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Abstract—In sensor networks, energy efficient data manipu-
lation / transmission is very important for data gathering, due
to significant power constraints on the sensors. As a potential
solution, Compressed Sensing (CS) has been proposed, because
it requires capturing a smaller number of samples for successful
reconstruction of sparse data. Traditional CS does not takeex-
plicitly into consideration the cost of each measurement (it simply
tries to minimize the number of measurements), and this ignores
the need to transport measurements over the sensor network.
In this paper, we study CS approaches for sensor networks that
are spatially-localized, thus reducing the cost of data gathering.
In particular, we study the reconstruction accuracy properties
of a spatially-localized distributed CS system. We introduce the
concept of maximum energy overlap between clusters and basis
functions, and show that the corresponding metric can be used
to estimate the minimum number of measurements needed to
achieve accurate reconstruction. Based on this metric, we propose
a centralized iterative algorithm for joint optimization o f the
energy overlap and distance between nodes in each cluster. Our
simulation results show that we can achieve significant savings
in transport cost with small reconstruction error.

I. I NTRODUCTION

Sensor networks consist of numerous tiny and cheap sen-
sors deployed on any physical region to monitor and report
physical phenomena. This makes it possible to directly utilize
space/time localized information for a wide range of applica-
tions. To collect information from sensors spread over space
and deliver it to a destination (called the fusion center (FC)),
energy-aware data manipulation / transmission is required
because power is a scarce resource in the sensors. For the pur-
pose of efficient data gathering, joint routing and compression
has been studied for locally correlated sensor network data.
Most of the early work was theoretical in nature and, while
providing important insights, did not fully consider practical
details of how compression is to be achieved [1], [2], [3].
More recently, it has been shown how practical compression
schemes such as distributed wavelets can be adapted to work
efficiently with various routing strategies [4], [5], [6], [7].

Transform-based techniques, e.g., wavelet based ap-
proaches [4], [5], [8] or the distributed KLT [9], can reduce
the number of bits to be transmitted to the FC, so as to re-
duce transport cost. These transform techniques are inherently
critically-sampled, which means that the number of samples
(transform coefficients) transmitted to the FC is equal to the
number of sensors. Thus, their cost of gathering scales up with

the number of sensors, which could be undesirable for large-
scale sensor networks. As a potential alternative, Compressed
Sensing (CS) has been proposed because it requires capturing
a smaller number of measurements for successful reconstruc-
tion; specifically, the number of measurements carried to the
FC depends on the characteristics (sparseness) of the signal
rather than on the dimension of the signal [10], [11], [12]
(which in our case corresponds to the number of sensors in
the network.)

However, while the potential advantages of CS have been
acknowledged [13], [14], obstacles remain for it to become
competitive with more established (e.g., transform-based) data
gathering and compression techniques. A primary reason is
that CS theoretical developments have focused onminimizing
the number of measurements(i.e., the number of values relayed
to the FC and obtained as linear combinations of samples
obtained by the sensors), rather than onminimizing the cost of
each measurement(i.e., transport cost for each aggregate). In
fact, in many CS applications (e.g., [15] [16]), each measure-
ment is a linear combination ofmany (or all) samples of the
signal. Clearly, this kind of “dense” measurement system is
not efficient for sensor networks, since each final measurement
would require aggregating samples from many sensors that
are potentially far from each other, so that the total cost can
potentially be higher than that of a raw data gathering scheme.

To address this problem,sparse measurementapproaches
(where each measurement requires information from just a few
active sensors) have been proposed for both single hop [17]
and multi-hop [13], [14] sensor networks. While reducing the
number of samples used to compute each CS measurement
reduces overall cost, it does not guarantee that the resulting
system will be efficient, as the cost also depends on the
relative positions of sensors providing information for each
measurement. If sensors contributing to a given measurement
are far apart, the cost will still be significant even with a sparse
measurement approach. This is why sparse random projection
(SRP in [17]) does not perform well in terms of transport
cost [18].

