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Abstract 
This paper presents a novel data mining method to 
characterize the flow units between injection and 
production wells in a waterflood, using carefully 
implemented variations in injection rates. The method 
allows the computation of weight factors representing the 
influence of any of the injectors surrounding a given 
producer. The weight factors are used to characterize the 
effective contribution of injection wells to the total gross 
production in surrounding production wells. A wavelet 
approach is used to design the perturbation in the 
injection rates and to analyze the observed variations in 
the gross production rates. 

Tracking the contribution of injectors to various 
producers can help in balancing voidage-replacement in 
waterflood optimization. A second application is reservoir 
characterization, where information provided by the 
proposed procedure can help in mapping high 
permeability flow units such as channels and fractures as 
well as flow barriers between wells. The method was 
successfully calibrated and tested for simulated line drive 
and five spot patterns with various assumed flow units 
and flow heterogeneity conditions. The paper also 
includes a case study for a tight formation waterflood 
where the weight factors are intended to delineate the 
pattern of natural fractures causing preferential flows. 
 
Introduction 
Injection and production rates are the most abundant data 
available in any waterflood operation and they often 
correlate to each other in some complex manner. A 
variety of methods have been used to compare the rate 
performance of a production well with the surrounding 
injectors. In these works, the reservoir is viewed as a 
system that converts an input signal (injection rate) into 
an output signal (production rate) and the goal is to 
analyze input and output signals to extract some important 
information about the reservoir. Such information is 

beneficial for waterflood optimization and reservoir 
characterization.   

Heffer et al.1 used Spearman rank correlations to 
relate injector-producer pairs and associated these 
relations with geomechanics. Panda and Chopra2 used 
artificial neural networks to determine the interactions 
between injection and production rates. Albertoni and 
Lake3 estimated the effective flow units (called interwell 
connectivity in their work) based on linear model using 
multiple linear regression (MLR) method. A.A. Yousef et 
al. 4,5 improved this work by building a more complex 
model, named capacitance model in their work, to 
describe the relationship between injection and production 
rates. They also used a parameter to describe the effects 
of compressibility, in addition to transmissibility, between 
the injection-production interwell channels. Thiele and 
Batycky6,7 estimated the effective flow units using 
streamline-based workflow.  Their approach requires 
building a complete stream flow reservoir model for the 
region of interest, which is almost impossible for many 
real fields.  

The key novelty of our work is to propose actively 
controlling the injection rates, choosing different 
schediules of injection rates at each injection well, so as 
to improve the accuracy in the estimation of effective 
flow units. To the best of our knowledge, we are the first 
to investigate such an active estimation technique. Note 
that with current oilfield technology, injection rates are 
very easy to control remotely, so that applying different 
injection rate patterns to injection wells can be easily put 
to practice. The selected injecrtion rate schedules   are 
based on wavelets, a very powerful tool in digital signal 
processing8-10. In our design, the injection rates have zero 
cross-correlation to each other, so that after observing the 
production rates at each producer, we can more easily 
separate the influence of the flow units corresponding to 
each surrounding injector.  Finally a weight is calculated 
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to represent the effective flow units between each 
surrounding injector-producer pair. 

The new procedure has some advantages over the 
previous injector-producer influence estimation 
procedures. By selecting the injection rates to have zero 
cross-correlation with each other, we can improve 
significantly the quality of estimation. In techniques 
where the injection rates are not modified for weight 
estimation, the injection rate patterns can be highly 
collinear, so it is very difficult to separate the influence of 
these injectors based only on production data. Another 
advantage is that, unlike other procedures, the result 
always leads to non-negative estimated parameters. 
Negative parameters cannot be avoided when using other 
techniques and they often complicate the interpretation of 
the results (and techniques to eliminate negative values 
after estimation tend to reduce  estimation accuracy). 

Our proposed technique has been calibrated with a 
commercial reservoir simulator (CMG).  
 
