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ABSTRACT

In this paper, we present two localized graph filtering based meth-
ods for interpolating graph signals defined on the vertices of arbi-
trary graphs from only a partial set of samples. The first method is
an extension of previous work on reconstructing bandlimited graph
signals from partially observed samples. The iterative graph filter-
ing approach very closely approximates the solution proposed in the
that work, while being computationally more efficient. As an alter-
native, we propose a regularization based framework in which we
define the cost of reconstruction to be a combination of smoothness
of the graph signal and the reconstruction error with respect to the
known samples, and find solutions that minimize this cost. We pro-
vide both a closed form solution and a computationally efficient iter-
ative solution of the optimization problem. The experimental results
on the recommendation system datasets demonstrate effectiveness of
the proposed methods.

1. INTRODUCTION

The field of graph signal processing extends signal processing tools
designed for regularly sampled signals to graph datasets [1]. In the
graph representation, the data points are represented as nodes con-
nected to each other via links. The weights of the links usually rep-
resent similarity between the data points. Each node stores a sample,
and the collection of these samples is referred to as a graph signal.
In this paper we discuss an important problem, namely that of in-
terpolation of missing values from known samples, which appears
in various applications, such as matrix/vector completion, sampling
of high-dimensional data, semi-supervised learning etc. Inspired by
standard signal processing approaches, we formulate the data inter-
polation problem as a signal reconstruction problem on a graph. This
is an extension of our previous work in [2], where we used sampling
results in graphs to find classes of bandlimited (BL) graph signals
that can be reconstructed from their partially observed samples. A
class of BL graph signals is specified by the cut-off graph frequency
ω (denoted as ω-BL), and the interpolated signal is obtained by pro-
jecting the input signal onto the appropriate ω-BL subspace using a
least square method. The value of ω is estimated using the topology
of the underlying graph and location of known samples in the graph.
The method proposed in [2] provides exact reconstruction of ω-BL
graph signals and the best approximation (in the least square sense)
of arbitrary signals as ω-BL graph signals.

However, this method of reconstruction is computationally ex-
pensive for large graphs as it involves eigenvalue decomposition of
Laplacian matrix, followed by inverse of a square matrix of the size

This work was supported in part by NSF under grant CCF-1018977.

of the graph. Therefore, in this paper we formulate the interpolation
problem on graph as an iterative graph filtering problem, where the
graph filter is designed as an ideal low-pass graph filter with cut-off
frequency ω as computed in [2]. The proposed iterative algorithm
is faster and converges to the least square reconstruction method
in [2]. Also, to avoid eigenvalue decomposition of Laplacian ma-
trix, the ideal low pass filter is approximated with a polynomial of
the Laplacian matrix, which can be computed efficiently as matrix-
vector product without the need of eigenvalue decomposition.

Further, the estimated cut-off frequency ω is only an estimate,
and the actual signal may not be ω-BL. Therefore, we set up a reg-
ularized cost that exploits the trade-off between signal smoothness,
and the reconstruction errors at the known samples. The proposed
cost function is based on the data fitting error at the known samples
and the energy of the reconstructed signal outside the ω-BL sub-
space. The solution of the regularization is computed first as an exact
solution, followed by an approximate solution based on the iterative
graph filtering approach. The rest of the paper is organized as fol-
lows: in Section 2, we briefly explain the interpolation method pro-
posed in [2], in Section 3, provide an iterative graph filtering based
solution of this interpolation method. In Section 4, we describe a
second method for graph signal interpolation, based on a regular-
ization framework, in Section 5 we discuss application of proposed
method to item-recommendation systems, and compare results with
respect to existing methods in Section 6.