The key observation in this work is that an efficient mea-
surement system needs to beboth sparse(few sensors con-
tribute samples to each measurement) andspatially-localized
(the sensors that contribute to each measurement are close to
each other) in order to be competitive in terms of transport cost



and reconstruction accuracy. In this paper we extend our work
in [18], where we first proposed the use of a cluster-based tech-
nique for CS. In our cluster-based approach each measurement
is a linear of combination of samples capturedwithin a single
cluster, and clusters selected to contain sensor nodes that are
close to each other. Here, we extend our previous work [18]
by analyzing how the choice of spatial clusters affects the
reconstruction accuracy, for a given spatially-localizedsparsity
basis. Moreover, we propose novel clustering techniques that
take into consideration both transport cost and reconstruction
quality.

More specifically, we have two main contributions in this
paper. First, we introduce the concept ofmaximumenergy
overlap between clusters and basis functions, which we de-
note β. If basis functions and clusters have similar spatial
localization, most of energy of a given basis function is likely
to be concentrated in a few clusters, which means that only
measurements taken from those clusters are likely to contribute
to reconstructing a signal that contains that specific basis
function. Since the measurement system is not awarea priori
of where signals will be localized, it needs to gather enough
measurements to reconstruct signals with any spatial localiza-
tion (refer to the example in Section II-B for details), and since
each cluster overlaps only a few such basis functions, it will
need to have a larger number of measurements. Conversely, for
the same number of measurements, as the energy of the basis
functions is more evenly distributed over clusters (smaller β),
this could lead to better reconstruction. To verify this, we
provide a proof that the minimum number of measurements
for perfect reconstruction is proportional toβ. Therefore, for
given basis functions, we can estimate performance of different
clustering schemes by computingβ.

Second, we propose a centralized iterative algorithm with
a design parameter,λ, for joint optimization of the energy
overlap and distance between nodes in each cluster. A joint
optimization is required because there exists atradeoff be-
tweenβ and the distance. To achieve smallerβ (which leads to
a reduction of number of measurements), each basis function
should be overlapped with more clusters. This means that the
nodes within a cluster tend to be farther from each other
because basis functions are localized in space. Since total
transport cost is a function of the number of measurements
and transport cost per measurement, the trade-off allows
reducing the number of measurements at the cost of increasing
transport cost per measurement. By joint optimization using
an appropriately chosenλ, we can achieve a good trade-off
between transport cost and reconstruction accuracy.

In this paper, after formulating problem in Section 2, we
provide our main theoretical results in Section 3. Based on
these, we provide an iterative algorithm in Section 4, then
verify the performance by simulation in Section 5.

II. PROBLEM FORMULATION

Before going into details of problem formulation, we briefly
present about compressed sensing (CS). A key observation in

CS is that anN -sample signal (x) having a sparse represen-
tation in one basis can be recovered from a small number of
measurements (smaller thanN ) onto a second basis that is
incoherent with the first [10], [11]. More formally, if a signal,
x ∈ ℜN , is sparse in a given basis̃Ψ (the sparsity inducing
basis or sparsifying basis), thenx = Ψ̃a, |a|0 = K, where
K ≪ N . The originalK-sparse signal can be reconstructed
with O(K log N) densemeasurements by finding the sparsest
solution to an under-determined linear system of equations.

In this paper, we consider aK-sparse 2D signal,x ∈ ℜN ,
in a given sparsifying basis̃Ψ. The signal is measured by
N sensors assumed to be positioned on a square 2D grid,
i.e., x is a snapshot of 2D data at a given time stamp. For
efficient data-gathering from sensors spread over space to
the FC located at the center of the network, we consider
distributed measurement strategies that are both sparseand
spatially localized.

For the spatially-localized sparse projections, as proposed
in [18], we first divide the network intoNc clusters of sensors
close to each other and force each of theM measurements to
be obtained from nodes within one of the clusters. Sensors
in the same cluster can create a measurement by a linear
combinations of data samples captured within the cluster with
some (random) coefficients. Since each cluster consists of
the localized sensors (which contributes to spatially-localized
projections) and the number of sensors in each cluster is
smaller than the total number of sensors (which contributes
to sparse projections), this can lead to a energy-efficient data
gathering. We will show how this procedure can be represented
by a series of CS matrices and a matrix associated with the
cluster formation in following section.