Injector-Producer Relationships 
In a waterflood, production rates are influenced by 
changes in bottom-hole flowing pressures and the 
pressure changes caused by fluid injections. For this 
work, we focus on the the changes caused by variations in 
carefully designed water injection rates. To quantify the 
degree of communication between injectors and 
producers, we estimate weight factors representing the 
effective flow units, which in turn denote the influence of 
surrounding injection fluid. 

 
Injector-Producer Model 
There have been various studies to quantify the system 
model for describing the relationships between injection-
production rates. In this paper, we consider a general 
linear finite impulse response (FIR) model: production 
rates are partly determined by the linear combination of 
surrounding FIR filtered version of injection rates. That 

is, for the production rate jP (t)  of a particular producer j: 

 

I

j ij ij

N
P (t) = δ I (t) + other terms

i=1
′∑

                      (1) 
 

Where ijI (t)′  the FIR is filtered version of injection 

rate for injection i: 
 

t
i ijτ=0ij i ijI (t) = I (t) * h (t) = I (t- τ)h (τ)dτ′ ∫

              (2) 

ijh (t)  is the impulse response of the channel between 

injector i and producer j.  
 

ijδ  in equation (1) is the relative weight of producer j 

for injector i,  i.e., the effective flow units between 
producer j and injector i which seek to estimate.  

It is easy to show that although this is a linear model, 
it can be used to approximate many nonlinear models 

developed by other researchers. For example, in 
streamline simulation, the relationships between injectors 
and producers described by imaginary streamlines can 
also be captured by this linear model. The nonlinear 
capacitance model developed by Yousef et al.4can also be 
represented as a linear model in the discrete form, with 
the FIR shape having some constraints.  

The model in discrete form is:  
 

IN

i=1
j ij ijP (n) = δ I (n) + other terms′∑                       (3) 

L

m=0
i ijij i ijI (n) = I (n) * h (n) = I (n-m)h (m)′ ∑              (4) 

 
We will use the discrete form of model for the 

analysis of our procedure later. 
 

Design of Distinguishable Signals 
Suppose now that we can control the inputs (injection 
rates) to the system, within certain constraints and 
limitations applicable to the injection wells.   If we see the 
reservoir of interest as a system, the inputs are the 
injection rates of injectors in our case. Based on the 
model described in previous section, our goal is to design 
a set of signals, with the goal that each signal be easily 
distinguishable from others. This is a typical problems in 
systems engineering, that is, to find a set of signals that 
have the following property: each signal in the set is easy 
to distinguish from (a possibly time-shifted version of) 
every other signal in the set. First of all, we investigate 
the “distinguishability” between signals.  

One of the most common and useful measures of 
distinguishability is the mean-squared difference. Two 
signals are easy to distinguish if and only if the mean-
squared difference between them is large. Thus the 
measure of distinguishability is the quantity: (For 
simplicity, we consider only those sets of signals that are 
periodic with period T.)  

 

2 22T T T

00 0
( ) ( ) ( ) ( ) 2 ( ) ( )x t y t x t y tdt dt x t y t dt − +  

= −∫ ∫ ∫
                                                                                        (5) 

 
The first integral on the right-hand side is the sum of 

the energies of x(t) and y(t), in the range of 0 t T≤ ≤ . So 
for fixed signal energy, y(t) is easy to distinguish from 
x(t) if and only if the quantity:  

 
T

, 0
C ( ) ( )x y x t y t dt= ∫                                                (6) 

 

,Cx y  is small. When ,Cx y  is equal to zero, we often 

say that x(t) and y(t) are orthogonal. For many 
applications, such as ours, x(t) and y(t) are received from 
different paths(channels), so there may be some time 
delay between them. So the measure becomes:  
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T

, 0
( )C ( ) ( + )x y x t y t dtτ τ= ∫                                        (7) 

 
Which is obviously the magnitude of the cross-

correlation function of x(t) and y(t). Thus our goal 
becomes to find a set of sequences that exhibit low cross-
correlation with all possible time delays. 

