structural errors in an imagdlistortion is the the solution to our objective.
are more objectionable than mosquito-like random noise [2] e show how BB strategy can be easily adapted to three
In responsequality assessment has become a popular researcRopular quality metrics in the literature: MSE, MSE-HVS-

topic, where the goal is to derive computational metricg thi{ [1] and Structural Similarity (SSIM) [2]. In our experi-
are more aligned to human’s perceptual quality. Howevergth Ments, we show that our proposed BB strategy outperformed
unoptimized JPEG compression by upl@B in PSNR when

distortion metric is MSE, up t®dB when metric is MSE-
MMSP’ 12, September 17-19, 2012, Banff, Canada. HVS-M, and up t00.005 when metric is SSIM.
70?-2-2222-2772-21101$72.7? (©2012 |EEE. The outline of the paper is as follows. We first briefly



discuss related work in Section Il. We next overview three After computing MSE, Peak Signal-to-Noise Ratio (PSNR)
popular quality metrics, MSE, MSE-HVS-M and SSIM, inis often computed as a function of MSE to reflect the quality
Section Ill. We then describe our general transform domadri reconstructed signaf:
BB strategy in Section IV, where we also discuss how the MAX2
strategy can be implemented for each of the three metrics. PSNR = 10log,, | ==
- . . . . MSE
Experiments for all three metrics are discussed in Section V . _ _
Finally, we present concluding remarks in Section VI. where M AX is the maximum pixel value.

Il. RELATED WORK B. MSE with Contrast Sensitivity and Masking

As new quality metrics are still actively being investi- It is known that MSE does not capture HVS’s varying
gated and proposed [2], [1], RD-optimized coding tailoregensitivity to different DCT frequencie2SNR-HVSM [1]
specifically for an individual metric remains a popular reis a relatively new metric that takes into account Contrast
search topic [5], [6]. Our current work is unique in thaBensitivity Function (CSF) and between-coefficient casitra
a general RD-optimization strategy is first sought, so thatasking of DCT basis functions. It is computed as follows.
subsequent re-targeting for a specific metric only requir&gst, the weighted energy of DCT coefficients df a8 image
minimum investment in time and effort. We note that foblock X (in transform domain) is computed as:
distortion metric MSE, the re-targeted implementation of o N_1
BB strategy becomes very similar to thresholding algorghm E,(X) = Z X20; ()
like [5] (though instead ofy-norm as a proxy for rate, [5] i=0
captures the cost of run-length coding as well, so that égualnere X, is the ith DCT coefficient, andC; is the cor-
sparse transform domain representations will have differgesponding scaling factor determined by CSF. An error
encoding costs). We do not claim strictly superior perfato® x _ y petween original blockX and reconstructed block
over all metric-specific algorithms; rather, we stress thal v cannot be visually distinguished if it is smaller than
value of our proposal lies in the generality of the optimizat max(E, (X)/16, E,(Y)/16).
framework, and the ease in re-targeting for any distortion This masking effect can be too large if there exists an edge
metric that satisfies a transform-axis-aligned propemyb& iy plock x (in pixel domain). To take this into account, we

)

discussed in Section IV-A). ~ compute and us&,,(x) below instead:

Transform domain sparsification (TDS) was studied in our
previous work [4] for encoding of depth maps in texture- B (x) = Ew(x)d(x)/16 4)
plus-depth format of multiview video, where the depth maggnere 5 x) = (VL) + vE®) + v®) +

are used at decoder for view synthesis via depth-imagedba@e(x(z;)))/4V(x) x®) is the pixel sub-block in thek-

rendering (DIBR). Though the concept of don't care regiofy g adrant, and’(x) is the variance of the pixel values in
(DCR) and the usage dj-norm of transform coefficients aspocy x. We can hence conclude that the maximum masking

a proxy for coding rate are the same, the general optimizatiggact is g . — max( By (x), Em (¥)).
strategy using bounding box (BB) is new in our current work. \jasking reduces error sensitivity for all coefficients exce

Note also that DCR for depth maps in general is not transforfir  ang so we can write the resulting noticeable difference
axis-aligned, while our BB strategy applies only for trawsi- A = or coefficienti as:
i ;

axis-aligned DCRs. _
| X; — Vi if i=0
I1l. | MAGE QUALITY METRICS A;=4 0 elseif |X; —Yi| < Enorm/Ci

i i i H H |Xz - Y;l - Enorm/ci 0.W.
In this section, we overview three popular metrics for im- -

age/video quality assessment in the literature: Mean ®quaghereE,,,,.,,, = m

Error (MSE), MSE-HVS-M, and Structure Similarity (SSIM).  Finally, we can compute the metric MSE-HVS-M SEy
Our purpose is not to argue the merits of one metric ovgsing obtained\,’s as follows:

another, but that our BB optimization strategy can be applie N1

to a variety of proposed quality metrics in the literatureeS MSEy = Z AZS; 6)