A. Spatially-Localized Projections in CS

An aggregation path in a sensor network can be represented
by a row of the measurement matrix,Φ. We place non-zero
random coefficients in the positions corresponding to active
sensors that provide their data for a specific measurement
and the other positions are set to zero, which means that the
sparsity of a particular measurement in the matrix depends
on the number of nodes participating in each aggregation. To
expressM measurements in matrix formulation, we consider
a down-sampling matrix,Q, that choosesM measurements
with equal probability out ofN . This can be expressed as:

yM×1 = QM×NΦN×NxN×1

Similarly, the aggregations within a cluster can be expressed
as a set of rows ofΦ. SinceNc non-overlapped clusters are
considered, we can express the measurement system as a block
diagonal matrix that containsNc square sub-matrices,Φi on
its diagonal, so thatΦi represents an aggregation scheme of
the ith cluster in the network. Therefore, the dimension of
Φi is determined by the number of sensors contained in the
ith cluster. To associateΦi with data,xi ⊂ x, measured by
sensors in theith cluster, we consider a permutation matrix,
P , by multiplying Φ with the output ofPx, that is



y = QΦPx, where Φ =
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A rectangular matrix,QΦP , conveys information about
locations and values of the random coefficients. Their lo-
cations and values reveal the structure of the clusters and
the aggregation coefficients, respectively. Now, we separate
it into two matrices:Φ for the coefficients andP for the
cluster formation. From now on, we will call the square block-
diagonalΦ a measurement matrix andP a clustering matrix.

Here, we need to see how the clustering matrix is related
to the sparsifying basis matrix. Since aK-sparse signal is
represented byK non-zero coefficients in a given basis̃Ψ,
x = Ψ̃a, the measurements are obtained by

y = QΦPx = QΦ
(

P Ψ̃
)

a = QΦΨa

Multiplied with Ψ̃, the clustering matrixP generatesΨ,
whose rows are permuted rows iñΨ, e.g., if P (i, j) = 1,
the ith row of Ψ is replaced by thejth row of Ψ̃: ψT

i =
∑N

j=1 P (i, j)ψ̃T
j , whereψT

i andψ̃T
j are row vectors ofΨ and

Ψ̃, respectively. After permutation by the clustering matrix,
the measurement matrices for each cluster,Φi, are correctly
associated with data measured by sensors in the corresponding
clusters,xi.

In summary, a cluster-based measurement system leads to a
block diagonal measurement matrix with appropriate permu-
tation related to the physical positions of sensors. Note that
recent work [21] [22], seeking to achieve fast CS computation,
has also proposed measurement matrices with a block-diagonal
structure, with results comparable to those of dense random
projections. Our work, however, is motivated by achieving
spatially localized projections so that our choice of block-
diagonal structure will be constrained by thedeterministicpo-
sitions of the sensors instead of uniformlyrandompermutation
considered in [21] [22].

B. Maximum Energy Overlap

A clustering matrix,P , can be associated to any clustering
scheme so that our goal is to design an appropriateP to
achieve both efficient routing and adequate reconstruction
accuracy. Though it is clear that gathering within spatially-
localized clusters leads to lower costs, it is not obvious how it
may affect reconstruction accuracy. Thus, an important goal
of this paper is to study the interaction between localized
gathering and reconstruction. A key observation is that in order
to achieve both efficient routing and adequate reconstruction
accuracy, the relationship between sparsifying basis and clus-
ters should be considered [18].

The relationship can be explained by the overlap between
basis functions and clusters. As illustrated in Fig. 1 (a), three
basis functions (B1, B2, B3) have overlaps with four square
clusters (C1, C2, C3, C4). In the example, the energy overlap
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C3

C4

C1

C2

C3

C4

B1 B2 B3

(a) overlap in spatial domain (b) overlap in sparsifying basis

Fig. 1. Illustration of energy overlap (a) in4×4 grid network of16 sensors; 4
square clusters and 3 basis functions with different spatial resolution. Assume
that all the basis functions are normalized to1 and their coefficients are
uniform and inversely proportional to extent of basis functions. (b) in permuted
sparsifying basis matrix,Ψ = PΨ̃. The entries of each basis function
(column vector ofΨ) is filled with colors if non-zero coefficients exist and
white otherwise. Note that13 more basis functions exist but omitted.

of a basis function is the area of region overlapped by clusters.
B2 is overlapped with two clusters (C1 andC2) and the value
of energy overlap withC2 is larger than withC1. In this case,
the maximum energy overlap is1 becauseB1 is completely
contained withinC1.

