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1. Introduction

Research on wireless sensor networks (WSNs) has been motivated by important
applications such as climate change tracking, critical infrastructure monitoring,
and wide area surveillance. In many of these applications, relatively simple sensors
gather data that is then transmitted to centralized nodes, or sinks, where it is
analyzed and processed. Compressing data as it is transmitted to the sink can play
a potentially important role in increasing the lifetime of the sensors by reducing
the number of bits they need to transmit, thus lowering overall power consumption.
Over the last few years, several techniques have been developed for data compression
in WSNs. This paper summarizes the key characteristics of several representative
approaches and provides an overview of recent progress.

While standard data compression techniques can be directly applied to WSNs,
improved performance can be achieved by taking into consideration the spatially
distributed nature of the application. In particular, if the goal is to minimize battery
consumption, then one should consider the cost of generating and transmitting bits
to represent the information captured, rather than simply count the number of
bits generated. To understand the importance of this point, consider a situation
where sensors capture spatially correlated signals. In this scenario one could, for
example, use information from one sensor to predict information in another and,
given high correlation, an overall lower communication rate could be achieved. This,
however, would require communication between the sensors or prior knowledge of
their correlation, i.e., the first sensor would have to convey information to the second
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in order to effect predictive coding. A key observation is that this communication
may reduce the overall number of bits to represent the signal, but may not lower
the overall energy consumption due to the new communication costs.

In this paper, we focus on the challenges posed by spatial compression, i.e.,
exploiting redundancy in data across neighboring nodes. Techniques that exploit
temporal redundancy do not require additional coordination/communication among
sensors and thus can be deployed in combination with other methods without con-
cerns about transport costs. A key intuition in this paper is that exploiting spatial
correlation requires non-processed or raw data to be transmitted from certain raw
nodes so that correlations can be exploited at other aggregating nodes. While the
specifics of each compression technique differ, a good indication of performance
can be obtained by considering the relative number of raw and aggregating nodes.
Roughly speaking, choosing to have fewer raw nodes leads to lower initial trans-
port costs (less unprocessed data is transmitted), but also means that compression
rates at aggregating nodes may not be as high, since aggregating nodes will receive
information from more distant, and thus less correlated, raw nodes.

We explain below how existing techniques (including the Karhunen-Loève trans-
form, wavelets, and compressive sensing) can be adapted to operate in distributed
environments by introducing a taxonomy of compression schemes for distributed
WSNs. We describe each method in some detail and additionally illustrate how
each can be modified to take into consideration the distributed nature of the appli-
cation. Such changes improve the overall energy consumption for a given represen-
tation quality.

This paper is organized as follows. Section 2 provides background on WSNs
and compression. Section 3 introduces the taxonomy of compression algorithms.
Section 4 overviews example algorithms, while Section 5 provides conclusions.

2. Background

(a) Wireless sensor networks

A wireless sensor network (WSN) is a collection of wireless sensor devices that
(i) can communicate with each other (and a sink node) via wireless data trans-
mission, (ii) can sense, process, transmit, and receive data, and (iii) are able to
perform these tasks in a distributed manner. WSNs naturally involve the theory
and practice of sensing, signal processing, communication and information theory,
and networking. Since the sensors communicate wirelessly and since in-network
data processing will often require sensors to exchange data, a full treatment of data
processing for WSNs requires addressing the communication infrastructure.

Let the signal of interest be f(x, y, z, t), where x, y and z denote the coordinates
of three-dimensional space and t denotes time. Suppose there are J sensors denoted
by index j = 1, 2, . . . , J and that each sensor samples the signal at some spatial
position (xj , yj , zj). Also let tn, for n = 1, 2, . . . , N , denote the discrete times at
which each sensor measures the signal. Let f denote the sampled signal vector where
the set of samples f [i] = f(xi, yi, zi, ti) comprising f is given by the particular
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problem instance. In some cases, f contains noisy samples of the signal of interest
f .

The sensed signal might consist of point measurements taken at infrequent inter-
vals (e.g., temperature in a room every minute), one-dimensional signals acquired
at a moderate to high sampling rate (e.g., seismic, acoustic, radio signals), two-
dimensional images, three-dimensional video, or beyond. As we move to higher
dimensions (both in time and space), the total amount of data generated quickly
becomes enormous, necessitating some kind of compression. The compression can
span different domains of the data space (temporal, spatial, spectral, etc.). As men-
tioned above, designing effective spatial compression schemes will typically entail
communication between sensors and thus must obey the constraints placed by WSN
architecture. This major challenge must be addressed in any WSN design.

(b) Signal compression

In signal compression, the goal is to find an approximation f̂ to the signal
of interest f , encoded using a budget of b bits, that minimizes the approximation
distortion d(f , b) = ‖f−f̂‖ according to a given distortion metric. The rate-distortion
(RD) function D(s, b) (Cover & Thomas, 1991; Cristescu et al., 2005) provides a
monotonic map between the size of the compressed signal and its fidelity to the
uncompressed version. Often we can parametrize the approximation ŝK by the
number K of degrees of freedom involved in the approximation. One can then
consider the distortion as a function of K with a fixed number of bits b, d(s,K),
and spend, for example, b/K bits encoding each of the degrees of freedom.

