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Abstract 
The paper presents a novel method to detect the existence 

and determine the orientation of high permeability 

channels between injection and production wells in a 

waterflood. We apply the concept of transmission 

tomography and model a waterflood reservoir by 

considering water injection rates as inputs and measured 

production rates as outputs. We solve the inverse 

problem, in which the goal is to determine the existence 

and location of high permeability channels in the field by 

measuring the lag time in response to the variation in the 

injection rate. The main advantage over other methods 

(e.g., tracer testing) is that this technique can be applied 

without significantly affecting daily operation.  

We show that the lag times at the producers can be 

estimated by monitoring production rates, given that 

known time-varying injection rates are applied. We 

propose a mixture model to characterize the lag time for 

each injector-producer pair, where the system is 

initialized by assuming that multiple candidate fractures 

exist. Our algorithm iteratively modifies the length, 

orientation and location of each high permeability 

candidate in order to match the measured response time 

between wells. It is well known that the solution may not 

be unique if we only have limited measurement data. 

Thus, in order to choose between possible models, we 

propose to use the “total length” of high permeability 

channels as regularization metric. Our method will select 

the model that fits the measured lag time with minimum 

total high permeability channel length. It is also possible 

within our framework to adjust the regularization so that 

it takes into consideration other type of prior information, 

e.g., preferred orientation known to exist in a given field. 

To validate our approach, we use a commercial 

simulator to test a synthetic line drive and a 5-spot 

waterflood. In the first case, we test a five spot with 

hydraulic fracture located in the central production well. 

In the second case, we test a single fracture with 45 

degree orientation located between rows of producers and 

injectors. Our results show that our method can provide 

very accurate estimates of fracture orientation, with 

decreased uncertainty as the well density in the field 

increases. 

 

Introduction 
Understanding the heterogeneity of the reservoir is very 

critical in waterflood forecasting. For an ideal 

waterflooding field, we want the injected water to 

uniformly “push” fluid towards all producers. But in a 

tight reservoir, high permeability channels provide a fast 

pathway and can play a dominant role in explaining the 

fluid flow for the waterflood. For example, a direct high 

permeability channel link between injection and 

production wells will cause water cycling and decrease 

the sweep efficiency. To achieve improved waterflood 

optimization, it is desirable to identify the approximate 

locations of these high permeability channels in the 

reservoir.   

Several characterization methods have been proposed 

that can be used to estimate reservoir model parameters. 

Seismic methods can provide very detailed geophysical 

structure (Sheriff et al.
1
 1992) while interference and 

pulse tests also can map reservoir heterogeneity. Tracer 

tests measure the interaction of diffusion process between 

the injection/production wells that provides the 

information for directional permeability. Vasco
2
 et al. 

(1999) combines the dynamic data obtained from tracer 

tests and that obtained from productions rates to generate 

high-resolution reservoir representation models.   

A common aspect of all these methods is that they 

require additional equipment and may involve disruption 

or interruption of daily operations. We note that in a 

waterflood field injection and production rate data are the 

most abundant data source. Thus, if we have a model to 

describe the injection-production relationship it will be 

possible to estimate an equivalent “lag time” for the fluid 

using only injection-production rate data. For example, 

the capacitance model (Yousef et al.
3
 2005) has a “time 

delay” parameter that is roughly proportional to the 

pressure wave propagation time. We can use this 

parameter to model the injection-production response and 
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estimate the lag time. Our approach can be extended to 

any model from which the lag time information can be 

estimated using injection-production relationship.  

Once we determine the response time from the 

injection/production data, constructing a reservoir model 

becomes a travel-time tomography problem (Berryman.
4
 

1991). We consider a 2D reservoir with measured lag 

time between the wells. To build a high-resolution model, 

the main difficulty is that the measured response time data 

is still too sparse and restricted to the area between the 

wells. Thus we cannot obtain the response time between 

any two arbitrary locations in the field. Because we can 

only measure the lag time between the wells, the spatial 

resolution is fundamentally limited by the geometric 

location of wells.  

