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Abstract
In distributed classification applications, due to computational
constraints, data acquired by low complexity clients is com-
pressed and transmitted to a remote server for classification.
In this paper the design of optimal quantization for distributed
classification applications is considered and evaluated in the
context of a speech recognition task. The proposed encoder
minimizes the detrimental effect compression has on classifi-
cation performance. Specifically, the proposed methods con-
centrate on designing low dimension encoders. Here individ-
ual encoders independently quantize sub-dimensions of a high
dimension vector used for classification. The main novelty of
the work is the introduction of mutual information as a metric
for designing compression algorithms in classification applica-
tions. Given a rate constraint, the proposed algorithm minimizes
the mutual information loss due to compression. Alternatively
it ensures that the compressed data used for classification re-
tains maximal information about the class labels. An iterative
empirical algorithm (similar to the Lloyd algorithm) is provided
to design quantizers for this new distortion measure. Addition-
ally, mutual information is also used to propose a rate-allocation
scheme where rates are allocated to the sub-dimensions of a
vector (which are independently encoded) to satisfy a given rate
constraint. The results obtained indicate that mutual informa-
tion is a better metric (when compared to mean square error)
for optimizing encoders used in distributed classification appli-
cations. In a distributed spoken names recognition task, the
proposed mutual information based rate-allocation reduces by
a factor of six the increase in WER due to compression when
compared to a heuristic rate-allocation.

1. Introduction
In distributed speech recognition (DSR) [1], low complexity
clients (e.g., cellphones, PDAs) which do not have sufficient
computation/memory resources to support complex recognition
tasks, acquire speech and transmit it to a remote server for
recognition. Instead of transmitting the speech utterance, fea-
ture frames used by the recognizer are extracted, compressed
(to conserve bandwidth) and transmitted. High dimensionality
of the features requires, for computational reasons, that each
frame (sub-dimension) of the speech feature be independently
quantized. The main difficulty in designing independent quan-
tizers is that traditional distortion measures (e.g., mean square
error (MSE)) used for quantization design can be separably cal-
culated for each of the frames. However, probability of misclas-
sification, the metric for evaluating classification performance,
is a “global” measure defined only for the entire speech utter-
ance. To address this challenge of designing quantizers for in-
dividual frames, we use the information-theoretic measure of
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mutual information [2] to define a sub-dimension based distor-
tion measure. The distortion defined by mutual information is
more suitable to evaluate the effect compression has on misclas-
sification than was possible by MSE.

Our proposed approach attempts to minimize the classifi-
cation error for a given rate with the constraint that individual
frames are independently quantized. The contributions of our
work include (i) a mathematically tractable distortion measure
better suited for classification applications, which can be de-
fined even for sub-dimensions of a vector used for classification
and (ii) an empirical quantizer design algorithm which does not
require prior knowledge of source or class pdfs.

Bayes VQ [3], a joint compression and classification en-
coder, designs a vector quantizer (VQ) to minimize the additive
weighted cost of distortion and misclassification. While achiev-
ing good performance, the main drawback of this approach
is that the encoder has to operate on the entire vector used
for classification. In previous work [4], we extended this ap-
proach by combining the local cost (distortion) with the global
cost (misclassification) to design encoders which could inde-
pendently encode sub-dimension of the vector used for classi-
fication. Incorporating rate constraints in the above approaches
was complicated by the fact that it required minimization of a
weighted cost with two unknown Lagrange multipliers. How-
ever, in our approach inclusion of rate constraint results in a sin-
gle Lagrange multiplier weighted cost which can be optimally
solved [5].

The Information Bottleneck Method [6] ensures that the
compressed data at a given rate retains maximal information
about the class labels. It assumes a soft partitioning of the input
space where every data point is probabilistically associated to
a reproduction codeword. It is shown that the Kullback-Liebler
(KL) distance is the “relevant” distortion for this problem. An
iterative algorithm similar to the Blahut-Arimoto algorithm is
provided to design the quantizers. In contrast, our proposed
work provides an iterative quantizer design which assumes a
hard partitioning of the input space, i.e., every input data point is
uniquely assigned to only one reproduction codeword. The ad-
vantage of our quantizer design algorithm is that it is empirical.
The proposed algorithm infers/calculates the required pdfs dur-
ing the design process. Furthermore the Information Bottleneck
Method does not address either the design of sub-dimension en-
coders or rate-allocation to the different sub-dimensions.