(c) Distributed compression

In a WSN, the recorded signal is not immediately available at a centralized
location; such collection would incur significant communication expense. Therefore,
WSNs prefer distributed algorithms to perform compression. The main challenge
in the design of a distributed compression algorithm is determining the extent
of coordination required among the nodes to transmit and process the acquired
signal in a distributed fashion, i.e., the partitioning of the network into raw and
aggregating nodes. The goal of the algorithm is typically to reduce the amount
of information sent to the sink while achieving the smallest distortion possible.
Ideally, this is done so that the overall signal gathering cost (measured in terms
of communication expense) is minimized for a given fidelity in reconstructing the
signal obtained from each node.

As an additional consideration, it is often desirable to tailor the design of the
compression algorithm to meet particular constraints on communication for the
WSN, such as routing topology, latency, and power consumption (Scaglione &
Servetto, 2005). In the case where these constraints are severe and rigid, the com-
pression algorithm design must carefully balance these additional constraints with
the resulting compression rate and distortion achieved.
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Table 1. Taxonomy of WSN compression algorithms. Notation: RAW: raw data; SO: spa-
tial only; TO: temporal only; ST: spatio-temporal; SD: separate design; RC: routing over
compression; CR: compression over routing; JO: jointly optimized; NC: no coding; DSC:
distributed source coding; DTC: distributed transform coding; CS: compressive sensing;
DPC: distributed predictive coding.

Name Model Rout/Comp Coding

Collection tree protocol (Ciancio et al., 2006) RAW RC NC

Adaptive temporal coding (Song et al., 2010) TO SD NC

Distributed source coding (Cristescu et al., 2005) SO SD DSC

Distributed KLT (Gastpar et al., 2006) SO, ST SD DTC

Tree KLT (Shen et al., 2009a) SO RC DTC

Tree-based wavelets (Wagner et al., 2006) SO SD, CR DTC

Graph-based wavelets (Shen & Ortega, 2010) SO RC DTC

Distributed compressive sensing (Duarte et al., 2006) ST SD CS

Compressive wireless sensing (Bajwa et al., 2006) SO CR CS

Randomized gossiping (Rabbat et al., 2006) SO, TO, ST CR CS

Sparse random projections (Wang et al., 2007) SO, TO, ST CR CS

Localized compressive sensing (Lee et al., 2009) ST JO CS

T-DPCM (Pattem et al., 2009) SO JO DPC

3. WSN Compression Algorithm Taxonomy

We present a taxonomy for a number of representative WSN compression algo-
rithms in Table 1. The algorithms will be discussed in detail in Section 4. Our tax-
onomy considers the type of compression performed and the integration between
the routing and networking aspects of the WSN and the compression algorithm.
Compression algorithms often consist of the combination of two parts: a signal
model that provide energy compaction through linear transformations (a process
known as transform coding) and a coding scheme that encodes the values of the
transform coefficients using as few bits as possible. The taxonomy categories below
explore three different dimensions involved in the design of a complete distributed
compression system.

• Signal model: the signal model identifies the key characteristics of the signals
to be exploited during compression (e.g., spatial correlation due to a physical
model, or sparsity due to low event complexity).

• Interplay between routing and compression: the design of the compression
algorithm may have to respect specific constraints on the communication
architecture of the WSN (e.g., routing topology, communication scheme such
as unicast vs. broadcast) during the design of the signal model, data collection,
etc.

• Coding tools: we must select a specific coding and quantization algorithm.
Several design parameters may be available for each option to decide how
to exploit signal characteristics while operating under communication con-
straints.
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(a) Signal models for compression

There are many possible types of correlation or structure that can be leveraged in
linear transformations for data compression purposes. In the first class, the coding
scheme acts directly on the raw data obtained at the sensors without the need
to transform the data to encode the correlations between sensors. This raw data
approach is appropriate, for example, when the sensors aim to report the presence of
highly localized activity that is sensed only by few sensors, or when the sensors aim
to report anomalies in sensing or operation, such as reduced battery power or device
failure. The raw data approach is optimal in these cases due to the uncorrelated
nature of the data communicated by the sensors.

In the second class, the compression scheme exploits only temporal correlations.
In such temporal-only approaches, each sensor applies one of the coding schemes
described in Section 3c to its own observation vector. These approaches do not
require communication during the compression step, since the sensor has all the
data needed for the algorithm. On the one hand, temporal-only models may be op-
timal when signals are temporally correlated and temporal sampling rates are high.
They may also be best if a simpler system is preferred, since sensors can operate
independently of each other (without having to coordinate). On the other hand,
temporal-only models do not exploit the spatial correlations with other sensors
in their local neighborhood that appear in many WSN applications. Furthermore,
temporal-only models can lead to excessive latency due to the need to collect enough
time samples to achieve meaningful compression rates.

In the third class, the compression scheme exploits the correlation among data
from different sensors. In these spatial-only approaches, the compression is applied
to the distributed observation vector ftn

= [f(xj , yj , zj , tn)]1≤j≤J . Spatial-only
models are well-matched to applications that record data from smoothly varying
fields or where sensor density is high. In contrast to the raw and temporal-only
approaches, this class of models can impose a large communication burden on the
WSN. Furthermore, spatial-only models do not exploit the temporal coherence that
is present in many WSN applications, potentially causing significant redundancy
during compression at successive times.

