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ABSTRACT
Volume visualization with random data access poses significant challenges. While tiling techniques lead to simple imple-
mentations, they are not well suited for cases where the goal is to access arbitrarily located subdimensional datasets (e.g.,
displaying a “band” of several paralllel lines of arbitrary orientation from a 2D image; being able to display an arbitrary 2D
planar “cut” from a 3D volume). Significant effort has been devoted to volumetric data compression, with most techniques
proposing to tile volumes into cuboid subvolumes to enable random access. In this paper we show that, in cases where sub-
dimensional datasets are accessed, this leads to significant transmission inefficiency. As an alternative, we propose novel
server-client based data representation and retrieval methods which can be used for fast random access of low dimensional
data from high dimensional datasets. In this paper, 2D experiments are shown but the approach can be extended to higher
dimensional datasets. We use multiple redundant tilings of the image, where each tiling has a different orientation. We
discuss the 2D rectangular tiling scheme and two main algorithm components of such 2D system, namely, (i) a fast optimal
search algorithm to determine which tiles should be retrieved for a given query and (ii) a mapping algorithm to enable
efficient encoding without interpolation of rotated tiles. In exchange for increased server storage, we demonstrate that sig-
nificant reductions, a factor of 2 in bandwidth reduction, can be achieved relative to conventional square tiling techniques.
The transmission rate can be reduced even more by allowing more storage overhead. This method speeds up the random
access procedure and saves memory on the user’s side. Here we use the 2D example to retrieve random lines (or sets of
lines) from a 2D image. While our experiments are based on extracting 1D data from 2D datasets, the proposed method can
be extended to 3D or higher dimensions. The associated basic concepts and analysis (namely the extraction of 2D slices
from 3D datasets) and a more detailed discussion focusing on the 3D and higher dimensional case will be presented in
another paper. In this paper, we design a tiling method that locates the rotation centers at points on a square Cartesian grid
pattern and has the tile rotation angles uniformly spread out around each rotation center. The angles of the tiles associated
to each rotation center are the same. Other various ways of tiling method design are also possible. The performance by
using other tiling methods will be addressed in future work.
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1. INTRODUCTION
In many fields (e.g., biomedical imaging, earth sciences, computational fluid dynamics, satellite image processing, etc.)
researchers need to manipulate and visualize very large datasets. Often it is not practical for a personal computer to be
equipped with sufficient memory so as to enable manipulation, visualization and rendering of the complete dataset. In
these kinds of applications, a client-server approach can be more effective, with the server providing only the data needed
for the specific visualization task at the client. Such client-server approaches are widely used, e.g., for interactive viewing
of maps at various resolutions, and are often supported by tiling techniques, so that the server provides only those tiles
corresponding to data requested by the client.

Tiling-based techniques are efficient when most of the information included in the tiles is used for display. This is the
case, for example, when a 2D region of a larger 2D dataset (e.g., a map) is to be displayed or when small sub-volumes of a
large 3D volume are needed1 (i.e., the dimension of the subset and the dataset from which it is extracted are equal). In this
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Figure 1. Comparison of rectangular and square tiling schemes in 2D case (where we retrieve a random line from a plane). Only 10
rectangular tiles are needed, instead of 21 square tiles (note that tiles have the same size 8× 32 and 16× 16, respectively).

paper we tackle a more challenging problem for which conventional tiling techniques are inefficient. Specifically, we focus
on situations where lower dimensional portions of a dataset need to be accessed. For example, in the volumetric image
example, arbitrary oblique planes of the volume may need to be extracted and rendered, as is required in some medical
imaging applications. Standard tiling can be inefficient in this scenario, because for each retrieved cubic tile the only
voxels∗ that are “useful” are those near the intersection between the cube and the desired 2D plane. Because tiles are the
basic unit for compression, complete tiles have to be retrieved, even in cases when just a small number of voxels in each tile
will be used for display. As another example, this time in 2D, it may be necessary to extract narrow “bands”, sets of parallel
lines of arbitrary orientation, from complete 2D images in various cartographic or medical imaging applications. Similarly,
lower transmission bitrates may be achieved by using rectangular tiles which lie along the area of interest (Figure 1). As we
shall see, it is more efficient to use overlapping rotated tiles to represent the data-set; this leads to an increase in the average
number of useful voxels per tile so that the total number of tiles to be retrieved is smaller (and hence a lower transmission
bitrate is achieved). This comes at the cost of an increase in storage at the server. Thus we trade-off increased storage at
the server’s side for lower bandwidth during the interactive access to the data-set.