 
Haar Wavelet Bases 

Wavelet analysis is a powerful mathematical tool that 
has been applied to many digital signal processing 
problems.8 The orthogonal wavelet decomposition aims to 
represent any signal as linear combination of sets of 
orthogonal signals, which are called wavelet bases.9 
Under the property of orthogonality, any two signals 
inside this set have cross-correlation equal to zero if there 
is no time delay τ = 0 . In our work, we are motivated by 
the orthogonality of orthogonal wavelet bases, and find a 
subset from the original set of wavelet bases such that the 
crosscorrelation within this sub-set is also zero or nearly 
zero even in the presence of arbitrary time delays between 
the basis functions. For simplicity of implementation in a 
real oilfield, we only consider the simplest orthogonal 
wavelet bases, i.e., the Haar wavelets, which have the 
property that the basis functions are piecewise constant 
(so that essentially the injection rates would have to be 
adjusted to a series of constant values). Here we only 
consider the discrete case. 

The discrete-time Haar wavelet decomposition9,10 
decomposes a discrete-time signal into a linear 

combination of two elementary basis functions 0h (n)  and 

1h (n)  (here we ignore the scaling constant because it 

does not affect our procedure):  
 

0

1 if 0, 1

0
h (n)=

n

otherwise

 = −



                                  (8) 

0

1 if 0

1 if 1

0

h (n)=
n

n

othewise

 =


− =−



                                   (9) 

 

0h (n)  and 1h (n)  are shown in Figure 1. If we extend 

the bases 0h (n)  and 1h (n) , we can easily get 2L 

orthogonal Haar wavelet bases, for a given positive 
integer L. Figure 2 shows a 23 = 8 orthogonal basis 
functions example.  

In order to investigate the distinguishability of these 
Haar wavelet bases candidates, we first re-state the metric 
for distinguishability using in this paper, that is, discrete 
cross-correlation of two periodic sequences x(n) and y(n):  

 
1

,
0

( )C ( ) ( ) 0,1,..., 1
N

x y
n

x n y n nτ τ τ
−

=
= + = −∑       (10) 

 

where N is the period of x(n) and y(n) if they have the 
same period. If they have different periods, N is the least 
common multiple of these two periods. 

Using this metric, for an L level Haar wavelet bases, 
we find that when choosing some specific sequences from 
the basis set, we can obtain a subset for which the cross-
correlation among functions in the subset is zero for any 
any time shift. These selected sequences are defined as 

follows (the sequence is periodic with period LN=2  ):  

1

1 if 2

1 if 2 1
w (n)=

n k
k Z

n k

 =
∈

− = +
 

2

1 if 4 ,4 1

1 if 4 2,2 3
w (n)=

n k k

n k k

 = +


− = + +
 

. 

. 

. 

L

1

1

1 if 0,1,...,2 1

1 if 2 ,..., 1
(n)=

L

L

n

n N
w

−

−

 = −

− = −

                     (11) 

 
for n = 0,1,...,N-1. Figure 3 is an example for the 

sequence set with period N=16. Here we write this zero 
cross-correlation property in mathematical form:   

 

{ }1 L

, ( )

(n),y(n) w (n),...,w (n)

C τ = 0,1, ..., n -1 and x y

   

0    forx y

x

τ

∀ ∈

= ≠
(12) 

 
As the equations have shown, the selected Haar 

wavelet bases { }1 Lw (n),...,w (n)   form a set containing 

sequences that are highly distinguishable from each other, 
and we will use the selected set of sequences to construct 
the desired sequences of injection rates in the next 

section. Note that for a period LN=2 , we can get L 
sequences, which means that we can separate the 
influence of L injection rates simultaneously using the 
selected L sequences. 