Ideally, a signal model for compression purposes will exploit both temporal
and spatial correlations. Such spatio-temporal models consider all samples f =
[f(xj , yj , zj , tn)]1≤j≤J,1≤n≤N and typically achieve the best tradeoffs in rate dis-
tortion. Not surprisingly, these methods face the challenges of both temporal-only
and spatial-only models, including potentially high latency, increased communica-
tion burden, and increased coding complexity.

(b) Interplay between routing and compression

As mentioned in Section 2c, WSN compression schemes must carefully balance
the goals of low-rate representation of the compressed data, low-distortion approx-
imation, and suitability to the communication constraints and routing topology of
the WSN. The simplest designs are separate designs that treat the communication
and compression schemes independently.
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When the communication and networking constraints are severe and rigid, the
compression scheme must adhere to the resources available to the network, prior-
itizing routing over compression. Characteristics that can force rigid networking
constraints include large scale deployments, limited power availability, and mini-
mum network lifetime.

When the communication and networking constraints are more flexible, the
compression scheme can take priority over networking during the search for the
optimal rate-distortion tradeoff, i.e., we can prioritize compression over routing. In
this case, it can be desirable to first design the compression scheme and then design
the routing topology to optimize the performance of the compression algorithm.
Such flexibility can be present when the sensor density is high and power and
communication resources are less restricted; the high density of sensor nodes makes
it more desirable to trade off additional expense of the available resources for a
higher degree of compression.

Clearly the optimal approach is to jointly optimize the compression algorithm
and routing scheme. However, the rich parameter space available in this class of
applications increases not only the potential payoff but also the level of difficulty of
the design process (Pattem et al., 2004; Scaglione & Servetto, 2005; Luo & Pottie,
2007; Shen & Ortega, 2008a).

(c) Coding tools

We identify five main classes of coding algorithms that can be applied directly to
the data or to its representation under a signal model. The first (trivial) class is non-
coding. This is appropriate for data that exhibits no spatial or temporal correlation,
since there is nothing to be gained by compressing un-correlated data. Note that
even if spatial correlation is present in the data, non-coding may be competitive
with spatial compression methods. For instance, this may be the case if spatial
compression requires coordination through communication that is too costly for
the nodes, or if the bitrate reduction achieved is not sufficiently significant (e.g., if
the overhead bits due to packetization dominate the communication cost).

When a high degree of spatial data correlation exists, it will likely be beneficial
to perform some form of distributed spatial compression. The idealized scenario
is when the (statistical) spatial correlation structure is known; in this case, one
can simply perform distributed source coding to “optimally” encode each sensor’s
data, where “optimality” is understood in the traditional RD sense (Cristescu et al.,
2005). However, since the spatial correlation structure is typically unknown (or is
difficult to estimate), one must often resort to simpler spatial compression methods
that do not rely on a model or can adapt to changes in the correlation structure.
One simple way to model spatial correlation is via distributed predictive coding.
Distributed predictive coding schemes operate by (i) predicting data at each node
using previously encoded data from other nodes, and (ii) encoding and transmitting
the prediction residuals.

While existing distributed predictive coding schemes provide a simple form of
coding, they do not fully exploit the spatial data correlation. In order to achieve
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greater compression through spatial processing, it is necessary to develop more
general distributed (sparsity-inducing) transform coders. These transforms operate
linearly on data taken from multiple nodes and yield “transform coefficients”. These
coefficients are then encoded and transmitted to the sink. These methods often
outperform non-coding, temporal-only, and distributed predictive coding methods.
Extensions to spatio-temporal transforms have also been explored and been shown
to yield even better performance.

Finally, in compressive sensing (CS) approaches, combinations of data from
multiple nodes are generated and encoded, as in distributed transform coding; how-
ever, in contrast to transform coding, the number of linear combinations generated
is smaller than the number of sensors in the network. CS approaches can exploit
prior knowledge about the signal being sensed (e.g., smoothness) in order to resolve
during signal reconstruction the ambiguities produced by undersampling.

4. Distributed Compression Algorithms for WSNs

We now review a representative set of distributed compression algorithms for WSNs
that we classified under our taxonomy in Table 1.

(a) Non-transform based data collection techniques

(i) Collection tree protocol

The collection tree protocol (CTP)(CTP, 2007) is a well-known example of
a routing-over-compression non-coding method. The basic idea is to choose com-
munication routes according to a heuristic measure of communication cost called
Expected Transmissions (ETX). In this algorithm, each node keeps a running aver-
age of the number of transmissions needed to send a packet to each of its neighbors;
multiple transmissions are typically needed since packet losses occur often. More-
over, nodes that are one hop from the sink propagate their running averages to
nodes that are two hops away from the sink. Then the “two-hop nodes” add the
received running averages to their own running averages, forming a “two-hop” ETX
value for the “two-hop” nodes. The two-hop nodes then send their two-hop ETX
values to their “three-hop” neighbors, and so on. In this way, nodes can form a min-
imum ETX routing tree simply by choosing their parent as the one-hop neighbor
with minimum ETX. This is optimal from a routing standpoint (in the minimum
ETX sense), but is clearly suboptimal in terms of communication cost since the
data is uncompressed.