Many techniques have been proposed for volumetric image coding,1–5 including approaches such as JP3D.6–8 In all
cases, some form of random access is provided via tiling, with non-overlapping, independently encoded cuboid subvolumes
being used. Clearly, the improved random access achievable by tiling comes at the expense of some reduction in coding
efficiency (i.e., there would be less overhead if bigger tiles were used for encoding). The main novelty of our approach
comes from further exploring this trade-off by allowing tiles that i) overlap and ii) are rotated at various angles. In this
paper, we illustrate our proposed tiling scheme with 2D examples, where the goal is to retrieve arbitrary oblique lines from
2D images, but our method can be extended to higher dimensions with some modifications. Extension to 3D with further
details will be presented in another paper. We demonstrate that by using overlapped tiles with different orientations, we can
achieve lower transmission overhead for arbitrary access to lower dimensional datasets, at the cost of requiring additional
storage at the server.

In our preliminary results in the 2D case, the average number of bits transmitted when using the proposed tiling scheme
can be reduced by a factor of 2 relative to the square tiling scheme. The reduction can be even greater by allowing
additional storage overhead using different tile sizes. We start by considering tiling methods, parameterized by the location
and orientation of the tiles, that can guarantee that all data can be retrieved (Section 2). Because tiles overlap, there is
no longer a unique way to retrieve data for a given query, and so we propose a 2D search algorithm to identify the most
efficient set of tiles to be transmitted in response to a query (Section 3.1). We also propose a simple mapping technique to
compress the data points on the rotated tiles that do not coincide with the Cartesian grid points. This mapping technique
is shown in 2D case to outperform tile representation methods based on interpolation (Section 3.2). Experimental results
are provided in Section 4. In Section 5, a metric will be proposed for the parameters selection and we conclude the paper
in Section 6.

∗a volume element, representing a value on a regular grid in three dimensional space.
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Figure 2. Example of proposed overlapped rectangular tiling.

2. RECTANGULAR TILING SCHEME FOR EFFICIENT TRANSMISSION WITH RANDOM
ACCESS

The intuition behind the proposed redundant tiling is that if each pixel is available from more than one tile, one can achieve
lower bandwidth on average by delivering the set of tiles that provide all requested pixels most efficiently (i.e., with lowest
number of tiles required)†. Since queries of interest are lines (or sets of lines) at arbitrary angles in a 2D image, random
planes from a 3D data set or random hyperplane from higher dimensional data set, this suggests that rotated tiles should be
used. The potential benefits of the proposed method are illustrated in Figure 1 in 2D case. It can be seen that fewer tiles
have to fetched when rectangular rotated tiles are used (in this example rectangular and square tiles contain the number of
pixels closely). Clearly, the number of tiles to be transmitted will depend on the data being requested.

Using rotated rectangular tiles will lead to a lower average transmission rate because each selected tile will lie along the
requested line/plane/hyperplane, which will lead to increases in the average number of pixels contained in the intersection
between line/plane/hyperplane being requested and the “best matching tiles”. We consider a “redundant” tiling system,
i.e., where each pixel is available from multiple different tiles. However, in general, a given tiling strategy may lead to
different redundancy for different pixels. We propose a simple tool to evaluate different tiling systems, which will be
described in detail in Section 5. For a given tiling strategy we compute the average number of tiles per pixel (i.e., the
average redundancy for a pixel), which is a proxy for the total storage required. In addition, we also consider the variance
in the number of tiles per pixel. Since arbitrary lines can be retrieved from an image, it is reasonable to assume that every
pixel is equally likely to be requested. Therefore, it is in general undesirable for this “tiling variance” to be large, since this
would mean that some pixels are represented in a significantly more redundant manner than others. In short, good tiling
schemes will tend to be such that i) tiles of evenly distributed orientations are available and ii) the variance in the number
of tiles per pixel is low.