 
Non-collinearity property 
In oilfields with waterflooding, injection and production 
rates are the most readily available data. Many procedures 
that infer oilfield characteristics by analyzing injection 
and production rates can often be inaccurate because the 
injection rates in daily operations in real fields usually 
have strong linear dependencies to each other. This is 
referred to as the collinearity problem. The effects of 
collinearity on linear estimation procedures are a well-
known problem in statistics11-13. Some tools have been 
developed to measure how collinear the data is, these 
tools include correlation matrix, condition number14, 
variance inflation factor (VIF)15,…,etc. Under all of these 
metrics, it can be easily shown that the selected Haar 

wavelet bases 
{ }1 Lw (n),...,w (n)  

achieve the maximum 
non-collinearity and therefore the designed injection rates 
based on selected Haar wavelet bases have much better 
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non-collinearity than the normal injection rates in daily 
operations.  

  
Procedure 

In our work, we assume that we can control the 
injection rates of all injectors; all that is required is to 
switch injection rates from time to time to one of a series 
of discrete distinct levels. We design a set of injection 
rates according to the set of selected Haar wavelet bases. 
Each injection rate has a constant average rate obtained as 
the sum of a specific Haar Wavelet Basis and a constant 
injection rate term. That is, for injector i, injection rates 

i
I (t)  will be:    

 

0 i 0i i i
(t)      with  A <  I (t) = I + Aw I                       (17) 

 

where 
0i

  I  is the average value of injection rate for 

injector i, A is a term that determines the (smaller) 
amplitude of variations corresponding to the Haar wavelet 
basis. Figure 4 is an example for a four-injector scenario 
with designed injection rates with period N=16, 

0i
  I = 100 bbl/day, A = 20 bbl/day. 

From the zero cross-correlation property, if we 
correlate each production rate with a specific Haar 
wavelet basis, the variations from other Haar wavelet 
basis will be totally cancelled out, leaving only the 
influence of the injector with the specific Haar wavelet 
basis. To illustrate this we use an example: consider just 

one producer j, with production rate 
j

P (n) . We calculate 

the cross-correlation between 
j

P (n)  and a specific Haar 

wavelet basis 
k
 w , which is assiganed to injector k:  

 

j kw

N-1

k jP
n=0

 =C w (n)P (n+τ)(τ) ∑                                  (18) 

INN-1 L

k ij i ij

n=0 i=1 m=0

 = δw (n) I (n+r-m)h (m)∑ ∑ ∑        (19) 

IN L N-1

ij k i ij

i=1 m=0 n=0

 = δ w (n)I (n+r-m)h (m)
 
 
 

∑ ∑ ∑ (20)  

 
Now, using the zero correlation property of Haar 

wavlet bases, the cross-correlation of 
k
 w  and 

i
I (n)  can 

be simplifed as: 
 

N-1

k i

n=0

 w (n)I (n+r-m)∑  

[ ]0

N-1

k i i

n=0

 = w (n) I +Aw (n+τ-m)∑                               (21) 

N-1 N-1

k k i0i
n=0 n=0

 = I w (n) A w (n)w (n+τ-m)+∑ ∑                 (22) 

kw
 = 

      

AC (τ-m)   if   i = k

0 if   i  k



 ≠

                                 (23) 

 
This means that the influence from injectors other than 

k will all become zero, only leaving the influence of 
injector k. So (18) becomes: 

 

kj kw

L

w kjP kj
m=0

 =C (τ) δ C (τ-m) h (m)∑                        (24) 

kw kjkj
 = δ AC (τ) h (τ) ∗                                            (25) 

 

The parameter
kj

 δ , which represents the flow liquid 

weight of injector k to producer j, is our target for 
estimation. The only non-zero term comes from injector 

k, but we still need to deal with the term
kw kj C (τ) h (τ) ∗ , 

which is the FIR filtered version of 
kw C (τ) . In order to 

remove its effects, we sum the absolute value of 

j kwP  C (τ)  with all delays:  