(ii) Adaptive temporal coding

One way to improve upon non-coding protocols such as CTP is to perform
compression at each node using its own samples collected over time, i.e., perform
temporal coding. The majority of these methods employ adaptive coding over time
followed by entropy coding (Santini & Romer, 2006; Song et al., 2010). This par-
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ticular technique can yield significant improvements over raw data collection. Note
that these algorithms are temporal only and do not exploit spatial correlations,
and so one could potentially improve performance by incorporating some form of
spatial compression. However, since compression is done locally at each node, no
inter-sensor communication is required to perform compression. In fact, temporal
coding can be classified as a separately designed routing and compression scheme.
This has obvious practical advantages, since sensors do not need to expend energy
for inter-sensor communications in order to compress, nor is there any need to coor-
dinate these communications, which can be a difficult problem if the communication
structure changes frequently.

(iii) Tree-DPCM

When the data flowing towards the sink follows a routing tree, each node in
the tree has access to all of the data transmitted by its descendants in the tree.
Thus, a simple way to reduce the overall bitrate is for each node to compute a
prediction based on data from its descendants and transmit to its parent only a
residual with respect to this predictor. The parent node, in turn, can reconstruct
data from its descendants, compute a prediction based on descendant data, and so
on. An example of such an approach (Shen et al., 2009a) demonstrates significant
gains over raw data transmission, especially if adaptive prediction is performed.

(iv) Distributed source coding

In the event that the (statistical) spatial correlation structure is known, the best
routing-over-compression method for the spatial-only model is distributed source
coding (DSC) (Cristescu et al., 2005). However, such methods require reliable es-
timates of the correlation structure. In practice, achieving such reliable estimates
may require observing the data being sensed over impractically long intervals. For
example, in a general case, if complicated correlations exist across sensors, then one
may need to estimate a covariance matrix that is not necessarily sparse (so that a
large number of measurements is required for reliability). Moreover, the correlation
structure may change over time, so that data gathering without DSC will be needed
from time to time in order to re-estimate it. Thus, any practical DSC scheme will
need to operate at a rate greater than what theoretically can be achieved because
(i) the higher rate will be needed to ensure some robustness with respect to mis-
matches between the estimated model and the actual correlation structure, and (ii)
non-DSC techniques will have to be used from time to time in order to adapt the
model parameters. These practical issues have so far not been fully studied, so that
the degree to which DSC methods can be deployed in practice remains an open
question.

(b) Distributed transform coding

In transform coding, the compression scheme acts on a linearly transformed
version of the data. Specifically, for the sampled data f , we typically use an or-
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thonormal transformation matrix Ψ that yields a coefficient vector w = Ψ−1f (so
that f = Ψw) and achieve compression by encoding w using the schemes of Sec-
tion 3c, dividing the bit budget amongst the entries of w according to their impact
in signal distortion. For example, the bit budget may be partitioned among the
entries of w according to their expected magnitudes; in certain cases, it might be
optimal to discard small coefficients when the savings in bitrate outweigh the dis-
tortion incurred by ignoring them. The signal is then decompressed by decoding
the bitstream and populating an approximate coefficient vector ŵ with only the
preserved coefficients (setting all others to zero), and then inverse transforming to
obtain the estimate f̂ = Ψŵ. The amount of distortion introduced by this type
of compression is due to the quantization error during coding and the magnitude
of the discarded coefficients; thus, efficient transform coding relies on a suitable
transform and coding scheme pair that minimizes these two sources of distortion.

When transform coding is implemented in a distributed setting, we must ac-
count for the communication cost of computing the coefficient vector w. This will
depend both on the type of signal model used (spatial and/or temporal) and on
the characteristics of the entries of the matrix Ψ (e.g., if a given row of Ψ−1 has
nonzero entries corresponding to samples of f taken by multiple sensors, then the
sensors will need to communicate or pool their information at a sink to calculate
the corresponding transform coefficient). To integrate knowledge of the routing and
networking structure into transform coding, we must restrict the choices of matri-
ces Ψ so that the communication required to apply Ψ−1 to the data matches the
network constraints.

In this subsection, we will focus on the Karhunen-Loève Transform (KLT), where
the signal f ∈ RN is modeled as a multivariate Gaussian random vector with zero
mean (for simplicity) and low-rank (or approximately low-rank) covariance matrix
Σf . Intuitively, this model represents signals as belonging to (or being close to) a
K-dimensional subspace of RN for a sufficiently large value of K. Under this model,
the signal can be approximated simply by obtaining a basis Ψ for the aforemen-
tioned subspace and obtaining the K coefficients of the signal in that basis. The
basis Ψ can be learned from representative datasets {f} using principal component
analysis (PCA). However, the generic KLT does not pose particular constraints on
the structure of the obtained basis Ψ.

(i) Distributed KLT

The distributed Karhuenen-Loève transform (DKLT) (Gastpar et al., 2006) is
an adaptation of the KLT to communication-constrained settings. While in the
standard KLT the estimated basis Ψ is generally dense, when the WSN must restrict
its communication to only local transmissions, the KLT coefficients should depend
only on sensor readings from communication graph neighborhoods. That is, the
matrix ΨD should have block-diagonal form, where each block in the diagonal of
ΨD transforms a local neighborhood of samples from f to a subset of the coefficients
w.

While finding the optimal matrix ΨD is an open problem, it is possible to find
locally optimal solutions by iterating over the blocks corresponding to the different
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WSN neighborhoods using modified PCA approaches. Such approaches can account
for knowledge of partial information about the rest of the network’s compression
scheme, e.g., knowledge of the local correlation matrices, partial knowledge of local
KLT bases, or partial knowledge of the recorded signals. Depending on the compo-
sition of the vector f , the DKLT can use a spatial-only or spatio-temporal model.
DKLT also follows the routing-over-compression design scheme, since the communi-
cation network neighborhoods determine the constraints of the DKLT compression
basis Ψ.