Intuitively, measurements taken from a cluster can also
convey information about data in other clusters when basis
functions overlap with more than one cluster, e.g.,B2 in
Fig. 1 (a) can be identified with measurements from those
clusters (C1 andC2). If a specific basis function is completely
contained within a cluster, e.g.B1, then only measurements
from C1 are likely to contribute to reconstructing a signal that
containsB1.

For example, for aK-sparse signal, the worst case scenario
is when allK basis functions supporting data are completely
contained in a single cluster, e.g.,B1 in Fig. 1 (a). To achieve
a good reconstruction,O(K log N) projections would be re-
quired from each cluster, leading to a total ofO(KNc log N)
projections. There would be two reasons for this poor perfor-
mance. First, the identity of this cluster is not knowna priori.
So it is not possible to concentrate projections within that
cluster without measuring information in the others. Second,
projections from other clusters not overlapped with those basis
vectors do not contribute to reconstruction performance as
much as projections from the overlapped cluster.

Thus, for the same number of measurements, as the energy
of basis functions is more evenly distributed over clusters, it
could lead to better reconstruction performance because itis
less likely that information in only one cluster is requiredfor
reconstruction. To quantify the distribution of energy overlap
over clusters, we define the maximum energy overlapβ as
follows:

Definition 2.1: Maximum energy overlap,β(Ψ)

β(Ψ) = β(P Ψ̃) = max
i,j

∑

l

Ψ2
i (l, j) , β(Ψ) ∈ [0, 1]

β shows the maximum amount of energy of a basis
functions captured by a single cluster. The matrixΨi is a



rectangular sub-matrix corresponding to theith cluster. For
example, as depicted in Fig. 1 (b), we first compute the sum
of squared entries (colored cells) for each pair of(Bi,Cj);
For B1, energy overlap is1 with C1 and zero with the other
clusters. Then take the maximum value of the computed sums.
If β is 1 (maximum value), it indicates that there exists at
least one basis function completely covered by a cluster in
space such as the overlap betweenB1 and C1 in Fig. 1 (a).
In contrast, smallβ means that most of basis functions are
overlapped with multiple clusters in space.

As basis functions are overlapped with more clusters, we
will have potentially higher chance to reconstruct signal
correctly. To further improve localized CS performance, a
clustering scheme that minimizes overlap should be chosen.
The degree of overlapping between basis functions and clusters
can be measured in many different ways;β is one possible
approach to measure worst case energy overlap between basis
functions and clusters. We will show howβ affects recon-
struction accuracy with respect to the minimum number of
measurements for perfect reconstruction in following section.

III. T HEORETICAL RESULT

As shown in previous sections, the maximum energy over-
lap,β, is determined for given sparsifying basis,Ψ̃, and a clus-
tering scheme,P . Here, we show howβ affects reconstruction
accuracy by deriving the minimum number of measurements
for perfect reconstruction as a function ofβ.

A. Definitions and Assumptions

We consider a clustering scheme whereN sensors are
separated intoNc non-overlapped clusters. For simplicity, we
assume these clusters contain the same number of sensors, so
thatΦ hasNc square sub-matrices with size ofN/Nc×N/Nc
along its diagonal. Therefore, if each sub-matrix is orthogonal,
thenΦ is also orthogonal, and vice versa.

Based on the problem formulation, our main result is based
on three assumptions. First, the sparsifying basis,Ψ̃, is orthog-
onal. Second, the maximum absolute value of entries in the
sparsifying basis is bounded,maxi,j |Ψ̃(i, j)| ≤ 1/

√
log N , in

order to prevent the degenerate cases such as the canonical ba-
sis in spatial domain (̃Ψ = I). This assumption is satisfied by
bases such as DCT and Daubechies wavelet with a certain level
of decomposition. Lastly, the measurement matrix,Φ, is an
orthogonalized i.i.d. Gaussian matrix;Φ(i, j) ∼ N(0, Nc/N)
andΦT Φ = IN . In order to evaluate the coherence between
measurement matrix,Φ, and permuted sparsifying basis ma-
trix, Ψ(= P Ψ̃), we define aN × N matrixU :

UN×N =










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ΦNc


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
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
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=







U1 = Φ1Ψ1

...
UNc

= ΦNc
ΨNc






(1)

By assumption, each square sub-matrix,Φi, has the same
size and so does eachUi. And U is an orthogonal matrix
becauseΦ and Ψ̃ are orthogonal by assumption and the
clustering matrix,P , is a permutation matrix, so that

UTU = (ΦP Ψ̃)T (ΦP Ψ̃) = (Ψ̃TP T ΦT )(ΦP Ψ̃) = IN

Since U is orthogonal, mutual coherence is defined as
in [12].