 

j k k

N-1 N-1

P w ij w kj
τ=0τ=0

 C (τ) δ A C (τ) * h (τ) =  ∑ ∑              (26) 

 
If the filter length L << N, we claim that:  
 

k

N-1

w kj
τ=0

C (τ) * h (τ) const.    for all k≈∑            (27) 

 
So  

j k

N-1

P wkj
τ=0

 δ C (τ)  ∝ ∑                                               (28) 

 
Using equation (28), we can estimate the relative 

value of
kj

 δ  using only production rate data. Thus 

effective flow units, which are represented by the relative 

value of 
kj

 δ , can be estimated. 

We need to discuss a practical issue related to this 
procedure: how does manifulation of injection rates 
manipulation in this procedure affect the normal operation 
in a real oilfield? To what degree does it affect it? In 
practice this is a complex problem, because when 
changing the injection rates, the production rates may 
change in a complex manner according to all the 
characteristics of the reservoir. Our procedure reduces the 
effects to the minimum degree by using I0i, the average 
value of injection rates. We can set the constant value I0i 
to the average value under normal operation, which on 
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average we would expect to lead to minimal changes in 
overall production, while allowing important reservoir 
information to be obtained thanks to those smaller 
variations in injection.  

 
Results 
The technique was tested on a simple streamline model 
and a capacitance model with parameters fitting those of a 
real waterflood in California. Then the procedure was 
further calibrated against a commercial reservoir 
simulator. The results of these applications are presented 
and discussed in this section. 

 
Application to streamline model 
We applied our method to two different injector-producer 
simulation models, the first one is a streamline 
simulation.6,7 Suppose all injector-producer well pairs in 
the reservoir are connected by a batch of imaginary 
streamlines, according to a simple streamline simulation 
model. We arbitrarily set the parameters, including 
volume and time-of-flight (TOF) for each streamline, in 
the simulation. For our tests we assign injection rates 
using our design, and then apply the procedure described 
above to the output production rates. By comparing the 
results of our estimation with the effective flow units 
assigned by these simulations, we were able to evaluate 
our proposed methods. Line drive (scenario shown in 
Figure 5) and five spot injection patterns (scenario shown 
in Figure 6) were applied in the simulations.   

Streamline simulation for line drive patterns.  
In this simulation, we used a 6-injector/3-producer 
scenario. The minimum time scale in the simulation is set 
to an hour, but the sampling rate is set to a day in order to 
capture the fact that in real fields test production data is 
more likely to be available on a daily basis (rather than on 
a shorter time scale). The TOF parameters of streamlines 
are set according to the streamine simulation in real field, 
changing from several days to several months. We 
compared the effective flow units in the simulation with 
the ones estimated by our procedure, the result is shown 
in Figure 7. The results prove that our procedure can 
capture the effective flow units with high accuracy in a 
simple streamline simulation setting. 

Streamline simulation for five spot patterns 
In this simulation, we apply our method on five spot 
injection pattern with 5-injectors/4-producers, the 
remaining simulation settings are the same as in line drive 
patterns. The result is shown in Figure 8. As in the line 
drive case, our procedure can estimate the effective flow 
units with high accuracy in the five spot injection pattern 
case.  

 
Capacitance Model with field data fitting  
According to A.A. Yousef et al.3, the injector-producer 
relationship can be approximated by a “capacitance 
model”. In order to verify our procedure, now suppose the 
input-output relationships follow the capacitance model. 
Given the injection rates and production rates data in a 
segment of an actual water flood in California, we first 
find the parameters in the capacitance model by field data 

fitting, which capture some characteristics of this 
reservoir. Figure 9 shows the region of interest in the field 
under waterflood. Figure 10 shows the fitting results for 
production rates. After finding all parameters, we assign 
our designed injection rates as the inputs, and we can get 
the production rates of all surrounding producers 
according to capacitance model. By analyzing the 
production rates, we can estimate the effective units flow 
between all surrounding injector-producer pairs and 
compare them to the parameters in the capacitance model  

(relative weight ijλ  in capacitance model have the same 

meaning as effective units flow). The results are shown in 
Figure 11. The results prove that our procedure can 
estimate accurately almost all of the effective flow units 
between well pairs in the capacitance model. 