In a distributed spoken names recognition task at 3920 bps,
rate-allocation based on our proposed technique resulted in only
a 0.31% increase in the WER compared to using unquantized
features. While a heuristic rate-allocation technique [7] resulted
in a 1.92% increase in WER. In an eight-way classification task
at 2.3 bits-per-sample our proposed quantizer had only a 2.0%
increase in misclassification, while a MSE based quantizer had
a 7.6% increase in misclassification.



2. Minimum Mutual Information Loss
Encoder

Before describing our minimum mutual information loss en-
coder, we introduce our notation. We represent vectors in bold
and the components of the vector are enclosed in {}. Ran-
dom variables (RVs) are represented by uppercase letters and
the value taken by the RVs by lowercase letters, i.e., X = x =
{x1, . . . , xN} implies the vector RV X takes the value x, which
has N components xi, i = 1, . . . , N . δ(·) denotes a statis-
tical classifier, α(·) and β(·) denote the encoder and decoder
respectively. We use the quantizer, Q(·), as a shorthand for the
encoder-decoder pair, i.e., Q(·) , β(α(·)).

Let [Y, C] denote a continuous (NT )-dimensional RV
Y = {X1, . . . ,XT}, which is associated with a class label
C that takes a value in 1, . . . , L, and Xi is an N -dimensional
RV. In speech recognition the RV Y represents feature frames
of a phoneme, Xi represents a feature frame, and C repre-
sents the phoneme Y belongs to. Assume to represent Y

1 we
are given a rate R, the rate constraint could be due to trans-
mission or storage requirements. The problem we consider is
that of finding the best representation Ŷ = {X̂1, . . . , X̂T} =

{Q(X1), . . . , Q(XT)} s.t. H(Ŷ) ≤ R, which minimizes the
probability of error in classification, i.e., Pe(δ(Ŷ) 6= C), where
H(Ŷ) is the entropy of the RV Ŷ. The fundamental problem
we are addressing is given the constraint that the classifier has
to operate on compressed data with a rate limit, what is the best
product quantizer that minimizes the probability that the class
label is different when obtained from unquantized and quan-
tized data? Note that we design the same quantizer Q(·) for all
the feature frames, Xi, i = 1, . . . , T .

Unfortunately, Pe(·) does not have a mathematically
tractable form which makes the above problem difficult to solve.
In this work we consider mutual information (MI) as an approx-
imation to Pe(·) that can enable designing practical quantiza-
tion schemes. Unlike Pe(·), which is not defined for sub-vectors
(the classifier can only make its decision using the entire vec-
tor), MI can be calculated even between sub-vectors Xi and the
class labels. Since we design the same quantizer for all feature
frames in what follows we drop the subscript in Xi.

Different speech utterances could contain the same feature
frames (possibly in different temporal locations) and still belong
to different classes. So it is obvious that given a feature frame
the class labels need not be the same, i.e., every feature frame
X = x is associated with a conditional pdf p(c|x). Hence MI
between the RV X and the RV C (class label) is given by

I(X;C) =

∫

x

f(x)
∑

c

p(c|x)log

(

p(c|x)

p(c)

)

dx (1)

It is well known that

H(C|X) = H(C) − I(X;C) (2)

where H(C) is the original entropy of the class labels and
H(C|X) is the entropy of the class labels after observing X.
Therefore the MI between C and X is the amount by which un-
certainty in class labels is reduced by observing X. Obviously
the larger I(X;C) is, the more relevant (useful) X is for the
classification task. This intuition has been used previously in
speech recognition to propose a maximum mutual information
speech recognizer design technique [8] as an alternative to max-
imum likelihood techniques. Our work also makes use of this
above intuition to design a minimum mutual information loss
(MMIL) quantizer, QMI(·), which minimizes the loss in MI,
I(X;C)−I(X̂; C), due to compression, where X̂ = QMI(X).