Another important challenge is that lag times are 

nonlinear functions of the reservoir characteristics, i.e., 

the pressure wave will not propagate in a straight path 

between injection/production wells, and instead it will 

follow the ``least resistance path’’ inside the reservoir. 

Compared to fixed path tomography problems (X-ray, 

ground penetrating radar) for which paths are known, not 

knowing the actual pathway significantly increases the 

difficulty of our problem.  

Many reconstruction algorithms have been proposed 

(Berryman.
4
 1991), but most of them can only 

successfully recover a low velocity contrast reservoir 

model. In a real reservoir, it is not unusual for high 

permeability channels to be present that have pressure 

wave velocities orders of magnitude greater than those in 

other areas. Therefore, we cannot apply conventional 

reconstruction algorithms and need to design a new 

algorithm that can estimate these high permeability 

channels. (Lin and Ortega.
5
 2010)   

In this paper, we focus on tight reservoirs with few 

high permeability channels in them. The permeability 

contrast is very high (~
510 ) so that the lag time as 

pressure wave propagates inside the high permeability 

channels can be considered to be almost negligible. If we 

estimate the reservoir characteristics by using the 

conventional iterative least-squares method (Berryman.
4 

1991), this will lead to very poor results in general. One 

reason is this algorithm uses iterative linearization to 

solve the nonlinear inverse problem. For the high contrast 

permeability case, there is a very large velocity gap 

between different areas and the linearization algorithm 

usually fails to converge. Another reason is the least-

squares method will search for a solution that minimizes 

the square norm; therefore it will tend to reconstruct a 

smooth model that cannot correctly capture the high 

contrast behavior.    

In order to solve these problems, we develop a new 

algorithm to estimate the angle and location of high 

permeability channels directly. Compared to the 

conventional methods, we do not try to estimate the 

velocity in each cell. Instead, we assume only two 

possible velocities can be observed, a constant finite 

velocity (set to 1 here) for background areas, and infinite 

for the high permeability channels (equivalently the lag 

time will be zero through the high permeability channels).  

In our approach, the main purpose is to identify the 

high permeability abnormality in the homogeneous 

background. In fact, we do not need a precise estimate of 

background permeability. Under the assumption of 

background homogeneity, we can use the “ratio” of lag 

time to the geometrical distance to avoid estimating the 

background permeability. Any high permeability channels 

between an injector and a producer will always reduce the 

lag time, as well as the ratio. The ratio is upper-bounded 

by a constant, which can be obtained in the case when the 

wave propagates only through the homogeneous 

background. The numerical value for this constant is the 

background permeability. Therefore, we can assume the 

largest ratio to be the background permeability and only 

need to compare the relative ratio of each injector-

producer pair.  

Also, unlike prior work, we model the high 

permeability channels as line structures in 2D and 

approximate the flow path with piecewise linear 

combinations. Therefore our algorithm estimates directly 

the location of high permeability channels. This approach 

significantly reduces the computational complexity 

required to calculate the flow path and achieves a stable 

result, as compared to the conventional iterative least 

squares ray-tracing method.  

Our approach can also be extended to multiple 

discrete permeability values. For example, we can model 

the fault with zero permeability and try to detect the high 

permeability channels and faults at the same time. The 

main difficulty is the computational complexity to 

calculate the flow path is much higher. When we only 

consider two possible values for the permeability (one and 

infinity), it can be shown that the flow path must be a 

combination of shortest paths between high permeability 

channels. But this characteristic will no longer be valid if 

we have multiple or finite permeability values.     