 
Calibration with a commercial numerical simulator 
We applied our method on a numerical simulator, CMG, 
with a line drive injection pattern with 6-injectors/3-
producers scenario. In all cases we simulate two 
component water and oil fluid systems, and have only 
vertical wells. Oil viscosity was set to 4 CP. The 
numerical simulation uses day as the time scale; that is, 
∆n = 1day.  

1-Homogeneous case 
The first case is of a single-layered homogeneous 
reservoir with an isotropic permeability of 100 md, as 
shown in Figure 12. The reservoir pressure is set to 1000 
psi, BHP in the production well are all set to 800 psi. The 
injection rates are set as in Figure 13. We change the 
injection rates frequency in the middle of the observation 
period because we want to see the difference for setting 
different injection frequencies into different injectors. The 
original injectors 1 to 6 are set from highest to lowest 
frequency. In the middle of the observation period, 
injector 1 exchanges its injection sequence with injector 
4, 2 with 5, and 3 with 6. We separately analyzed each of 
half period, and the results shown in Table 1 and Figure 
14 represent the average of the two half periods. The 
estimated effective flow units are represented by arrows 
that start from injector and point to producer in each 
injector-producer pair. The longer the arrow, the larger 
value of the effective flow units between the two wells. 

Because the reservoir is homogeneous, we expected 
the estimated effective flow units to be almost symmetric 
across plane of symmetry and to decrease as the distance 
between well pairs increase.  All resulting estimates 
match well with the chosen reservoir conditions.  

2-Anisotropic case 
We consider also a single-layered anisotropic reservoir 
with permeability of 10 md in x direction and 0.01 in y 
direction. There is a single fracture in the reservoir, as 
shown in Figure 15. The injection rates are the same as in 
the homogeneous case, and the results are averaged on the 
two individual half periods and shown on Table 2 and 
Figure 16. 

Because the y direction has a very low permeability, 
we expected most of the flows to be in the x direction. 
Producer 2 has a fracture across it, so it should receive 
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almost all of the injection fluid. The results show almost 
all the flow units come to producer 2, as expected. 

3-Multiple fractures case 
We also considered a single-layered reservoir with an 
isotropic permeability of 0.1 md and where there are three 
fractures with different lengths, as shown in Figure 17. 
The injection rates are set as in the first two cases, and the 
results are averaged over the two individual half periods 
and shown on Table 3 and Figure 18. 

There are three fractures with different lengths in the 
reserovoir, and all lay in about 45 degree direction. From 
the model, we expected injector 1 and 4 will affect 
producer 1 the most because the fracture across producer 
1 has the longest length. Injector 2 and 5 to producer 2 
should be the second one. Injector 3 and 6 will have the 
smallest flow units to producer 3. The simulation results 
all agree with what we expected. 

 
Conclusion 
We developed a technique to characterize the flow units 
between injection and production wells in a reservoir by 
using carefully designed injection rates and observing the 
production rates of surrounding production wells.  

The technique has been validated by applications to 
streamline model and capacitance model with real data 
fitting. The results have shown that the procedure can 
successfully capture the effective flow units between 
surrounding injector-producer pairs.  

The technique was also verified by numerical 
simulations. We evaluated our method on three different 
cases, and we showed that our estimated effective flow 
units match the characteristics of the reservoir in each 
case.  