There are various ways of designing the tiling, e.g., different tile sizes, different orientations, tile centers, etc. In this
paper, we present a design that assumes that a series of “rotation centers” are chosen, in which several tiles of different
orientations are centered. The pattern of the rotation centers can be square, hexagonal, or triangular, etc. and the rotation
angles can be different for each rotation center. In this paper, the rotation centers are placed at points on a square Cartesian
grid patten and have the tile rotation angles uniformly distributed around each rotation center. These rotation angles are
the same for each rotation center. A 2D example where random lines requested from an image are used to illustrate our
proposed method. Our analysis in Section 5 will show that the choice of parameters for this tiling structure can be based
on the variance/average in the corresponding number of tiles per pixel.

†Note that in a non-redundant case the set of tiles required to answer a query is unique.



The tiling layout in our proposed system can be described by the width W and length L of each rectangle, the number
N of rotated rectangles associated with each rotation center, and Dx and Dy , the horizontal and vertical distance between
rotation centers on the same Cartesian horizontal or vertical grid, as illustrated in Figure 2. The even/odd row and column
rotation centers are interleaved with shifts of Dx/2 horizontally and Dy/2 vertically. At each rotation center, the N rotated
rectangles are uniformly spread out. We test different configurations for these parameters, always chosen so that each
pixel in the image is covered by at least one tile. Each rectangular tile is compressed for storage. In this paper, we use
rectangular sizes of 8 × 32 pixels and square sizes of 16 × 16. In the current version we use JPEG compression for each
8 × 8 block, using the mapping algorithm for rotated tiles to be discussed in Sections 3.2 and 4. The parameters can be
chosen to achieve different levels of trade-off between transmission efficiency and storage overhead.

3. ALGORITHMS FOR THE RECTANGULAR TILING SCHEME
After selecting a tiling strategy, two algorithms have to be designed for our proposed approach. First, since multiple sets
of tiles can be used to answer any given query, we need to design an efficient algorithm to determine which set of tiles
answers a query with minimum rate. Algorithm 1 is provided to achieve this goal. Second, since data is rotated before
coding we need to define algorithms to map original data to the corresponding rotated sampling grids. Refer to Algorithm
2. This mapping algorithm will be presented here in 2D case and can be shown to achieve better coding performance (with
lower complexity) as compared to techniques that would interpolate pixel values in the rotated tile prior to compression.

3.1 Optimal Fast Rectangle Search Algorithm
As discussed in Section 2, overlap between rectangles means that there are multiple ways (different rectangle sets) to
provide all the information corresponding to a line in 2D. This leads to a set coverage problem with the objective of
finding which collection of rectangles representing a line is best for transmission. Normally, set coverage problems are
NP problems, potentially resulting in considerable complexity. Our particular problem, however, has certain characteristics
that allow for a feasible algorithm. Specifically, each rectangle that crosses over the line contains a contiguous line segment
of the straight line we are trying to cover. We propose a fast search algorithm to solve the problem that is optimal in the
sense that it minimizes the number of rectangles to cover the line.

This is a reasonable criterion, because the total transmission rate will be roughly proportional to the number of rectan-
gles that have to be retrieved. Note that it is possible to have several optimal solutions (different rectangle combinations
that cover the line, using the same number of rectangles). For example regardless of whether one starts searching at the
beginning or end of the line‡, an optimal solution (achieving the minimum number of the tiles to cover the line, even if
those tiles themselves are different) will be found. While greedy, Algorithm 1 can be shown to provide a globally optimal
solution (where optimality is as defined above). At each step only the rectangles at the rotation centers, which are close to
the line and the starting point Si, need to be searched.

Algorithm 1 Optimal Rectangle Cover Searching Algorithm
1: Starting with the beginning point of the line (S1 in Figure 3), find the rectangle which covers the starting point (S1)

and covers the greatest amount of the line. We only need to look at the rectangles at the rotation centers which are
close to the line.

2: Set the point after the end point of the line segment covered by the rectangle as the new starting point. Si is the new
starting point for the ith iteration (e.g. S2 is the new starting point for the second iteration in Figure 3).

3: Remove the line segment covered by the rectangle. Record the rectangle.
4: Until the line is completely covered, repeat steps 1 to 3 with the new starting point Si.