2. SAMPLING THEOREM FOR BAND-LIMITED GRAPH
SIGNALS

A graph G = (V, E) is a collection of nodes V = {1, 2, ...N}
connected together by set of links E = {(i, j, wij)}, i, j ∈ V .
(i, j, wij) denotes the link between nodes i and j having weightwij .
The adjacency matrix W of the graph is an N ×N matrix such that
W (i, j) = wij . The degree di of node i is the sum of link-weights
connected to node i. The degree matrix D = diag{d1, d2, ..., dN}
is a diagonal matrix. The combinatorial Laplacian matrix is defined
as L = D −W. The corresponding symmetric normalized Lapla-
cian matrix is L = D−1/2LD−1/2. We use the normalized Lapla-
cian matrix because it is closely related to the random walk matrix
and is shown to produce superior classification results [3]. We con-
sider only undirected graphs without self loops for which L is a sym-
metric positive semi-definite matrix. Therefore, it has the eigenvalue
decomposition:

L = UΛUt =

N∑
i=1

λiuiu
t
i, (1)



with a diagonal eigenvalue matrix Λ containing non-negative eigen-
values {λ1, λ2 . . . λN} arranged in a non-decreasing order at the di-
agonal, and a unitary matrix U containing corresponding eigenvec-
tors ui. A graph signal is a function f : V → R defined on the
vertices of the graph. It can be represented as a vector f ∈ RN

where the ith component represent the function value on the ith ver-
tex. Eigenvectors and eigenvalues of L are used to define Fourier
transform for graph signals [1,4,5]. Eigenvalues λi are the graph fre-
quencies which are always in the range [0, 2], and eigenvectors serve
as the corresponding basis vectors. Every graph signal can be repre-
sented with basis U as f =

∑
i f̃(λi)ui, where f̃(λi) = 〈f ,ui〉 is

the graph Fourier transform (GFT) of f .
In classical signal processing, the signal being bandlimited im-

plies that the energy of the signal is zero above a certain frequency.
The spectral analysis of graph signals offers a similar interpretation.
Following definitions and results were used in [2] to design recon-
struction algorithm for graph signals.

Definition 1 (Band-limited graph signal [5]). A signal on a graph
G is said to be band-limited to the graph frequency band [0, ω), if
its GFT has support only at frequencies [0, ω).

The space of ω-bandlimited signals is called Paley-Wiener space
and is given by

PWω(G) = {f : f̃(λ) = 0 if λ ≥ ω} (2)

Definition 2 (Λ-set). A set Q ∈ V is a Λ-set if all graph signals φ
with support onQ (i.e. φ(v) = 0 if v /∈ Q) satisfy

‖φ‖ ≤ Λ‖Lφ‖ . . . (Λ > 0) (3)

Theorem 2.1 (Sampling theorem [5]). All graph signals f ∈
PWω(G) can be uniquely recovered from a subset of its samples on
S if Sc = V − S is a Λ-set such that 0 < ω < 1/Λ.

The following result [2] computes the maximum ω such that any
signal in PWω(G) can be reconstructed given a subset of known
samples S on any graph G.

Proposition 1 (Cut-off frequency). [2] Let (L2)Sc be the subma-
trix of L2 containing only the rows and columns corresponding to
unknown set Sc. Let σ2

min to be the smallest eigenvalue of (L2)Sc .
Any f ∈ PWω(G) with ω = σmin can be uniquely recovered from
its samples on S.

2.1. Least Squares Reconstruction

Proposition 1 gives a condition on the GFT of a graph signal such
that unique reconstruction is possible from its given known subset
of samples. A simple way to do this reconstruction is to solve a
least-squares problem in the spectral domain as explained below.

Let λk be the largest eigenvalue of L less than ω. An ω-
bandlimited signal can be written (under appropriate permutation)
as

[
f(S)
f(Sc)

]
=

[
u1(S) u2(S) · · · uk(S)
u1(Sc) u2(Sc) · · · uk(Sc)

]
α1

α2

...
αk

 (4)

Let α = [α1, α2, . . . , αk]t and[
u1(S) u2(S) · · · uk(S)
u1(Sc) u2(Sc) · · · uk(Sc)

]
=

[
(Uk)S
(Uk)Sc

]

α can be obtained by calculating a least squares solution to f(S) =
(Uk)Sα. Then, the unknown signal values are given by

f(Sc) = (Uk)Sc

(
(Uk)tS(Uk)S

)−1
(Uk)tSf(S) (5)