This procedure provides a practical solution to some 
limitations of existing analysis methods and can lead to 
improvements in the accuracy of estimation of flow units.  
The main advantages of this technique are: 1) it avoids the 
problem of collinearity between injection rates because 
the injection rates have zero cross-correlation to each 
other, and 2) the procedure will never get negative 
parameters, so that estimated weights are more readily 
interpreted. Furthermore, because other analysis methods 
are also based on known injection rates, our procedure 
could be combined with any of these methods and 
potentially lead to improvements in the quality of the 
estimation. 

 
Nomenclature 

A = amplitude added on Haar wavelet bases (L3/t) 
BHP = bottom-hole pressure (F/L2) 

j kwPC = cross-correlation between Pj and wk 

 ijh  = equivalent impulse response of channel between 

injector i and producer j 
Ii  = injection rate (L3/t) 

 ijI  ′ = filtered version of injection rate (L3/t) 

    L = number of Selected Haar wavelet bases 
   N = period of selected Haar wavelet bases 
NI = number of injection wells 

Pj = liquid production rate (L3/t) 
R  = correlation matrix 

TOF = time-of-flight 
 U = condition number 

VIF  = variance inflation factor 
  wk = selected Haar wavelet bases 

 
Greek alphabets 

ij λ = weights in capacitance model 

 ijδ = effective flow units 

 
Subscripts and superscripts 

i = injector index  
j = producer index 
k = selected Haar wavelet bases index 
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Figure 1: Haar wavelet bases h0(n) and h1(n) which are 
orthogonal with each other. 

 

 
 
Figure 2: Haar wavelet bases h0(n) ~ h7(n) which are 
orthogonal with each other. 

 

 
Figure 3: Selected Haar wavelet basis set with period N=16 
which perform zero cross-correlation to each other. 

 
 

5 10 15 20 25 30
0

50

100

150

Time (day)

In
je

ct
io

n
 R

at
e 

(b
bl

/d
ay

)

Injection Rate for Injector1

5 10 15 20 25 30
0

50

100

150

Time (day)

In
je

ct
io

n
 R

at
e 

(b
bl

/d
ay

)

Injection Rate for Injector2

5 10 15 20 25 30
0

50

100

150

Time (day)

In
je

ct
io

n
 R

a
te

 (
b

b
l/d

ay
)

Injection Rate for Injector3

5 10 15 20 25 30
0

50

100

150

Time (day)

In
je

ct
io

n
 R

a
te

 (
b

b
l/d

ay
)

Injection Rate for Injector4

 
Figure 4: Designed injection rates for four different injectors 
with period N=16, I0i=100 bbl/day, A=20 bbl/day. 
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Figure 5: Line drive scenario: 6 injectors and 3 producers. 
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Figure 6: Five spot scenario: 5 injectors and 4 producers. 
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Figure 7: The effective flow units in the streamline model (red triangle) and estimated by this procedure (blue circle) in 6 injector/3 
producer line drive scenario. 
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Figure 8: The effective flow units in the streamline model (red triangle) and estimated by this procedure (blue circle) in 5 injector/4 
producer five spot scenario. 
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Figure 9: Wells in Field Case Study Area  and chosen wells in 
the region of interest (ROI). 
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Figure 10: Fitting the production rates in Field Data data 
using capacitance model. 

 
 

2 4 6
-0.5

0

0.5

1

Producer No.

E
ffe

ct
iv

e 
F

lo
w

 U
ni

ts For Injector 1

2 4 6
-0.5

0

0.5

1

Producer No.

E
ffe

ct
iv

e 
F

lo
w

 U
ni

ts For Injector 2

2 4 6
-0.5

0

0.5

1

Producer No.