‡In Figure 3, {S1, S2, S3, . . .} are the starting points resulting from applying the cover searching algorithm starting from the “be-
ginning” of the line. These correspond to the points {Ŝ1, Ŝ2, Ŝ3, . . .} when the algorithm is applied starting from the “end” of the
line.
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Figure 3. 2D demonstration of the optimal rectangle cover searching algorithm.

Figure 4. Demonstration of the proof for Part 1.

Proof. [Proof of optimality for Algorithm 1]

Let {R1, R2, R3, . . . , Rn} be the n rectangles obtained by our algorithm to cover the line. Let {L1, L2, L3, . . . , Lm}
be the m rectangles selected by any of the other techniques. To prove that our algorithm is optimal, we need to show that
m ≥ n. Assume that for each index i < n

C{L1, L2, ...Li} ⊆ C{R1, R2, ....Ri}, (1)

where C denotes the (contiguous) portion of the line covered by the corresponding rectangles§. With this assumption, it
follows that we also have

C{L1, ..., Li, Li+1} ⊆ C{R1, ...., Ri, Ri+1}. (2)

Equation (2) follows by considering Figure 4, where we see that if there existed a rectangle Li+1 which would satisfy the
relationship

C{L1, ..., Li, Li+1} ) C{R1, ...., Ri, Ri+1}, (3)

then the endpoint of Li+1 must extend beyond the endpoint of Ri+1 and would also overlap with Ri. However, if such an
Li+1 were to exist, then it would have been chosen by Ri+1 given the steps of Algorithm 1. Statement (2) is thus proved
by contradiction. Based on the induction of (1) and (2) , we have that

C{L1, ..., Li, ..., Ln} ⊆ C{R1, ...Ri, ..., Rn}. (4)

§Notational note: A ⊆ B denotes that A is a subset of B and could be equal to B. A ( B denotes that A is a proper (or strict) subset
of B, and hence is a subset but is not equal.
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Figure 5. (a) Mapping: RC (rotation center), CP (cartesian points), CP O (cartesian points outside the rectangle), CP I (cartesian points
inside the rectangle), RP (point on rectangle grid), D (mapping points distance). (b) Rate distortion for two mapping algorithms and the
interpolation method in 2D case. Using “Lena” as the test image. N = 10, Dx = Dy = 20.

It thus follows that m ≥ n and we see that the proposed algorithm is optimal under the assumption above. From our
algorithm, we know that

C{L1} ⊆ C{R1}. (5)

Since R1 covers S1 and covers the line furthermost to the right, the assumption is true at the first step. Hence by induction
based on (1), (2), and (5), the rectangle searching algorithm we propose is optimal according to our definition. Note that
as mentioned earlier, it may be shown that this greedy solution is actually globally optimal as well.

Additionally, regardless if one starts from either the beginning or end of the line, an optimal solution (achieving the
minimum number of tiles to cover the line, even if those tiles themselves are different) will be found. This may be easily
shown as follows. In Figure 3, {Ŝ1, Ŝ2, Ŝ3, . . .} are the starting points resulting from applying the same cover searching
algorithm when started from the “end” of the line. These correspond to the points {S1, S2, S3, . . .} when the algorithm is
applied starting from the “beginning” of the line. By the proposed searching algorithm, for each iteration, the selected tile
covers the starting point of that iteration and covers the greatest length of the line. Hence, the points {S1, S2, S3, . . .} and
{Ŝ1, Ŝ2, Ŝ3, . . .} are interleaved with one another. In other words, between Si and Si+1 there must lie exactly one point Ŝk.
Similarly, between Ŝk and Ŝk+1 there must lie exactly one point Si. If this were not so, then there would be contradiction.
For example, if Ŝk and Ŝk+1 were between Si and Si+1, then the selected tile which covers Ŝk would not be the tile that
covers the greatest amount of the line, since the tile covering the region Si to Si+1 covers the most, including the point Ŝk.
Thus the number of points Si is equal to the number of points Ŝk. From Algorithm 1, we know the number of the starting
points is equal to the number of selected tiles. Therefore the optimal solution is obtained regardless of the starting point
being at the “beginning” or “end” of the line. Similarly, we can show that if we start the searching algorithm from any
point of the line between the end points that the number of selected tiles will be either the minimum or the minimum + 1.