(ii) Tree KLT

The Tree KLT (T-KLT) method is a routing-over-compression, distributed trans-
form coding method that is “optimal” for a spatial-only model (Shen et al., 2009a).
It is optimal among the class of “unidirectional transforms” in the sense that it
decorrelates data along any sub-tree of the routing tree. First, data from “leaf
nodes” (i.e., nodes with no children in the routing tree) is transmitted in raw form
to their parents. Then, a KLT matrix is computed at each parent node and the
KLT is applied to the raw data. From that point on, since each node receives KLT
coefficients instead of raw data, each node (i) applies an inverse KLT to data from
each of its children, (ii) computes a KLT for data from itself and its descendants,
then (iii) transmits the KLT coefficients. This process is repeated until all data is
received at the sink. The sink then performs an inverse KLT on data received from
each of its children (i.e., its 1-hop neighbors). Note that, for this approach to work,
either (i) nodes would have to transmit the KLT matrices they design to their par-
ent nodes, or (ii) statistical knowledge of the correlation structure would have to
be available at the nodes. More specifically, it would be necessary for each node to
obtain estimates of the covariance matrix of the data on its own sub-tree and the
covariance matrix of the sub-tree for each of its children. Since covariance matrices
are generally not easy to estimate, this may not be the most practical routing-over-
compression distributed transform coding method. Moreover, since many inverse
transforms are needed to recover original data on each sub-tree, this method will be
susceptible to quantization error propagation. Thus, this method can serve mostly
as an upper bound to benchmark the performance of other unidirectional transform
methods.

(c) Wavelet transforms

Transform coding can be extended from the KLT to models that are more
elaborate than a low-dimensional subspace and that need not be signal-dependent.
In particular, the sparsity model assumes that signals are within or close to one of
the K-dimensional subspaces of RN spanned by an arbitrary choice of K out of the
N column elements of Ψ. Many classes of signals have been shown to exhibit sparsity
in particular bases. For example, the Fourier basis provides sparse representations
for smooth signals, while wavelet bases provide sparse representations for piecewise
smooth signals.
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In this subsection, we focus on the case of wavelet transforms, which are nat-
ural for WSN settings such as anomaly detection in smooth signal fields as well
for providing compact representations for smooth fields with few discontinuities. In
particular, we focus on the wavelet lifting implementation (Sweldens, 1996), which
provides an algorithmic wavelet transform that is ideally suited for low computa-
tion constraints. In wavelet lifting, for each sample within the coefficient vector f ,
we operate on neighborhoods of multiple sizes. Each neighborhood is partitioned
into two sets (commonly called even and odd), and the transform coefficients are
calculated by applying prediction and update filters to the even and odd neighbors
of each odd and even sample, respectively. The neighborhood sizes vary according
to the scale, providing a multi-resolution analysis of the vector f ; the presence of
large wavelet coefficients at a given location and scale indicates the presence of
discontinuities in the sensed field within the corresponding neighborhood of the
studied sensor.

For wavelet compression in WSNs, a sink queries for sufficiently many encoded
wavelet coefficients in order to reach a target compression distortion. Compression
here results from the fact that the bitrate needed to encode wavelet coefficients will
be smaller than the bitrate required by a standard data dump to the sink. The
savings in coefficient coding have to be balanced with the additional communica-
tion expense required to calculate the wavelet coefficients. Thus, there generally
exist efficiency breakpoints, dependent on the number of sensors in the network
and the size of the field, in which the communication cost of calculating wavelet
coefficients overweighs the savings in communications from wavelet compression.
Note in particular that computing prediction coefficients requires sending raw data
from even to odd neighbors in a neighborhood, so overall transmission cost may be
significantly affected by the number of such “raw” nodes in the network.

(i) Irregularly sampled wavelets

The baseline wavelet lifting approach is designed for signals f that have been
sampled on a uniform grid. Additionally, the prediction and update filter designs
assume that the cost of computing a wavelet coefficient depends solely on the num-
ber of samples involved. This setup does not map very well onto a WSN, since in a
WSN sampling is very often performed irregularly in the space domain according
to the particular deployment of the sensors in the field. Nonetheless, it is possible
to adapt wavelet transforms designed for regularly sampled data to irregular sam-
pling (Wagner et al., 2006; Baraniuk et al., 2008). In this case, the definition of the
neighborhoods must be modified. This approach utilizes location information to
define local neighborhoods of nodes at multiple scales that exchange information,
forming multiresolution geographical neighborhoods. This also forces the neigh-
borhoods to be calculated in sequence from finest (smallest) to coarsest (largest)
scales.

For a local neighborhood at a particular scale, the partition stage arbitrarily
selects a node to be placed in the even subset and moves all nodes within a smaller
geographical neighborhood of the new even node to the odd subset. This process is
repeated with the nodes remaining in the neighborhood until each node has been
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labeled as even or odd. The prediction and update filters are designed to perform
optimal approximation of the corresponding sampled value by fitting a plane to
the readings from sensors in the even/odd neighborhood partitions, correspond-
ingly (Wagner et al., 2006). The prediction and update steps can be made robust
to communication losses through simple updating of the weights for sensors involved
in the dropped communication links and their immediate neighbors.