It is well known that the reconstructed model may not 

be unique if we only have a limited number of 

measurements. In our approach, we define the total length 

of estimated high permeability channels as the 

regularization metric. Thus, our chosen reconstructed 

model will be the one that minimizes a metric that 

combines goodness of fit for the observation as well as 

length of resulting estimated fractures. That means that 

we will tend to choose the “smallest” set of high 

permeability channels that satisfies the measured response 

time. Note that our approach could also incorporate other 

prior information to define an alternative metric. For 

example, if a geophysical survey provides a rough 

estimate of orientation, the corresponding estimated angle 

can be incorporated into the regularization metric so as to 

encourage high permeability channels to follow that 

direction.  

The rest of paper is structured as follows: in the next 

section, we define the mathematical model and provide 

physical intuition for fluid flow in a heterogeneous 

reservoir. Then the tomography reconstruction concept is 
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introduced and we describe our algorithm. Finally, we 

provide simulation results and conclusions. 

   

Physical model 
In this section we introduce the physical model to 

describe the response time in a heterogeneous reservoir. 

Early work in pulse testing (Johnson.
6
 1966) proposed 

changing the injection rate at a well by alternating 

between a constant flow rate and a shut-in. Then pressure 

response is measured in the other wells and the amplitude 

and lag time is determined between the wells. The lag 

time lt  can be related to the reservoir properties by the 

equation  

2

(1)l

Sr
t 20,000     

TΔt
  

Where r is the distance between the wells, and Δt is 

the pulse length. T and S represent the transmissibility 

and storage respectively.  

  
Figure 1 Pulse-Test Terminology (Johnson

6
. 1966) 

 

Recently, the capacitance model proposed by Yousef 

et al.
3
 (2005) has generated significant interest in the 

reservoir modeling community. This work considers the 

reservoir as an input (injection rate) and output 

(production rate) system. The mathematical formulation 

can be written as  

wf
(2)

dq dp
τ + q(t) = i(t) - τ *J     

dt dt
  

Where i(t) is the injection rate and q(t) is the total 

production rate.  wfP
 
represents the flowing bottom hole 

pressure (BHP) and J stands for the productivity index. 

The “time constant”   is defined by the total 

compressibility and drainage pore volume pV . 

t p
(3)

c V
τ =     

J
 

Follow the discussion by Yousef et
 
al.

3
 if we consider 

a mature reservoir and fix the bottom hole pressure, we 

can approximate production rates based on only the 

contribution from injectors.  

0

t -(t-ς)

(4)

t

e
q(t) = i(ς)dς    

τ  

We use the equation above as a simplified capacitance 

model to characterize the injection-production 

relationship. The production response with respect to step 

injection is shown in Figure 2. 

Figure 2 Production response for capacitance model with 

different time constant 

 

From above, we know that the lag time lt or time 

constant  are controlled by the storage volume between 

an injector-producer pair. In this paper we consider a tight 

reservoir with few high permeability channels so that the 

fluid will tend to flow through them. The storage volume 

between the wells is significantly reduced and is 

approximately propotional to the distance between the 

high permeability channels (see Fig 3). Therefore, the lag 

time lt  
or the time constant  in capacitance model are 

roughly proportional to the distance the fluid has to travel 

within the low permeability area. We can choose a model 

that provides better fitting for the injection-production 

data, and use corresponding lag time or time constant as 

the estimated lag time between the 

wells.

 
Figure 3 Flow path between injector/producer. Note that 

the path bends with the high permeability channel. 

 
Tomographic Reconstruction 
With measured injection/production data, we can estimate 

the lag time between wells. We now pose the tomographic 
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reconstruction problem, namely, how to use the lag time 

information to estimate the reservoir model? 

From previous section, we know that the lag time is 

roughly proportional to the travel distance in a 

homogeneous low permeability area. In order to 

reconstruct the reservoir model, we only need to identify 

these high permeability line structures so that the resulting 

model fits the lag time. This procedure can be described 

as a ``forward-backward’’ process. In the forward step, 

we calculate the lag time based on current high 

permeability structure model. If it does not fit the 

measured lag time, in backward step we update the high 

permeability channels according to the difference. This 

can be summarized as a figure below. 