[7] for an extensive discussion on image quality metrics. =

A. Mean Sguared Error where S; is another scaling factor based on CSF [8]. PSNR-
One of the most commonly used quality metrics in thEVS-M is computed straightforwardly usiny/.SEy.

image and video coding community isean squared eror  ~ gyyctural Similarity

(MSE): given original signak and reconstructegt of equal Vet h lar alt i lit ric to MSE is th
dimensionR”, we calculate the average of the component- €l another popular aiternative quality metric 1o IS the

wise squared differences between them: recently propose@ructural Smilarity (SSIM) [2], defined as
' follows:

1
N

(zi —y:)* 1) SSIM(x,y) = Rttty + 1) 0wy + ¢3)

MSE(x,y) = > > > >
i=0 ('uw + oy + Cl) (crm toy+ 62)

(@)
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Fig. 1. Examples of transform-axis-aligned Don't Care Regi(DCR) using
weighted MSE and; -norm of transform coefficients as distortion metrics for
two-dimensional signals.

O Y1
Fig. 2. Example of DCR and BB for a 3-dimensional signal. Ehare 7
lattice points in this case, one of which is feasible (indieR).

where i, and o2 are the pixel mean and variance of signal

x, andoy, is the cross-correlation between signakndy. To solve (10) efficiently, we first provide an overview of
c1 and ¢y are constants pre-set for stability reasons; SSMgeneratransform domain bounding box strategy, which we

is not sensitive to particular values of andc,. SSIM has || re-target for metrics MSE, MSE-HVS-M and dSSIM later.
a maximum value ofl.0, which indicates the reconstructed

signaly is exactly the same as the target sigral A. Don't Care Region

SSIM .is typically ca}lculated IocaIIy.for a small chal_ patch \we first define the notion oflon’t care region (DCR),
(11 x 11 s calculated in [2]), and quality for the entire imageyhich is a restricted search region for sparse represengti
mean SSIM (MSSIM), is computed simply as the average giyen a distortion tolerance level. Specifically, we define

calculated SSIMs of all patches in the image. ~ S(r) for distortion level 7 as a region of representations
SSIM of a block of V' pixels can also be expressed in th, s \ith distortion less than or equal to; i.e., S(r) =
block DCT domai# as follows [9]: (Y | d(x°, 1Y) < 7).
5 X0Yo | o Ty XY Lo The shape of_the _DCR obviously dep_ends on the metric
SSIM(X,Y) = <X2 N ! ) X et @) used to define distortiod(x?, ®~1Y). In this paper, we will
T 40y =t XptYe 4 o, restrict our consideration to DCRs that satisfytransform-

whereX is the DC coefficient in the block in DCT domain. lqass-ahgned property. To properly define this property, we
I\jwst note that frequency components of a transform domain

For opt|m|zat|on convenience, we will use (8) n our SS| representatiofY can be divided into the following three types:
computation. Also for convenience, we will define and use .
1) zero-components: frequency components that equal to zero, i.e.,

distortion of SSM (dSSIM) instead of quality SSIM during A% = [Yi| Vi = 0}.

optimization, as done in [6]: 2) gt-components. non-zero frequency components that equal to
1 gt's components, i.ed™ = {Y;| YV; = X7, X7 # 0}.
dSSIMX,Y) = ==~ 9) 3) ngt-components: non-zero frequency components that are dif-
SSIM(X., Y) ferent from gt's components, i.e4” = {Y;| V; # X?,Y; #
IV. TRANSFORMDOMAIN SPARSIFICATION 0}

_ ) ) We can now define the transform-basis-aligned property for
Given orthogonal transforn®, our goal is to find an RD- a DCR as follows:

optimal sparse representatidh of dimension/N in the trans- A DCR is transform-basis-aligned if by reassigning a

form domain. Specifically, we first assume that the number subset of ngt-component4” in a representatiolY to gt-

of non-zero transform coefficients for a code block is a good ~componentsA™ to constructY”, the resulting distortion

proxy for encoding rate: it has been shown theoretically for S N0 WOrse; i.e.d(x?, ®77Y) > d(x", 77Y").