1The rate required to represent a continuous RV Y with exact pre-
cision is∞

The loss in MI due to compression corresponds to an increase in
class uncertainty (see Eq (7) below), hence the MMIL quantizer
is well suited for compressing data in classification applications.
The MMIL quantizer treats loss in MI as the distortion incurred
during quantization similar to a minimum mean square error
(MMSE) quantizer treating Euclidean distance as the distortion
incurred.

The MI between the quantized data X̂ and C is

I(X̂; C) =
∑

c

∑

x̂

p(c, x̂)log

(

p(c, x̂)

p(c)p(x̂)

)

≤ I(X;C) (3)

where I(X̂; C) ≤ I(X;C) by the data processing inequality.
The optimal MMIL quantizer, Q∗

MI (·), subject to a rate
constraint, is obtained by a constrained minimization

Q∗
MI()=argminQMI :(I(X;C)−I(QMI (X);C))≤D [I(X;QMI(X))]

Based on standard Lagrangian techniques this constrained min-
imization can be converted into an unconstrained minimization,
i.e.,

Q∗
MI(·) = argminQMI

I(X;QMI(X))

+λ(I(X;C) − I(QMI(X); C)) (4)

where λ is the Lagrange multiplier which controls the trade-off
between rate and distortion (i.e., loss in MI).

2.1. MMIL Encoder: Quantizer Design
One of our main motivations is to provide an empirical algo-
rithm which can be used in practical applications to design
quantizers directly from sample training data. To enable this
we show how the distortion in Eq (4) can be estimated directly
from data samples used to design the quantizer. First from the
Markov chain C ↔ X ↔ X̂, we have

p(x̂|c) =

∫

x

p(x̂|x)p(x|c)dx (5)

and
p(c|x̂) =

∫

x

p(c|x)p(x|x̂)dx (6)

From Eq (2), the MI loss (distortion) is

I(X;C) − I(X̂; C) = H(C|X̂) − H(C|X) (7)

where

H(C|X) = −

∫

x

f(x)
∑

c

p(c|x)log (p(c|x)) dx (8)

and

H(C|X̂) = −
∑

c

p(c)
∑

x̂

p(x̂|c)log (p(c|x̂)) (9)

Substituting Eq (5) in Eq (9) we get

H(C|X̂) = −
∑

c

p(c)

∫

x

p(x|c)
∑

x̂

p(x̂|x)log (p(c|x̂)) dx

(10)
Note that p(x̂|x) = 1 if Q(x) = x̂ and 0 otherwise. Therefore
define

q(c|x̂) =

{

p(c|x̂) if Q(x) = x̂

0 otherwise (11)

Substitute Eqs (8), (10) and (11) in Eq (7) (by continuity argu-
ments we assume 0log(0) = 0). After rearranging, we get

I(X;C) − I(X̂; C) =

∫

x

f(x)
∑

c

p(c|x)log

(

p(c|x)

q(c|x̂)

)

dx

(12)



If d(x, x̂) represents the distortion between x and x̂,
then E[d(x, x̂)] =

∫

x
f(x)d(x, x̂)dx. This implies

that the distortion measure for the MMIL quantizer is
∑

c
p(c|x)log

(

p(c|x)
q(c|x̂)

)

, i.e., the distortion is the KL distance
between the a-priori conditional class pdfs before quantization,
p(c|x), and the a-posteriori conditional class pdfs after quan-
tization, q(c|x̂). Therefore the MMIL quantizer attempts to
choose those codewords X̂ which best preserve the a-priori con-
ditional class pdfs. It is obvious that for statistical classifiers
(e.g., HMMs) which choose the class label based on a max-
imum likelihood decision using p(c|x), the MMIL quantizer
will have less detrimental effect on the probability of misclassi-
fication when compared to traditional mean square error (MSE)
based quantizers which do not explicitly consider the condi-
tional class pdfs during quantization design. If the source pdfs
are not known fine quantization is used to find an empirical es-
timate p̃(c|x) of p(c|x) from labeled training data [7]. Eq (6) is
then used to find p(c|x̂), where p̃(c|x) is used instead of p(c|x).