The irregular wavelet transform requires communication in local neighborhoods
to compute scaling and wavelet coefficients. While the neighborhoods become larger
as the wavelet scale becomes coarser, it has been shown experimentally that this
transform provides a more balanced distribution of the communication expense
needed to receive all sensed values, as compared to a data dump approach that
stresses the communication bottleneck around the sink.

The irregular wavelet transform is well suited for settings in which the com-
munication neighborhoods are small and multiple hops are involved in the paths
to the sink, which increases the communication savings due to compression. This
approach falls in the spatial-only class; additionally, the fact that the filters used
for compression are chosen according to the geographical neighborhoods, which are
not necessarily tied with the network topology of the WSN, means that the method
can be placed in the compression-over routing or separate design classes.

(ii) Graph-based wavelets

While the irregular wavelet transform makes use of node proximity regardless
of network topology (compression over routing), graph-based wavelets (Shen & Or-
tega, 2008b; Shen et al., 2009b; Shen & Ortega, 2010; Narang et al., 2010) use a
lifting transform constructed on the network communications graph (routing over
compression). The partitioning step chooses odd nodes that provide maximal decor-
relation. A lifting transform can be inefficient in terms of the overall number of com-
munications, especially if even nodes must first transmit raw data to odd neighbors
and then wait for odd neighbors to transmit transform coefficients back to them
before they can compute their own transform coefficients and forward them to the
sink. This may produce significant communication overhead, since many nodes are
transmitting data twice, and data may be transmitted away from the sink.

Graph-based wavelets strive for low communications cost by requiring nodes to
transmit data just once and to do so in the direction of the sink. In fact, it is possible
to transmit data only once by computing the transform as data is forwarded to the
sink along a given routing tree. Such transforms have unidirectional operation (Shen
& Ortega, 2008b, 2010), since each node only transforms its own data using data
from neighbors along a one-dimensional routing path to the sink. This is achieved by
constructing the transforms along an arbitrary routing tree while also utilizing data
received via broadcast from neighbors not in the tree. The resulting transform is
critically sampled (one coefficient per node) and exploits correlation across routing
paths and broadcast links.

It is possible to optimize the even-odd splitting under unidirectionality con-
straints. An even-odd splitting can be viewed as a constrained set-covering problem
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where every odd node needs to be covered by at least one even node and the com-
munications are constrained by the transmission ranges used in the routing tree;
i.e., a node can only “cover” neighbors whose distance is less than the distance
from itself to its parent in the routing tree. The heuristic constrained minimum set
covering algorithm of Narang et al. (2010) has been shown to provide lower energy
consumption than other graph-based wavelet methods for a fixed reconstruction
quality.

(d) Compressive sensing

In some WSN applications, it is difficult or costly to learn or apply an ap-
propriate decorrelating transform. For such applications, compressive sensing (CS)
(Candès, 2006), which computes a dimensionality reducing linear projection of the
measurement values, is a promising alternative to transform coding.

In CS, we assume that the signal f has a sparse or nearly sparse representation
w in an orthonormal basis Ψ, where w = Ψ−1f , with only K coefficients in w being
large or significant. Under this assumption, it is possible to obtain a reduced-length
representation y ∈ RM , M < N , by using a measurement matrix Φ that provides
y = Φf . When the matrix Φ preserves the structure of sparse signal vectors, the
signal f can then be estimated accurately when y and Φ are known using sparse
recovery algorithms. Interestingly, a large class of random matrices is suitable as
long as M = O(K log(N/K)). More generally, we choose Φ to have rows that are
incoherent with the elements of the transform Ψ, i.e., the rows of Φ should not align
with elements of Ψ.

CS can reduce the total amount of communication required during the com-
pression stage through dimensionality reduction when K � N . However, it might
involve additional collaboration between sensors to calculate the measurements y.
The standard CS framework must also be modified to meet the WSN communica-
tion constraints described earlier.

(i) Distributed compressive sensing

Distributed compressive sensing (DCS) (Duarte et al., 2006) is an extension of
the standard CS acquisition framework to correlated signal ensembles. Let f1, . . . , fJ
be a set of sparse or nearly sparse signals in the time domain that are acquired by
the nodes in a WSN. Since the different signals correspond to different recordings
of the same event, we can expect significant structure to be present between the
significant coefficients of their representation in some basis. For example, a sparse
common/innovations model expresses each signal as the sum of a sparse common
component, present at each node, and a sparse innovation component that is unique
and different at each node. A practical situation that follows this model is envi-
ronmental sensing in which light, humidity, etc. is approximately the same across
a field, but with few small local fluctuations.

While it is possible to perform CS acquisition at each sensor and then perform
separate recovery for each individual signal, this naive approach ignores the struc-
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ture present between the signals in the WSN. DCS exploits this additional structure
through specially tailored signal recovery algorithms. To reduce the communication
required between the sensors during the measurement process, each sensor obtains
measurements of its own signal yj = Φjfj independently; these measurements are
then sent to a central location that is interested in recovering the signal. At the
sink, the entire CS measurement process is fused through measurement vector and
signal concatenation together with block diagonalization for the CS matrix to ob-
tain a single standard CS measurement equation Y = ΦX. We then can recover
the signal ensemble from Y using the matrix Φ with modified CS recovery al-
gorithms. It has been shown that the number of measurements needed from the
network for accurate recovery of all of the signals in the WSN can be reduced from
M = O(JK log(N/K)) (using separate CS on each signal) to just M = O(K) as
J →∞, where K denotes the sparsity of each signal.