low-rate [10] and experimentally [4] that this is a reasdeab Geometrically, transform-basis-aligned means that th&DC
approximation. We then seek to minimize the weighted suf{(7) is widest along a dimensianwhen representatiow’ has

of lo-norm of Y (sparsity count) and distortiod of the all other components;’s, j # i, equal to gt componenty?.
reconstructed pixe|-domain S|gn§| — (I)_lY Compared to See Flg 1 for examples of baSiS'a”gned DCRs. An example of

original signal (orground truth (gt)) x°: DCR that is not transform-basis-aligned would be the adlips
. . in Fig. 1(a) rotated clockwise by5°, i.e., when the distortion
Y* = argmin| Yo + A d(x%, 7'Y) (10) metric is a weighted MSE of the pixel values in tpixel
domain.

where) > 0 is a constant that specifies the relative importance 5, important corollary of transform-axis-aligned is that

of rate to distortion. when searching for representatidyi inside a DCRS(7)

1we will use the convention that the representation of a $ignin the that ha_s the smallest Lag_ranglan FOSI (10)’ it is sufficient
transform domain, given orthogonal transfofn is capital letterX = &x.  t0 consideronly representation¥’s with no ngt-components



1) Compute suitable target distortions.
2) For each computed,

a) Construct BBB that contains DCRS(7). Construct

A7. The reason is as follows. Any representatigninside
S(7) that has non-emptyd” can be converted t&” that

is also insideS(7), by reassigning components 7 to A= sparsest lattice poif¥ ™ inside B.
without increasing distortion. Furth€Y;,” has the same sparsity b) If Y* ¢ S(7), iteratively restore zero-componeht’ =
count asY; i.e., ||[Yl]lo = |[Y'|lo. Hence,Y’ has no larger 0 to gt's X7 (one with largest decrease in distortion),

until Y* € S(7).
¢) Compute Lagrangian cost &f *.
3) Identify Y™ for all 7's with smallest Lagrangian cost as
solution to (10).

Lagrangian cost (10) thaly, and it is sufficient to consider
only representations withl” as empty set. This is a discrete
set of representations, and we call théattice points. See
Fig. 2 for examples of lattice points for a three-dimensiona
signal. Note that not all lattice points are feasible (ies¥dr)). Fig. 3. Generic transform domain bounding box strategy.

B. Transform Domain Bounding Box Strategy Y,

For a constructed DCE(7), we next construct Aounding
box (BB) B, with boundaries either parallel or perpendicular
to all axes in the transform domain, that properly contains
DCR S(7), i.e., S(r) C B. In other words, bounding bo%
is defined with boundaryL;, U;] in each dimension in the
transform domain as follows:

Y,

DCR for MSE

S(NCB={Y|L;<Y;<U;, Vj=0,...,N—1} (11)
lattice points

As an example, we see in Fig. 2 a DCR in grey for a three-

dimensional signal is contained inside a BB in blue. \/ %
Construct_ing dight (smallest pps_sible) BB that_ containg L= X3-

DCR (1) 'r.] ggneral IS non.'tr“_/'al' However, if DCR is Fig. 4. DCR for tolerable MSE is shown in grey. Bounding box in transform

transform-axis-aligned, then finding lower and upper bounidmain is shown in blue.

L; andU; for dimension; of BB B is much easier; by setting

all other frequencie¥;’s, j # 4, to gt's X;, one only needs to . . )

identify range ofY; where distortiond(x®, ®~'Y) does not / distortion tradeoffs. From among the discovered sparse

exceedr. We discuss how this is done specifically for MSEF€Presentation¥*’s, we can find a near-optimal solution to

MSE-HVS-M and dSSIM in the following sections. (10) by |der_1t|fy|ng the one that has _the smallest Lagrangian
Having constructed BEB, since transformd is orthogonal, €OSt- See Fig. 3 for a summary of this BB strategy.

we can construct aparsest lattice pointY* (in transform There are two remaining problems that need to be solved

domain) inside3 easily; i.e., Y* = argminyes|Y]o. to implement. the BB strategy: i) hoy_v to idgntify suitabtis

Specifically, for each defined boundaiy;, U;] of B, we set for construction of DCRSS(T)_, and ii) for given, how to

coefficienty; = 0if L, < 0 < U, and sely; = X otherwise. Cconstructtight BBS that containsS(7). We next discuss these

Continuing Jwith ourje;am_ple]in Fig. 2,;‘73 < OJ < Us, so Problems specifically for distortion metrics MSE, MSE-HVS-

we can set coefficienlt; = 0 while keepingY; = X; and M and dSSIM in order.