3.2 Mapping Algorithm for Rotated Tile Encoding
Consider a rotated rectangle of length L and width W . From Figure 5(a), we see that the points on the rotated rectangle
grid do not coincide with the original Cartesian grid points. A straightforward approach to represent the data would be to
interpolate the values on the rotated rectangle grid before compression. Instead we propose to map the original values on
the Cartesian grid into the rotated rectangular grid before compression.

This idea is general and the algorithm could be extended to higher dimensions. Our proposed algorithm is illustrated by
using 2D case in Figure 5(a). Certain points, such as the rotation center (RC), are in the same positions in both grids, while
in other cases, the pixel in a given location in the rotated grid has been copied from a neighboring location in the Cartesian



grid. This “mapping” process is shown by the blue lines in Figure 5(a). Note that the pixels are copied unchanged, i.e.,
no interpolation is performed. While many alternative mappings are possible, we are interested in methods that minimize
the mapping distance (D in Figure 5(a)), i.e., the distance by which pixels are displaced from their original positions for
encoding. Clearly this is desirable as these displacements “distort” the frequency contents of the blocks prior to encoding.
Our proposed mapping algorithm seeks to: i) map all Cartesian points inside the rectangular area, ii) minimize the average
and maximum of the pointwise mapping distances D, and iii) be symmetric about the rotation center. Starting from the
rotation center, we map the Cartesian and rotated grid points to each other in a 1-to-1 mapping moving from the center of
the rectangle outward. Refer to Algorithm 2 (experimental results are provided in Section 4). Note that rectangles having
the same rotation angles around their (different) rotation centers have rectangular grid points that are in the same locations
relative to the Cartesian grid points in their neighborhood. Thus, we only need to store a small number of tables (one per
angle) to specify the mapping.

Algorithm 2 Mapping Algorithm
1: Find the Cartesian points inside the rotated rectangle area (CP I in Figure 5(a)). Calculate the distances from the

Cartesian points (from the step above) to the rotation center. Sort the distances, calling the sorted list A.
2: Calculate the distances from the rotated rectangle grid points (RP in Figure 5(a)) to the rotation center. Sort the

distances, calling the sorted list B.
3: while i ≤ length(A) and k ≤ length(B) do
4: while A(i) has been mapped do
5: i = i + 1
6: end while
7: while B(k) has been mapped do
8: k = k + 1
9: end while

10: if A(i) ≤ B(k) then
11: Find the rotated grid point closest to A(i) from the unmapped points in B.
12: Record the mapping points and label the points as “mapped” in A and B.
13: i = i + 1
14: else
15: Find the unmapped Cartesian point closest to B(k).
16: Record the mapping points and label B(k) as “mapped”.
17: Also label the Cartesian point as “mapped”.
18: The Cartesian point may or may not be in A.
19: k = k + 1
20: end if
21: end while

4. EXPERIMENTAL RESULTS
In this section we evaluate our proposed methods. We tile a 2D image (both Lena and MRI images were used) and use our
search algorithm (Section 3.1) to identify the best tiles to display a random oblique line within the image. The number of
pixels within a line are determined by the length of the line segment across the image, which is proportional to the size of
the image. Hence, if the size of the image is M×M and the length of the line segment is M , then M uniformly distributed
samples on the line segment will be chosen. In general, if the length of the line segment is L (L is not an integer), xLy
uniformly distributed samples on the line segment will be chosen. The pixels’ values within a line are calculated by using a
simple “nearest neighbor” interpolation at the uniformly sampled positions on the line segment. Distortion is measured by
mean squared error (MSE) between the pixels in the line generated from the original image data and the line obtained by
decoding and then interpolating compressed tile data. Rate is measured in terms of bits per pixel in a line (i.e., we compute
the total rate required to transmit all the needed tiles and divide this by the total number of pixels in the decoded line). Both
rectangular (8×32) and square (16×16) tiles are coded using JPEG tools (i.e. four 8×8 blocks are encoded using JPEG).
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Figure 6. Te versus So: left side, for a fixed value of N , Dx and Dy are varied; right side, for a fixed value of Dx, Dy , N is varied.
Using JPEG for compression.