The sampling theorem guarantees that the there exist a unique solu-
tion to the above least squares problem, which is equal to the original
signal f if f ∈ PWω(G). On the other hand, if f /∈ PWω(G), we
still get a unique least square approximation of f in PWω(G) space.
The choice of the cut-off frequency ω (estimated from Theorem 2.1)
is still crucial, even though the reconstructed signal in this case may
not be the best solution in terms of reconstruction errors. This is be-
cause, for a frequency ω′ higher than ω, there exists a LS solution but
the sampling theorem guarantee fails. This means that there may be
infinitely many LS solutions in the PWω′(G) ⊃ PWω(G) space,
each giving a different interpolation result at the unknown samples.
Therefore, in [2] we used ω as the cut-off frequency for all recon-
structed graph signals. The proposed method in [2] provides good
interpolation results when applied to item-recommendation problem.
However, the algorithm is computationally expensive as it requires
computation of eigenvalues of the Laplacian matrix. In the next sec-
tion, we provide an iterative method for solving the above recon-
struction problem.

3. ITERATIVE LEAST SQUARE RECONSTRUCTION

Our proposed method is similar to the Papoulis-Gerchberg algo-
rithm [6–8] in classical signal processing which is used to recon-
struct a band-limited signal from irregular samples. It is a special
case of projection onto convex sets (POCS) [9], where the convex
sets of interest in this case are:

C1 = {x : Jx = Jf} (6)
C2 = PWω(G) (7)

Here J : RN → RM denotes the downsampling operator where M
is the size of the known subset S of samples. At kth iteration, the so-
lution fk is obtained from fk−1, and satisfies the following two con-
straints: (1) the signal equals the known values on the sampling set
(i.e., fk ∈ C1). (2) the signal is ω-bandlimited, where ω is computed
using Proposition 1 (i.e., fk ∈ C2). We define P : RN → PWω(G)
to be the low-pass graph filter such that

y = Px⇒ y ∈ PWω(G) (8)

P can be written in graph spectral domain as P = H(L) =∑N
i=1 h(λi)uiu

t
i where

h(λ) =

{
1 if λ < ω
0 if λ ≥ ω (9)

We define the downsample then upsample (DU) operation as

fdu = JtJf ⇒ fdu(S) = f(S) and fdu(Sc) = 0. (10)

With this notation the proposed iterative algorithm can be written as

f0 = Pfdu

fk+1 = P(fk + JtJ(fdu − fk)) (11)

At each iteration the algorithm resets the signal samples on S to the
actual given samples and then projects the signal onto the low-pass
space PWω(G).



3.1. Convergence

We define the operators B : RN → RN and T : C2 → C2 corre-
sponding to iteration in (11) as

Bx = x + JtJ(fdu − x) (12)

Tx = P(x + JtJ(fdu − x)) = PBx (13)

It has been shown [9] that an iterative algorithm of the form xk+1 =
Txk converges to a fixed point of T if

1. T is non-expansive, i.e., ‖Tx−Ty‖ ≤ ‖x− y‖
2. T is asymptotically regular, i.e., ‖Txk+1 − Txk‖ → 0 as
k →∞.

P is a bandlimiting operator and hence is non-expansive. B is non
expansive because ‖Bx−By‖ = ‖(I−JtJ)(x−y)‖ ≤ ‖x−y‖.
Since both P and B are non-expansive, T is also non-expansive.
Asymptotic regularity of T can also be proved as shown in [8]. Note
that if f is a fixed point of T then f ∈ C1 ∩ C2. From the sampling
theorem f ∈ C1 ∩ C2 is unique. So the asymptotic solution of
the proposed algorithm converges to the solution of the least square
projection method described in previous section.