Algorithm 1 Minimum mutual information loss vector quan-
tizer design
Step 0: Calculate p̃(c|x) for c = 1, . . . , L
Step 1: Initialize all codewords x̂i, i = 1, . . . , I , d(0) =
∞, k = 1. Let ε be a small positive constant.
Step 2: Find p(c|x̂i), c = 1, . . . , L, i = 1, . . . , I; using Eq (6)

Step 3: α(x) = argmini

∑

c
p(c|x)log

(

p(c|x)
q(c|x̂i)

)

Step 4: x̂i = β(i) = E[x|α(x) = i]

Step 5: d(k) =
∫

x
f(x)

∑

c p(c|x)log
(

p(c|x)
q(c|β(α(x)))

)

dx

Step 6: if (d(k − 1) − d(k))/d(k) < ε STOP, else k = k + 1,
go to Step 2

Here in Step 4 we make use of the result that for encoders
designed using KL distance as the distortion measure, the opti-
mal decoder is the Lloyd decoder [9].

The flexibility of our encoder design is that since we are
using loss in MI as the distortion measure rather than Pe(·), it
can easily be applied to design independent quantizers for each
of the components of the vector X . If the entire vector has N
components i.e., X = X1, . . . , XN , then the optimal quan-
tizer Qj∗

MI(·) for the jth component is designed by minimizing
I(Xj ; C) − I(Qj

MI(Xj); C).
Given that the designed quantizers need to satisfy a rate

constraint, the standard entropy constrained quantization design
technique [5] can be adopted, with MI loss as the distortion. The
entropy constrained encoder αn(·) for the nth component is

αn(xn) = argmini

∑

c

p(c|xn)log

(

p(c|xn)

q(c|x̂ni
)

)

+ λlni

(13)
where lni

is the number of bits used to represent the ith code-
word x̂ni

in the nth dimension. As a simplification we use
lni

= −log2(p(x̂ni
)). The decoder is the Lloyd decoder

βn(i) = E[xn|αn(xn) = i].

2.2. MMIL Encoder: Rate-Allocation
Rate-allocation (or bit-allocation) plays an important role dur-
ing designing independent encoders for components of a vector.
The GBFOS algorithm [10] has been used for rate-allocation in
MMSE encoders. It relies on the calculation of rate vs. dis-
tortion points for each of the components and then selects the
combination of points which satisfy the rate constraint and yield
the minimum distortion. For MMIL quantizers the distortion is
MI loss, hence several rate vs. mutual information loss points
are calculated for each of the components. Then if the available
rate is R, these calculated points are used by the GBFOS al-
gorithm to allocate rates, Rn, n = 1, . . . , N ;

∑

n
Rn ≤ R, to

each of the components. During quantizer design, λ in Eq (13)
is modified until H(X̂n) ≤ Rn, standard bisection techniques
can be used to find the “best” λ.

3. Experiments and Results
To evaluate our techniques we generated a mixture of eight 2D
Gaussian sources. The means and the optimal Bayes classifica-
tion boundaries for this mixture source are shown in Figure 1.
10,000 samples from each class were generated, each dimen-
sion was independently quantized and then used for classifica-
tion. A classification error occurs if a sample from class i is
classified as belonging to class j 6= i. The experiments were
repeated 100 times and results reported are average results. The
baseline classification error using unquantized data was 27.4%.
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Figure 1: The mixture of eight 2D Gaussian sources used to
evaluate our proposed techniques. Misclassification was 27.4%
even when unquantized features were used, indicating signifi-
cant overlap between the different sources.

ID Design Rate-allocation Encoding
Q1 MSE MSE MSE
Q2 MSE MI MSE
Q3 MI MI MSE
Q4 MI MI MI

Table 1: In the different quantization techniques, we varied the
design algorithm, the rate-allocation technique and the encod-
ing scheme. Here MSE refers to mean square error distortion
and MI refers to our proposed mutual information loss distor-
tion. Note that we progressively increase the significance of the
role MI plays in the quantizer operation, by first using it only
for rate-allocation, then for both rate-allocation and quantizer
design and finally for all three operations.