Since DCS exploits both the structure of each sensor’s observed signal and
across the signals observed by the network, we classify the algorithm as spatio-
temporal. Additionally, since we do not rely on a particular communication scheme
to collect the data at the sink, DCS falls under the separate design class of the
routing/compression taxonomy.

(ii) Compressive wireless sensing

Compressive wireless sensing (CWS) performs CS over the sensing field by dis-
tributing the calculation of the inner products with the measurement vectors (Ba-
jwa et al., 2006). CWS assumes that a sink is interested in obtaining the recorded
data from an ensemble of sensors. In this case, the vector f contains the J samples
obtained by the sensors in the ensemble for a single discrete time instance. Denote
by Φ(m, j) the entry of Φ at row m and column j. During the mth discrete time
instance, 1 ≤ m ≤ M , the jth sensor multiplies its measured value with the scalar
Φ(m, j). The scalar products are then aggregated by a matched source/channel
communications architecture: the scalar products are used to modulate the ampli-
tude of a codeword waveform that is sent synchronously to the fusion center. The
center then observes the sum of the scalar products aggregated through the commu-
nication channel, effectively obtaining the inner product 〈[Φ(m, 1) . . . Φ(m,J)]T , f〉
corresponding to the measurement y[m].

The use of analog modulation in CWS requires a bound on the entries of the
matrix Φ and the vector f to meet power constraints for the WSN. The constraints
may require scaling down all measurements by a fixed multiplicative factor. Addi-
tionally, the wireless channel-based aggregation requires close synchronization and
knowledge of channel state information. On the other hand, the use of synchronous
communication bounds the required communication power required from the entire
network for communication, improving network scalability (Bajwa et al., 2006).
Since CWS relies on a particular communication scheme, we place it under the
jointly optimized class of the taxonomy. Additionally, CWS is labeled as an spatial-
only compression scheme due to its focus on samples obtained at a single discrete
time instance at each sensor.
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(iii) Randomized gossiping

In contrast to the matched source/channel communication used in CWS, it
is also possible to compute the projections of the data into measurement vectors
through randomized gossiping (Rabbat et al., 2006; Dimakis et al., 2010). Random-
ized gossiping spreads the measurements among the sensors in the network in such
a way that it suffices to query a small number M of sensors in order to obtain
all measurements necessary for recovery. This approach makes most sense when
communication to the sink is too expensive, or when it is desirable to have the CS
measurements be available from any one of the nodes in the WSN.

Randomized gossiping assumes that each sensor j, 1 ≤ j ≤ J , is aware of the jth

column φj of the CS matrix Φ. Each sensor multiplies its own measured value f [j]
with the corresponding column φj to provide its initial “message” mj(0) = f [j]φj .
For each communication instance t, a node j1 is selected uniformly at random; the
node then chooses a second node j2 also uniformly at random, and the pair of nodes
exchange their messages to calculate the update, which is equal to the average of the
pair of messages. It is possible to show that as t →∞, the messages mj(t) → y/J
for all 1 ≤ j ≤ J . In words, randomized gossiping enables both the computation
and distribution of the CS measurements.

When it is infeasible to maintain a communication graph, e.g., due to mobility
or low sensor reliability, randomized gossiping provides a more robust means of
disseminating information at the cost of higher communication and routing com-
plexity. More generally, the improvement afforded by randomized gossiping depends
on the ratio between the transmission cost to the sink and the communication cost
among nodes. Randomized gossiping can use a spatial and/or temporal signal model
in the taxonomy of Table 1, depending on the samples of f(x, y, z, t) producing the
discretized representation f . Additionally, we classify this method as a compression-
over-routing method since the communication protocol is driven by the design of
the measurement vectors.

(iv) Sparse random projections

To alleviate the communication expense associated with the computation of
the CS measurements given in CWS and randomized gossiping, we can employ
measurement matrices that are themselves sparse, which then implies that only
small groups of sensors have to communicate with each other in order to calculate
the measurement values (Wang et al., 2007). In particular, we assume that each
sensor j selects each different sensor independently with probability L/J , and collect
the sensors selected by sensor j as a set Ωj ⊆ {1, . . . , J}. On average, we will
then have E[|Ωj |] = L. Sensor j will then query the sensors j′ ∈ Ωj for their
readings f [j′]. In this way, each sensor can calculate a measurement of the form
yj =

∑
j′∈Ωj∪{j} aj,j′f [j′], where aj,j′ are i.i.d. Rademacher (±1) random variables.

Such measurements can be rewritten as y = Φf , where each row of Φ contains
nonzeros corresponding to the indices in Ωj ∪ {j}, and the rows correspond to a
subset Λ ⊆ {1, . . . , J}, |Λ| = M of probed sensors.
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The use of sparse random projections imposes a mild condition on the sig-
nal structure: the signal should be dense in its sampled representation f (in time
and/or space) in order to provide guarantees on signal recovery via sparsity or
compressibility under transform coding. Under this condition, it is possible to
obtain a sufficiently accurate approximation of the coefficient vector as long as
M = O

(
LK2 log J

J

)
. For example, one can significantly reduce the communication

cost of CS by letting L = 1, i.e., query just one sensor per measurement, when
the signal is compressible using the discrete cosine transform or a standard KLT
with a dense basis Ψ (Masiero et al., 2009). The similarities between randomized
gossiping and sparse random projections explain the matching classifications under
the taxonomy.