3.2. Iterative reconstruction with polynomial low pass filter

The low pass filter P above is a spectral graph filter with an ideal
brick wall type spectral response. Thus, the exact computation of P
requires eigenvalue decomposition of the Laplacian matrix, which
is computationally very expensive for large matrices. However, it
is possible to approximate the ideal filtering operation as a matrix
polynomial in terms of L, that can be implemented efficiently using
only matrix vector products. Thus we replace P in (11) with an
approximate low pass filter Ppoly given as:

Ppoly =

N∑
i=1

(
k∑

j=0

ajλ
j
i

)
uiu

t
i =

k∑
j=0

ajLj (14)

We specifically use the truncated Chebychev polynomial expansion
of any spectral kernel h(λ), as proposed in [4], in our experiments.
The proposed iterative least square method with polynomial low pass
filter, is termed as iterative least square (ILSR) in this paper.

4. INTERPOLATION BASED ON REGULARIZATION

The method presented above does not allow solutions from outside
the PWω(G) space. This is advantageous if the input signal belongs
to or is close to the subspace spanned by ω-BL signals. In general,
for real world datasets such as recommendation systems, the graph
signals tends to be smooth but not exactly band-limited. Therefore,
we use a graph regularization framework in which we set up the cost
of reconstruction as:

f∗ = argmin
x
‖J(fdu − x)‖2︸ ︷︷ ︸

A

+α ‖Hx‖2︸ ︷︷ ︸
B

(15)

where A is the data-fitting term which computes the error between
reconstructed signal and the original signal at the known samples
and B is the Euclidean norm of the output of a highpass graph fil-
ter H. Thus, the term A in the cost function penalizes the signals
that are different from original signal at the known nodes, and the
term B penalizes signals that have significant high frequency com-
ponents. Note that the optimal solution of (15) converges to the

least square solution computed in (11), if H = I−P and α→∞.
In our experiments, H is a chosen as a spectral graph transform with
spectral kernel h(λ) = exp(−1/λ). The problem in (15) has a well
known closed form solution given as:

f∗ = (JtJ + αHtH)−1JtJfdu = (JtJ + αHtH)−1fdu (16)

However, a direct implementation is computationally expensive, as it
involves both the eigenvalue decomposition of the Laplacian matrix
(to compute highpass filter H) and inversion of a graph size matrix.
Therefore, we propose an approximate iterative solution of the opti-
mization problem in (15), similar to the method based on POCS [10]
described in Section 3.

f0 = fdu

fk+1 = (I− βαHtH)fk + βJtJ(fdu − fk) (17)

The parameter β is chosen to ensure convergence and maximize the
rate of convergence. Replacing the spectral transform HtH by its
polynomial approximation, we get a local iterative method for regu-
larized graph signal recovery. Since we use a continuous function of
λ to construct the regularization term, even a low degree polynomial
approximation does not greatly affect the solution.

5. APPLICATION: RECOMMENDATION SYSTEMS

We apply the proposed interpolation method for collaborative filter-
ing in recommendation systems. The input in this problem is a par-
tially observed user-item rating matrix R, such that R(u,m) is the
rating given by user u to the item m. Based on this information, the
system predicts new user-movie ratings. Following the setup in [2],
an item-item graph G0 is computed using partially observed rating
matrix R. The weight of the link between each pair of items i and j
is computed as the cosine similarity [11] between i and j based on
the training samples. For each test user u, we define S to be the set
of items with known ratings, and and U to be the set of test items.
We compute the subgraph Gu = (S ∪U , Eu) of G0, corresponding
to the subset S ∪ U of nodes. We define DU signal fu for u to be of
size |U∪S|, with fu(U) = 0 and fu(S) equal to known ratings. Sub-
sequently, we compute interpolated signal f̂u by using graph based
interpolation.

5.1. Graph Simplification

The item-item graphs computed using cosine similarity (as above),
usually end up being highly connected if the rating matrix R is not
sparse. The graph frequencies of very dense graphs are not uni-
formly distributed and hence not very informative in describing the
smoothness of the signal. We observe that simplification of the item-
item graph as a K nearest neighbor (KNN) leads to more uniform
and informative distribution of graph frequencies. Therefore, we
sparsify the subgraph Gu obtained for user u by connecting each
item i in Gu by at most top K of its known neighbors, (ordered ac-
cording to the decreasing link weights with item i). The best value
of K is determined empirically to be around 30 in this paper.