Y> = X, resulting a2-sparse representation shown in yellows Bounding Box Strategy for MSE
See Appendix for a proof for the minimum sparsity count of
constructedY *.

Becauses3 is a superset that contais§r), we can establish
the following useful lemma:

Lemma 1: The sparsity counfY*||o of the con-
structed sparsest lattice poift* inside BB B that
contains DCRS, i.e.,S(7) C B, is a sparsity lower
bound for any represen.tation insid.e DCSF@T). _ B={Y | X —VT<Y; < X! 47, Vj=0,...,N—1}

The corollary of lemma 1 is that iV * is also insideS(r), (12)
then it is also the sparsest representatio§n). In practice, See Fig. 4 for an illustration. Given this simple geometric
very oftenY* € S(7) is then the sparse solution we sought fointerpretation, the previously discussed BB strategy can b
givenr. If Y* ¢ S(7), then a simple greedy procedure can bienplemented simply as follows.

Suppose MSE is chosen as the distortion metric. The
unigueness of MSE is that DC&(7) = {y | d(x°,y) < 7},
translates simply to a sphere with radiy/s. It is thus clear
that the DCR is transform-axis-aligned. Then, given DCR
sphereS(r) with radius./7, a bounding box5 that tightly
containsS can be very easily found:

taken where we iteratively restore a zero-componight= 0 For each non-zero coefficients; of gt X, we can compute
to X? (choosing one that results in the largest decrease drdistortionr = (X;?)Q, which is the minimum distortiorr at
distortiond(x, ®~1Y)) until Y* € S(7). which the lower and upper bound of frequenjancludes zero;

If we now iteratively varyr to induce different DCRs i.e.,0 € [L;, U;]. Computingr’s for all frequencies provides
S(7)'s and resulting in different sparse lattice poifis’s, us the set of suitable target distortions that we need for the
we can find a series of representations with different sfyarsBB strategy.



We note that while we cannot guarantee that constructed
lattice pointY™* will also be inside DCRS(7), for the same  Having computed a suitable set o8, the BB strategy in
sparsity countY*||o, Y* in fact has the smallest distortion ofFig. 3 can be implemented for MSE-HVS-M to find a solution
all representations, since thi& * ||, zero-components o¥* to (10).
correspond to gt'dY* ||, componentsY;’s with the smallest
magnitudes. Hence without performing step 2(b) in Fig. Bounding Box Strategy for dSSIM
we can nonetheless find thaptimal solution to (10) using
the BB strategy. The resulting algorithm is actually simila VWhen the distortion metric is dSSIM, we apply the trans-
to thresholding algorithms designed explicitly for MSE fret form domain BB strategy as follows. First, we argue that DCR

literature [5]. using dSSIM as metric is transform-axis-aligned. The argu-
) ment is that each frequency compon&nof representatiory’
D. Bounding Box Srategy for MSE-HVSM contributesY? to the numerator and’;Y; to denominator of

Suppose MSE-HVS-M is chosen as the distortion metridSSIM, where the ratio is smallest wh&p= X ;. Thus, DCR
We first show DCR using MSE-HVS-M as distortion metric iss widest at dimensiori when other frequency components
transform-basis-aligned. If a representatiénhas non-empty Y;'s, j # 4, are the same as gt%;’s.

A#, it is easy to see that by reassigning those component$or a given DCRS of maximum dSSIMr, we compute the
in A7 to A= to constructY’, the resulting distortion is no largest and smallest DC componerits,andUy, of a tight BB

worse: B that containsS by lettingY; = X; forj =1,...,N — 1,
d(x, 1Y) — d(x, & 1Y) Z AZS, >0 (13) and solving forY;, using (8):
| | | icA*CY X8+v¢ o, ZkN 11 zxﬁ 1Oy
For a given distortion- and DCRS(7), we can compute a T = X% 1o | < | os e < 19)
tight BB enclosing DCRS(7) as follows. For DC coefficient N ! S R
Yy, because there is no masking effect, we can compute the P
I d bound for; follows: 2
ower and upper boun o as follows 0 - (%> ye - (2};)}(3> Yo+ ()j(VO - c}‘;)
T = (Xo-— Y0)2S0 ! !
Ly and U, are the smaller and the larger values whénis
Yo = Xo& \/ 50 (14) sought in quadratic equation (19).

For each AC componenf;, we follow similar procedure to
solve for lower and upper bound,; andU;. Having derived
all limits [L;,U,]'s, BB B that contains DCR9( ) is well
7= (1X; = Yi| = Enorm/Ci)* S (15) defined.