 

 
 

Figure 4 The procedure of estimating the high 

permeability channels based on the lag time.  

 

First, we introduce the “forward step”, that is, 

calculating the lag time if a high permeability channel is 

given. With the presence of high permeability channels, 

the travel path tends to “bend” and uses these channels to 

achieve fastest path. Since we approximate the lag time 

inside the high permeability channel as being almost zero, 

using simple geometry we can calculate the fastest path. 

For example, if we normalize the permeability of 

homogeneous background to 1 and consider a single high 

permeability channel L, the path will be either the direct 

link or the one using high permeability channel, 

depending on which one is faster (see Figure 3), where 

the path through the high permeability channel is 

comprised of the shortest paths to and from the channel 

and propagation through the channel (which is assumed to 

take a negligible amount of time as discussed earlier). The 

response time can be calculated by  

 

(5)

d(Inj, Pro)
u(Inj, Pro) = Min     

d(Inj, L) + 0*d(Inj, L) + d(L, Pro)



   

u(α,β) and d(α,β) represent the lag time and the 

geometrical distance between two points (α,β). By 

induction this can be extended to n  channels: if we 

already know the fastest path based on 1n channels, 

adding a new one will decrease the lag time if it causes 

any “short cut” for the previous flow path. 

After deciding the travel path, we can also get the 

gradient of lag time with respect to any changes in the 

high permeability channel. Thus, if we increase the length 

or rotate the high permeability lines, the travel path will 

follow these changes. In Figure 5 we show that rotating a 

high permeability channel will change the travel path 

from α  into
'α .  The gradient of the lag time with respect 

to the rotation can be calculated by taking the limit of the 

travel path in homogeneous area divided by the small 

change in the angle of high permeability channel 

 (6)
θ 0

α' - αδu
= lim     

δθ Δθ 
 

In this case, the change of travel path β  is equal to the 

length of high permeability channel multiplied with the 

small change in angle l Δθ . To include all possible 

changes (increase/decrease length, rotation and shift), we 

analyze β  as a general case.  

 

Figure 5 Change in flow path if there is a small rotation in 

orientation for the high permeability channel. 
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22 2
(7)

2

2
(8)

1/2
(9)

α' = (α +β) *(α +β) = α + 2(α *β) + β     

if  β  is very small, then it can be approximated by

α + 2 α β cos  , where  is the angle between α,β

2 β cos
= α (1+ )    

α

2 β cos
α' = α (1+ )     

α

U

 







(10)

(11)
δβ 0

sing Taylor's expansion on the second term

2 β cos1
α (1+ )

2 α

α + β cos     

The derivative of  travel time is given by

α' - αT
= lim = cos     

β β








 






  

 

The gradient of lag time is related to the cross angle of 

travel path α and the change of high permeability 

channel β . If we model high permeability channels as 

straight lines, we can use the parameters 
length θ x y

i i i i{l ,l , l , l }
to represent an arbitrary high 

permeability channel. It is easy to relate the βwith small 

change in
length θ x y

i i i i{l ,l , l , l }
, which correspond to 

changes length, rotation and shift operations. As we show 

in Figure 6, if we change the length, then the travel path is 

modified by β = Δl length
. The case of rotation is 

discussed before β l Δθ  . And the shift is easily 

understood by β Δx andβ Δy . 

 

 

Figure 6 Change in flow path with respect to the increase 

length, shift for the high permeability channel. 