The different quantization techniques (Q1-Q4) evaluated
are listed in Table 1. To illustrate the effect of MI on the dif-
ferent aspects of the quantizer, we progressively increase the
significance the role MI plays in the quantizer operation. Q4
represents the quantization technique incorporating MI in all
three phases, design, rate-allocation and encoding. This repre-
sents our best system. Figure 2 shows the results obtained when
the different quantizers were used for encoding the data before
classification. We plot the increase in misclassification vs. bits-
per-sample. The increase in misclassification is with respect
to the baseline performance using unquantized data. Observe
that at high bitrate (> 3.5 bits-per-sample), the performance of
all systems is almost the same, although Q4 achieves the best
results of the four techniques. However at low bit rates the sub-
optimality of MSE for classification becomes clear. When the
GBFOS algorithm uses rate vs. mutual information loss points
instead of rate vs. MSE points to allocate rates to the different
dimension of the vector we observe that the performance im-
proves or stays the same (Q2 is better than Q1). Once MI is also
included for quantizer design (Q3), we observe substantial im-
provement in performance. At 2.3 bits-per-sample the increase
in misclassification due to Q1 is 7.6%, while due to Q3 is only
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Figure 2: The results obtained by the different quantization
schemes. Observe that as MI is increasingly used in the quan-
tizer, the rate-classification performance always becomes better.

2.2%. Notice that this improvement requires no extra cost dur-
ing encoding, i.e., Q3 still uses the non-optimal MSE encoding,
thus having no extra run time computational increase. However
we observe that between 2.5 and 3.5 bits-per-sample, the per-
formance of Q3 is not monotonic. This is due to the fact that a
quantizer designed to minimize loss in MI, is used by an encod-
ing scheme which minimizes MSE. To eliminate this mismatch
MI can be used as the criterion during actual encoding (Q4).
Observe that Q4 outperforms Q1,Q2 and Q3 at all bitrates, and
additionally eliminates the non-monotonicity of Q3 (however
the run time encoding complexity increases).
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Figure 3: WER in spoken names recognition task. Signifi-
cant performance improvements is achieved at all bitrates by
the MI rate-allocation compared to the heuristic rate-allocation.
At 3920 bps, the MI rate-allocation scheme results in only a
0.31% increase in WER when compared to using unquantized
MFCCs.

The significant performance improvements achieved for
this eight class task motivated us to apply the MMIL technique
to the problem of encoding speech in a distributed speech recog-
nition (DSR) task. Our scalable DSR encoder [1] uses uni-
form scalar quantizers, hence we concentrate on rate-allocation.
The rate-allocation to each of the mel frequency cepstral coef-
ficients (MFCCs) was based on the importance of each MFCC
for recognition [7]. It is unclear how to map importance to rate-
allocation. However loss in MI is a better metric for allocating

the rates, since the loss in MI indicates the increase in class
uncertainty. The results obtained when rate-allocation to the
MFCCs was done with MI is shown in Figure 3. The recogni-
tion task was a two stage spoken names recognition (see [1] for
details). Observe that at all bitrates the MI rate-allocated en-
coder significantly outperforms the heuristically rate-allocated
encoder. At 3920 bps the MI rate-allocation reduces the in-
crease in WER due to compression from 1.92% for the heuristic
rate-allocation to 0.31%, more than a six fold decrease. In terms
of bitrate, the MI rate-allocation achieves at 2500 bps the same
recognition performance as the heuristic rate-allocation does at
3920 bps, a 36% reduction in bitrate with no penalty in recog-
nition performance.

4. Conclusions
We proposed mutual information, an alternative to MSE, as a
more appropriate distortion criteria for encoder design in classi-
fication (recognition) applications. We showed that KL distance
is the right optimization measure to ensure that the quantizer de-
sign minimizes loss in MI between the data samples and class
labels. We provided a practical empirical quantizer design tech-
nique. We also showed that rate-allocation based on MI can
result in significant performance improvements in distributed
speech recognition.
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