The remaining task is how to identify a suitable set of
dSSIM 7's so that corresponding DCE(7)'s will induce
different sparsity count. We again follow similar proceelas
we have done for MSE and MSE-HVS-M. For each coefficient

T Y;, we setY; = 0 and all other coefficienty}’s, k& # j,
Li=x VEL(X)3(X)/16/64 /C; (16) to original signalXp’s. This results in SSIM using (8) and

corresponding dSSIM, which we labe). This is in fact the

g{ninimum dSSIM value at which BB3 will induce sparse
attice pointY with Y; = 0, i.e., 0 € [L;,U;]. Computingr

in this fashion for all frequency components yields a suéab

For AC coefficientY;, it is slightly more involved because
of masking:

We first assumé(X) ~ 6(Y). To find the lower bound.;
of Y;, we knowL; < X;, and henceF,,,,x = F,(x). We can
then derivel; as:

For upper boundUl- of Y; whereU; > X;, we know
Emax = En(y). Using again (15), we can derive the followin
guadratic equation and solve fbF:

0 — (Cig B 5(1552)402-) U? — oc? ( /SL +Xi) U set of target distortions’s for BB strategy in Fig. 3.
2 (X)L, XEC
2( [T ) i i V. EXPERIMENTATION
+C; (1/52_ +X1) Tood 7
U; will be the larger of the two roots, since by assumptiorfa“ Experimental Results for MSE
Ui > X;. To test the effectiveness of our proposed transform domain

We now need to find a suitable sequencerf for the BB strategy, we first investigate the effective of our strat-
algorithm to seek sparse solutions. For DC coefficiéptitis egy for MSE. Fig. 5 shows the coding performance (PSNR
simply 7 = X§So. For AC coefficientY;, it is computed as: versus image encoding size) for our proposed scheme and

the unoptimized JPEG compression implementation (gt), for

__ [max 0, Xi — /Ew(X)d(X)/1024/C;) ] Si i Xi >0 imagesdancers andparrots. We see that our strategy
[mm (0, X; + v/ Ew(X)§(X)/1024/C;) ] Si ow. outperformed gt by noticeable amount; the largest codimg ga

(18) is 1dB in PSNR.
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B. Experimental Results for MSE-HVSM

Next, we make the same comparison for distortion metric
MSE-MVS-M. The coding results for the sardancer s and
parr ot s are shown in Fig. 6. We see again that our proposa{f]
outperformed gt in general. Specifically, our BB-based saehe

outperformed gt by up t@dB at mid-encoding rate.

C. Experimental Results for SSM

Finally, we made the same comparison when SSIM is the
quality metric. Fig. 7 shows the coding performance of gt an
our proposed strategy for imagdancer s andcenet ery.

The coding gain here is not as significant, though we d&!

observe a 0.005 gain in SSIM.

To account for the unique characteristics and limitatiohs oy
the human visual system (HVS) when perceiving images, a
variety of quality metrics have been proposed in the liter-

. imizatiol!
ature. In this paper, we present a general RD-optimizatio
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strategy based on transform domain sparsification that can
easily adapt to diffferent quality metrics for JPEG-liketk-
based encoding of images. In particular, we first define atdon’
care region (DCR) that specifies a restricted search region
of representations with distortion no larger than a digiart
targetr. Then, usingly-norm as a proxy for encoding rate,
we show that the sparsest transform domain representation i
a bounding box (BB) that tightly contains the DCR can be
constructed efficiently. Varying to induce different DCRs
results in different discovered sparse solutions, and the o
that optimally trades off rate and distortion can be idegdifi
Experimental results show that our BB strategy outperfarme
unoptimized JPEG compression by upl@B in PSNR when
distortion metric is MSE, up t®dB when metric is MSE-
HVS-M, and up t00.005 when metric is SSIM.

APPENDIX

We prove by contradiction that the constructed sparse septe-
tion Y™ inside a BBB in Section IV-B is indeed the sparsest one
possible. Suppose there exists a feasible representatioside BB
B with sparsity count strictly smaller thaxi*; i.e., || Z]jo < [[Y*||o-
GivenZ has N — ||Z||o zero frequency components, it follows that
there must be at least one zero frequency compodgnt 0, where
0 ¢ [Lk, U], since there are onlyV — ||'Y*||o frequency components
Jj's with 0 € [L;,U;]. However, having a zero componefj, = 0
where0 ¢ [Lx, Ux] meansZ must be outside BE3 by definition of
BB in (11). A contradiction.
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