 

Inverse Problem Formulation 
The problem we aim to solve is an inverse problem, 

namely, how to estimate the location, length and angle of 

high permeability channels given the lag time between the 

wells. As in many inverse problems, a major difficulty is 

that the reconstructed reservoir model may not be unique 

if we only have limited data (see Figure 5). In order to 

choose between different possible models, we use the 

total length of estimated high permeability channels as 

regularization metric. Our algorithm will choose the 

shortest length model to explain the observed data. This 

can be stated as a two-step gradient search:  in the first 

step, we refine the structure to satisfy the observed lag 

time. In the second step, we choose the minimum length 

structure.  We extend our previous reconstruction 

algorithm (Lin and Ortega,
5
 2010), so that not only the 

length but also the angle, and centre of high permeability 

channels are modified in each iteration. The difference in 

this paper is we only try to reconstruct one single 

candidate solution. The algorithm can be summarized as 

follows: 
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length θ x y

1 N i i i i

Reconstruction Algorithm

1. Set the initial structure: 

Assign the initial structure  with  high permeability channels.

S = {l , , l },and each l  has parameter {l , l , l , l }

2. With measurement,

i

S N



1 k

2

 t = (t , , t )  

define the cost function as  C(S) = T(S) - t

3. Match the measurement t :

Use gradient search to update the structure S.

S S - λ C  

4. Minimize the total length of S :  

Update the structure S b

 

length length

i i

ased on same t.

S S , if  l  l  and T(S) = T(S)

5. Go to step 3 until S converges.

  
 

 

In the first step, we initialize the structure of high 

permeability channels as lines. We create N  lines, 

where each line is represented by a series of 

parameters
length θ x y

i i i i{l ,l , l , l }
, which represent its 

length, angle and center location ),( yx . In the second 

step we define the cost function to quantify the difference 

of estimated and measured lag time. 

In the third step, we calculate the difference between 

the estimated lag time and the measurement, and use 

gradient search to refine the model S. From above 

discussion, we know that the gradient of the lag time with 

respect to 
length θ x y

i i i i{l ,l , l , l }
can be calculated by 

simple geometry. This will update the length, angle and 

center position of these line structures. 

In the fourth step, we search the models that have 

same lag time and try to choose one with minimum total 

length. A major issue for the inverse step is that the 

reconstructed reservoir model may not be unique if we 

only have limited data (see Figure 7) Given a pair of 

channels i j{l , l } , if the gradients 

length length

i j

δC δC
{ , }
δl δl

corresponding to each of the lengths 

of these channels are not equal, this implies that we can 

change the lengths of the lines i j{l , l }while still keeping 

the same lag time cost C, but reducing the regularization 

cost.  

Assume
length length

i j

δC δC
>

δl δl
, then we can choose 

length length

i j

δC δC
α ( ) = β ( )

δl δl
  ,with α < β Let

length length

i il l + α ,
length length

j jl l -β  , the change 

in cost time function is zero,ΔC = 0  but the total length 

decreases with β - α . In this case, we have another 

structure that has same lag time with lower total length. 

 

 
Figure 7 Example of changes in line length between two 

high permeability lines. Note these two have exactly the 

same lag time, but that the second one has smaller total 

length. 

 

Simulation Result 
We use a commercial simulator to test our method. The 

first case is a 5 spot and we want to decide the length and 

angle for the hydraulic fracture located in the center 

producer. In this case, we use the capacitance model, CM 

(Yousef  et al.
3
 2005) to model the injection-production 

relationship and retrieve the lag time. But estimating the 

coefficients in CM is a non-linear optimization problem, 

for which sometimes one cannot achieve convergence in 

the search for a solution. In order to avoid this, we use 

FIR model (Ljung.
7
 1987) as an intermediate model.  The 

reason is we can always get a stable estimate result for 

FIR coefficients by least-square or linear programming 

method. First we estimate the FIR model by injection-

production data, and then decide the Capacitance model 

that has best fitting with previous FIR model. We use the 

PN sequence as injection pattern proposed by Lee et al.
 8

 

(2008) and measure the changes in production. Choosing 

PN sequences as input has been proven to achieve the 

lowest covariance matrix for estimating the impulse 

response coefficient in a FIR linear system (Ljung.
7
 

1987). We use linear programming to estimate the FIR 

coefficient, and then we match the FIR with the 

capacitance model to determine the time-delay constant 

and use it as the lag time between injector-producer.  We 

use the lag time to reconstruct the reservoir model. The 

result is shown in Figure 6. The difference between the 

actual models and the estimated one is within 10 degree.  