(v) Localized compressive sensing

The CS schemes described so far reduce the data gathering cost by ensuring that
each projection requires communication within a small group of sensors. However,
if these projections are generated randomly, then the sensors involved could be far
apart and the resulting transport cost might still be high. Recent work has shown
that, when considering the trade-off between reconstruction quality and transport
cost, structured localized CS approaches can outperform sparse random projec-
tions (Lee et al., 2009). In particular, for a known WSN configuration it has been
shown that one could select a routing tree to provide efficient data gathering and
then define CS projection operators that are restricted to involve sensors within
“sections” of the routing tree. For example, one can divide the sensor network into
a series of quadrants centered at the sink and have routing and projection proceed
independently within each of those quadrants.

Gains have been reported with simple tree building strategies and extended to
provide a cost function for tree optimization (Lee & Ortega, 2010). The goal is
then to choose a sectioning of the routing tree that drives the design of Φ, so as to
minimize the coherence with the basis Ψ. The intuition for this approach is that
when the elements of the basis Ψ overlap with a large number of sections of the
network, the information is “spread” and can be efficiently measured in a localized
fashion. In general, localized routing and projections lead to higher coherence for
many common choices of basis Ψ (thus requiring more measurements), but result
in a lower routing cost per measurement. With this metric, it is possible to search
for localized routing leading to projections having lower coherence. For example, a
simple tree building heuristic based on this metric leads to improved reconstruction
over sparse random projections (Lee & Ortega, 2010). This approach, like the sparse
random projection method, can be seen to use a spatial-only model, but unlike
sparse random projections, routing is jointly optimized along with the transform.

5. Discussion and Conclusions

In this paper, we have reviewed a number of representative examples of distributed
compression algorithms for WSN applications. The design constraints of WSN ap-
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plications demand a compromise between the degree of compression achieved by
the algorithm and the power and communication burdens imposed by the algo-
rithm. The degree of balance between these two opposing goals yields a variety of
types of approaches, depending on the degree of synergy between the coding and
communication aspects of the algorithm, as well as on the types of signal models
used during compression.

The degrees of freedom available for the design of distributed compression algo-
rithms have motivated the algorithm taxonomy developed in this paper. The taxon-
omy provides not only a way of classifying current approaches, but also a roadmap
for future research in this area. Important avenues not covered here include, for ex-
ample, the development of distributed compression algorithms in networks of mobile
and/or unsynchronized sensors. We expect the importance of data compression to
increase over the coming decades due to the exploding amount of data acquired
in ever more dense and ever more high resolution WSN deployments (Baraniuk,
2011). Clearly this is an exciting time for both WSNs and distributed compression.

We thank the anonymous reviewers for many helpful comments. RGB was supported in
part by grants NSF CCF-0431150 and CCF-0728867. MFD was supported in part by NSF
Supplemental Funding DMS-0439872 to UCLA-IPAM, P.I. R. Caflisch. GS and AO were
supported in part by grants NASA AIST-05-0081 and NSF CCF-1018977.

References

2007 Collection tree protocol, tinyos-2. http://www.tinyos.net/tinyos-2.x/doc/.

Bajwa, W., Haupt, J., Sayeed, A. & Nowak, R. 2006 Compressive wireless sensing.
In Int. Conf. Info. Proc. in Sensor Networks (IPSN), pp. 134–142. Nashville, TN.

Baraniuk, R. G. 2011 More is less: Signal processing and the data deluge. Science,
331(6018), 717–719.

Baraniuk, R. G., Cohen, A. & Wagner, R. 2008 Approximation and compression of
scattered data by meshless multiscale decompositions. Appl. Comput. Harmon.
Anal., 25(2), 133 – 147.

Candès, E. J. 2006 Compressive sampling. In Int. Congress of Mathematicians,
vol. 3, pp. 1433–1452. Madrid, Spain.

Ciancio, A., Pattem, S., Ortega, A. & Krishnamachari, B. 2006 Energy-efficient data
representation and routing for wireless sensor networks based on a distributed
wavelet compression algorithm. In Int. Conf. Info. Proc. in Sensor Networks
(IPSN), pp. 309–316. Nashville, TN.

Cover, T. M. & Thomas, J. A. 1991 Elements of information theory. New York:
Wiley.

Cristescu, R., Beferull-Lozano, B. & Vetterli, M. 2005 Networked Slepian-Wolf:
Theory, algorithms, and scaling laws. IEEE Trans. Info. Theory, 51(12), 4057–
4073.

Submitted to Phil. Trans. R. Soc. B



18

Dimakis, A., Kar, S., Moura, J., Rabbat, M. & Scaglione, A. 2010 Gossip algorithms
for distributed signal processing. Proc. IEEE, 98(11), 1847–1864.

Duarte, M. F., Wakin, M. B., Baron, D. & Baraniuk, R. G. 2006 Universal dis-
tributed sensing via random projections. In Int. Conf. Info. Proc. in Sensor
Networks (IPSN), pp. 177–185. Nashville, TN.

Gastpar, M., Dragotti, P. L. & Vetterli, M. 2006 The distributed Karhuenen-Loève
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