4.1 Mapping algorithm
We start by comparing the various mapping algorithms. From Figure 5(a), we can see that our mapping is symmetric.
In general, the distance between paired points in the mapping is less than

√
2. The worst case for the mapping is for

rotation angles of π/4 and 3π/4. A rate-distortion (RD) comparison of mapping techniques is shown in Figure 5(b) using
the Lena image. We compare our proposed symmetric mapping algorithm and a non-symmetric approach. While their
average mapping distances are comparable, the symmetric approach leads to better RD performance. For the interpolation
method, we use cubic interpolation to calculate the values of the tiles on the rectangle grid. 30 random lines are used to
generate the curves. A situation analogous to that observed in compression of Bayer filter images9 arises: interpolation
leads to smoother images, but also removes information from the original data so that at high rates re-mapping leads to
better performance than interpolation.

4.2 Result for Proposed method
We now compare our proposed tiling (with rectangular, overlapping tiles) to a standard tiling strategy (with square, non-
overlapping tiles). Let Tr and Ts be the total number of bits to transmit in the rectangular and square tiling modes,
respectively, and let Te = Tr/Ts denote the ratio of required bandwidths for the rectangular and square tiling schemes.
Similarly, let Sr and Ss be the total storage for the image using the rectangular and square tiling schemes, respectively, and
let So = Sr/Ss be the relative storage overhead required by the rectangular tiling scheme. In this study, the rotation center
parameters Dx and Dy and the number of rotation angles N vary, while we fix W = 8 and L = 32.

Figure 6 (left) represents the tradeoff between Te and So as we vary the number of angles N while keeping the center
positions of the rectangles fixed. The curves are not smooth because N is discrete and because each point is obtained
by averaging the results from only 20 random retrieval experiments (in this case we use an MRI image). Figure 6 (right)
shows the trade-off between Te and storage So while varying the center positions of the rectangles and fixing the number of
angles N . These two figures demonstrate that as compared to conventional tiling, the proposed method leads to increases
in random access efficiency of 20% - 60% as compared to square tiling, depending on the chosen storage overhead (So).
Hence, we can choose the parameters to achieve different levels of higher transmission efficiency according to the different
storage requirements. For example, choosing N = 6, Dx = Dy = 20, leads to a 50% reduction in bandwidth at the expense
of a 4-fold increase in storage at the server (Te = 0.49 and So = 3.93).

5. METRIC FOR PARAMETERS SELECTION
Thus far, we have demonstrated that by using our proposed method the transmission rate can be reduced by 20% - 60%
depending on the desired trade-off with storage overhead, compared to the conventional tiling scheme. This is shown
in Figure 6. As we mentioned earlier, for a fixed storage overhead there may be possibly several different parameters
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Figure 7. Illustration of the metric for calculating the average number of tiles of an arbitrary pixel around one rotation center.

settings (Dx, Dy, N) which achieve different level transmission efficiencies. How to choose the setting to achieve the best
transmission efficiency given a fixed storage overhead? In this section, a metric will be proposed for the parameter selection
that provides insight as to why different parameter settings produce different transmission efficiencies with a fixed storage
overhead.

The metric will provide a way to relate transmission efficiency to statistics (average and standard deviation) describing
how well pixels in the image are covered by the tiles. Let W x L be the size of the rectangle tile and N be the number of
the tiles associated with one rotation center. Assume the tiles are distributed uniformly around the rotation center without
fixing the rotation angles. Then the rotation angle of each tile can be written as ϕk = π

N · (k − 1) + ϕ1, where tile index
k = 1, 2, · · · , N , and the angle of first tile ϕ1 is a random variable with uniform distribution U(0, π

N ). Figure 7 illustrates
the possible cases involved in computing the number of tiles covering one pixel. Intuitively, the coverage probabilities are
higher for pixels closer to the rotation center, lower for pixels farther from the rotation center. For example, considering
only one rotation center, the pixels in the range I can always be covered and the pixels in the range IV can never be covered
regardless of the rotation angle of the tile. From Figure 7, notice that the coverage probability depends on the distance (d)
from the pixel (x, y) to the rotation center (xc, yc), where d =