5.2. Bilateral Link-Weight Adjustment

In addition to the sparsification step, the weights of the links be-
tween known samples S in the subgraph Gu are adjusted to reflect
the user u’s preferences, as is done in [2]. This adjustment step
makes sense since subgraph Gu is the result of observing average
correlation over a set of training users (multiple instances), and the



signal fu corresponds to a single test user u. Specifically, we use
bilateral-like weights for the links between known set of nodes, the
exact implementation of which can be found in [2].

6. EXPERIMENTS
In our experiments, we use three different recommendation system
datasets to evaluate the performance of proposed algorithms. Each
dataset contains a reduced set of 100k randomly selected entries of
user-item-ratings. The properties of the datasets are given in Ta-
ble 1. In each case, we perform a 5 fold cross-validation, in which

Dataset #
users

#
items

rating
range

mod[u] mod[i]

Movielens [12] 943 1682 1–5 215 57
Jester [13] 1412 100 0–20 80 1104
BX-Books [14] 6299 7046 1–10 80 5

Table 1: Datasets used in the experiments. mod[u] and mod[i]: mode
number of the ratings per user and per item, respectively. The ratings of

Jexter datasets are originally fractional values in the range −10 to 9, which
are rescaled to the range 0 to 20 and rounded to integer value.

we split the rating entries into 5 sets of approximately the same size.
Then we evaluate the dataset 5 times, always using one set for test-
ing and all other sets for training. In each iteration, an item-graph
is formed from the training samples, as described in Section 5. The
accuracy of the proposed methods depends to a large extent on the
accuracy of computing link weights between items. Comparing the
three databases in Table 1, the Jester database contains ratings of
only 100 items (jokes). This is also the dataset with the highest
votes per item. Therefore, we expect the link weights in the item
graph, as computed from the training data to be highly accurate. On
the contrary, the books database has the smallest number of ratings
per item, which means that the weight of the links in the item-graph
may be noisy and not very accurate. The movielens dataset seems
to have enough ratings per item to properly compute the weights.
Note that, insufficient training ratings is common problem in all col-
laborative filtering methods. Further, the accuracy of the proposed
methods also depends on the number of movies rated by each user.
In all the above databases, each user ranked enough items to give
us a good prediction. Table 2 shows the RMSE of the proposed
methods with some of the existing methods. To fairly compare the
performance, the actual RMSE obtained for each dataset is normal-
ized to be between 0 and 1, by dividing it with the maximum possi-
ble error (i.e., maximum rating - minimum rating). The best RMSE
obtained in each dataset is represented with bold letters. It can be
seen that the proposed regularized based kernel method (RBM) per-
forms the best in the MovieLens and books dataset, and very close
to the best method (PMF) in the Jester dataset. The iterative approx-
imation of RBM (i.e., IRBM) also performs very close to the RBM
method. However, in case of least square methods the iterative al-
gorithm (ILSR) performs better than the exact method(LSR), on the
movie and jokes datasets. This is because the ILSR method uses
approximate low-pass filters which allow some energy to be in the
frequencies bands higher than the cutoff ω, and is therefore closer to
the RBM method.

7. CONCLUSIONS
In this paper, we presented two localized iterative graph filtering
based methods for interpolation of graph signals from partially ob-
served samples. The methods are implemented on recommendation
system datasets, and provide reasonably good results when com-
pared with the existing methods.

Dataset KNN PMF RBM IRBM LSR ILSR
Movielens 0.2482 0.2513 0.2415 0.2450 0.2514 0.2466

Jester 0.2348 0.2299 0.2304 0.2341 0.2344 0.2315
BX-Books 0.2677 0.2093 0.1966 0.2138 0.2651 0.2828

Table 2: Normalized RMSE results of the algorithms applied to the different
datasets. KNN: K nearest neighbor method, PMF: probabilistic

factorization method, RBM: Regularization based method, IRBM: Iterative
regularization based method, LSR: Least Square Reconstruction, ILSR:

iterative least square reconstruction.
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