E
ffe

ct
iv

e 
F

lo
w

 U
ni

ts For Injector 3

2 4 6
-0.5

0

0.5

1

Producer No.E
ffe

ct
iv

e 
F

lo
w

 U
ni

ts For Injector 4

2 4 6
-0.5

0

0.5

1

Producer No.E
ffe

ct
iv

e 
F

lo
w

 U
ni

ts For Injector 5

2 4 6
-0.5

0

0.5

1

Producer No.E
ffe

ct
iv

e 
F

lo
w

 U
ni

ts For Injector 6

2 4 6
-0.5

0

0.5

1

Producer No.E
ffe

ct
iv

e 
F

lo
w

 U
ni

ts For Injector 7

2 4 6
-0.5

0

0.5

1

Producer No.E
ffe

ct
iv

e 
F

lo
w

 U
ni

ts For Injector 8

Relative weight in CM
Estimated by our procedure

 
Figure 11: The effective flow units in the capacitance model with Field Data data fitting (red line) and estimated by this procedure 
(blue circle). 
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Figure 12: Model on numerical simulator CMG - single layered 
homogeneous reservoir with an isotropic permeability of 100 
md. 
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Figure 13: The injection rates applied to numerical simulator. 
Note there is a frequency exchange between injector 1 and 4, 2 
and 5, 3 and 6 on the middle of the period. 
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Figure 14: Estimated effective flow units in homogeneous 
case. The flow units are represented by arrows that start from 
injector and point to producer in each injector-producer pair. 

The longer the arrow, the larger value of the 
effective flow units between the two wells. 
 

Table 1: Estimated effective flow units in 
homogeneous case plotted in Figure 14.  
 

 
First half period Second half period 

Pro 1 Pro 2 Pro 3 Pro 1 Pro 2 Pro 3 

Inj 1 0.523 0.297 0.179 0.507 0.300 0.194 

Inj 2 0.304 0.397 0.299 0.313 0.387 0.300 

Inj 3 0.191 0.300 0.508 0.214 0.302 0.484 

Inj 4 0.507 0.300 0.194 0.523 0.297 0.179 

Inj 5 0.312 0.387 0.300 0.304 0.397 0.299 

Inj 6 0.214 0.302 0.483 0.191 0.300 0.508 

 
 
 
 
 
 

 
 
Figure 15: Model on numerical simulator CMG - single layered 
anisotropic reservoir with 10 md in x direction and 0.01 md in y 
direction. There is a fracture in the reservoir. 
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Figure 16: Estimated effective flow units in anisotropic case 
with single fracture.  
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Table 2: Estimated effective flow units in 
anisotropic case plotted in Figure 16.  
 

 
First half period Second half period 

Pro 1 Pro 2 Pro 3 Pro 1 Pro 2 Pro 3 

Inj 1 0.000 1.000 0.000 0.001 0.999 0.000 

Inj 2 0.000 1.000 0.000 0.001 0.999 0.000 

Inj 3 0.000 1.000 0.000 0.001 0.999 0.000 

Inj 4 0.001 0.999 0.000 0.000 1.000 0.000 

Inj 5 0.001 0.999 0.000 0.000 1.000 0.000 

Inj 6 0.001 0.999 0.000 0.000 1.000 0.000 

 
 

 
 
Figure 17: Model on numerical simulator CMG - single layered 
reservoir with an isotropic permeability of 0.1 md. There are 
three fractures wth different length in the reservoir.  
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Figure 18: Estimated effective flow units in multiple fractures 
case.  
 
 
 
 
 
 
 
 

Table 3: Estimated effective flow units in multiple 
fractures case plotted in Figure 18.  
 

 
First half period Second half period 

Pro 1 Pro 2 Pro 3 Pro 1 Pro 2 Pro 3 

Inj 1 0.904 0.069 0.027 0.830 0.135 0.035 

Inj 2 0.336 0.640 0.024 0.223 0.659 0.118 

Inj 3 0.150 0.521 0.329 0.071 0.346 0.583 

Inj 4 0.830 0.135 0.035 0.904 0.069 0.027 

Inj 5 0.223 0.659 0.118 0.336 0.640 0.024 

Inj 6 0.071 0.346 0.583 0.150 0.521 0.329 

 
 
 
 
 