√
(x− xc)2 + (y − yc)2. Hence the coverage probability

for any pixel can be calculated as below. There are four cases categorized by the value of d:

range I [d ≤ W
2 ]

p(x, y) = 1

range II [ W
2 < d ≤ L

2 ]

p(x, y) = 2× arcsin W
2d × 1

π

range III [L
2 < d ≤ 1

2 ×
√

L2 + W 2]

p(x, y) = 2× (θ1 − θ2 + θ3)× 1
π where, θ1 = arctan W

L , θ2 = arccos L
2d , θ3 = θ1 − arcsin L

2d

range IV [d > 1
2 ×

√
L2 + W 2]

p(x, y) = 0

Then, associated with one rotation center, the average number of tiles covering the pixel can be calculated by xp(x, y)×Ny.
Similarly, considering all the neighborhood rotation centers of the pixel¶, the average number of tiles covering the pixel j
is Tj =

∑
ixpi(x, y)×Ny, ∀ rotation center i ∈ neighborhood(pixel j),where pi is the probability, that pixel j is covered

¶We consider the neighborhood rotation centers of the pixel are the ones with the distance to the pixel less or equal to√
(L/2)2 + (W/2)2.
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by one tile associated with the neighborhood rotation center i, . Hence the average (m) and the standard deviation (σ) of
the tile coverage can be calculated. This only needs to be done for one Voronoi region spanned by the rotation centers,
since rotation centers are located uniformly. Voronoi region associated with the rotation center Ci is defined by

V (Ci) = {p : d(p, Ci) ≤ d(p, Cj), j 6= i, i, j ∈ In}
where d(p, Ci) is the distance between pixel p to the rotation center Ci. Denote M = |V (Ci)|, the number of pixels in
V (Ci). m and σ can be calculated by using one Voronoi region.

m =
1
M

M∑

j=1

Tj σ =

√√√√ 1
M

M∑

j=1

(Tj −m)2

Using linear regression, Figure 8 shows that there is a highly linear relationship between the ratio σ/m characterizing
the tile coverage and the required rate.‖ Figure 9 represents the σ/m as a function of average storage (m) for different
parameter settings, where focusing on the range of m 0 ∼ 40. Note that the storage overhead showing in Figure 8,9
are without using compression technique. From Figure 8, we can see for a fixed rectangular tile size, in order to achieve
lower transmission rate, a lower σ/m is preferred. Hence, for the same storage overhead, the parameter setting, which
produces the smallest σ/m should be chosen. Notice that in our proposed tiling scheme, for the same average value
(storage overhead), decreasing the rotation center distance is better than increasing the rotation angles because decreasing
the rotation center distance will lead to smaller σ/m. In order to find the optimal parameter settings considering both m
and σ/m to be small from Figure 9, a polynomial may be fit to the lower portion of the convex hull defined by the points
in the figure, with which the parameters are associated would be preferred for selection.

6. CONCLUSIONS AND FUTURE WORK
In this paper we proposed a new method for retrieving lower dimension data from higher dimension data with fast random
access. This paper has focused on the 2D case, but the methodology may be extended to the 3D case (and higher dimen-
sions). The detailed discussion of the 3D case is left for another paper. In our preliminary results we have demonstrated

‖The calculation of the rate is the same as in the previous sections, which use 30 random lines.
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Figure 9. Linear regression: σ/m vs. average storage(m), m < 40 (without using compression technique.)

that by using overlapped tiles with different orientations and allowing some storage overhead on the server’s side, trans-
mission rate can be reduced by 20% - 60% depending on the desired trade-off with storage overhead, as compared to the
conventional tiling scheme. This method has the potential to considerably speed up the random access procedure, requir-
ing less data storage at the client compared to conventional tiling. We demonstrated a fast rectangle searching algorithm.
We also have developed a mapping algorithm, which has low complexity, preserves the Cartesian grid data and allows
reconstruction very easily and efficiently. Better performance at high rate has been shown for the mapping algorithm when
compared to the interpolation method. In our current tiling scheme, the angle setting for the tiles associate with all rotation
centers are the same. The potential gain by using different angle settings for different rotation centers will be presented in
another paper.
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