The second case is a line drive, with 5-injectors and 5-

producers. We do not have any prior information about 

the location, length or angle about the high permeability 

channel. We increase the injection rate and determine the 

lag time from the response of production rate. For the 

estimated result we can see our method successfully 

detects the high permeability channels between injector-5 

and producer-2. 
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Figure 8 Ground truth in simulator. It is a 5-spot with 4-

injector, 1-producer with a 45’ degree high permeability 

channel. The permeability value is 10 for the background, 

and 2000 for the high permeability channel. 

 

 
Figure 9 Use PN sequences as the injection pattern. Note 

all injections have the same average rates. 

 
Figure 10 The estimated injection/production response. 

Note the time constant for Inj4 is much smaller. 
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Figure 11 The reconstructed high permeability channel 

 

 

 
Figure 12 The ground truth in simulator. It’s a 5-injector, 

5-producer line drive. There is a high permeability 

channel connect injector-5 and producer-3. The 

permeability value is 10 for the background, and 2000 for 

the high permeability channel. 

 

 

 
 

Figure 13 The injection/production rate. We increase the 

injection rate and measure the response in production to 

determine the lag time between the wells.  

 

 

 
 

Figure 14(a) The initial structure we start to update. 

 
 

Figure 14(b) The result after 3 iterations. 

 

 
Figure 14(c) The result after 10 iterations.  

 

 
Figure 14(d) The final result after 30 iterations. It can 

successfully catch the high perm between injector-5 and 

producer-3. Due the measurement noise, there are some 

phantoms in other area.  
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Figure 15 The mismatch cost function. It decrease with 

iterations, but due to measurement noise the final value is 

not zero. 

 
Conclusion 
In this paper, we propose a new method to use the ``lag 

time’’ to detect high permeability channels. This method 

only needs the injection-production data and does not 

require any additional instruments. It can detect the field 

changes in real-time without altering the average daily 

production.  

In order to apply this to real field data, we note some 

practical issues. First, the data sampling period and 

quality are important. Usually we have very reliable daily 

injection rate data, but production rates are often obtained 

from bi-weekly well-test data. This reduces the time 

resolution of estimated lag times. For example, assume 

we have two pairs of injector-producers and the lag time 

is 1 day and 10 days. After we increase the injection rates, 

we cannot tell the difference by looking at the production 

data because the time-resolution is not high enough (it is 

only sampled once every 14 days).  

The second issue we encounter in practical 

applications is the distribution of well locations, which is 

related to spatial resolution. Consider an extreme case 

where one injector-producer pair is in the horizontal 

direction. Any high permeability channel exactly in the 

vertical direction will not affect the lag time. Therefore, it 

is “invisible” under this situation. In order to detect the 

high permeability channel in arbitrary direction, we prefer 

the wells to be uniformly located in the field and to cover 

all angles, which is not possible in reality. We are 

currently studying this problem, and plan to address it in 

future work.  

Future work will focus on how to combine the 

geological information and define a better regularization 

to choose between possible reservoir models. For 

example, we may have the seismic survey for the field, 

but lack of finer details. We can use this kind of 

information as a prior for our algorithm.   

 

 

Nomenclature 
 

t = time 

S = storage 

T = transmissibility 

i(t) = injection rate 

q(t) = total production rate 

Pwf = flowing bottom hole pressure 

J = productivity index 

length

il
 

= length parameter for i-th line structure 

il 

 
= angle parameter for i-th line structure 

,x y

i il l
 

= center parameter for i-th line structure 

  = time delay constant in capacitance model 
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