Definition 3.1: Mutual coherence [12]
For two orthogonal matrices (ΦT Φ = IN ,Ψ

T Ψ = IN ),
mutual coherence is defined asµ(U) = maxi,j |U(i, j)| =
maxi,j |φ(i)ψ(j)|, whereφ(i) is a row vector ofΦ and
ψ(j) is a column vector ofΨ. Note thatµ(U) ∈ [0, 1]

The coherence is a measure of similarity betweenΦ andΨ̃.
A small value ofµ(U) indicates thatΦ andΨ̃ are incoherent
with each other, i.e., no element of one basis (Ψ̃) has a sparse
representation in terms of the other basis (Φ). The minimum
number of measurements for perfect reconstruction can be
computed as follows.

Theorem 3.2:Minimum number of measurements [12]
Let U = ΦΨ be anN × N orthogonal matrix (UTU = I)
with |U(i, j)| ≤ µ(U). For a given signalx = Ψa, if a is
supported on a fixed (arbitrary) setT with K non-zero entries,
the l1 optimizer can recoverx exactly with high probability
if the number of measurementsM satisfies

M = O(Kµ2(U)N log N) (2)

The bound of measurements by Theorem 3.2 decreases as
Φ and Ψ̃ are more incoherent, i.e., the minimum number of
measurements for perfect reconstruction is determined byµ
for given K and N . Thus, if we can derive howµ changes
as a function ofβ, then we can also compute the bound of
measurements.

B. Main Result

To get the bound on the number of measurements, we
first derive an asymptotic upper bound on mutual coherence.
With this bound, we can attain the minimum number of
measurements for perfect reconstruction by using Theorem 3.2
because all the matrices are orthogonal.

Proposition 3.3: If the measurement matrix,Φ, is orthog-
onalized i.i.d. Gaussian,N(0, Nc

N ) and orthogonal sparsifying
basis,Ψ̃ and clustering matrix,P are knowna priori, then
µ(U) is asymptotically bounded by

Pr

[

µ(U) ≤ O
(

√

β
Nc

N
log N

)

]

= 1 − O
( 1

N

)

(3)

Proposition 3.3 quantifies the probability that coherence
exceeds a certain bound. The probability that coherence is not



bounded byO
(

√

β Nc

N log N
)

is close to0 asN increases. For
the proof, the main technical tools are large deviation inequal-
ities of sum of independent random variables. Specifically,the
result is derived from Bernsteins deviation inequality [23] and
a union bound for the supremum of a random process. Refer
to Appendix A for details of proof.

With aforementioned assumptions and Proposition 3.3, we
present the impact ofβ on reconstruction accuracy in terms
of the number of measurements.

Theorem 3.4:For a given signalx = Ψa with |a|0 =
K and a clustering (permutation) scheme with parameter
β ∈ [0, 1], the l1 optimizer can recoverx exactly with high
probability if the number of measurementsM satisfies

M = O(KβNc log2 N) (4)

Based on the bound of coherence by Proposition 3.3, we can
derive Theorem 3.4, the minimum number of measurements
for perfect reconstruction, by using Theorem 3.2 because, by
assumption,U is orthogonal.

Theorem 3.4 implies that if the measurement matrix is dense
(β = 1 and Nc = 1), the number of measurements is nearly
minimal (except for additionallog N factor), regardless of the
sparsifying matrix. The bound for dense measurement matrix
is identical with the bound,O(KNc log2 N) by SRM [22].
However, for sparse measurement matrix, the bound in [22]
does not involve a deterministic term,β, describing rela-
tionship between clusters and basis functions because SRM
approach assumes uniformly-random clustering.

In general, the number of measurements is proportional to
the maximum energy overlap because basis functions with
more uniformly distributed energy increase the probability
of correct reconstruction. Also, the number of measurements
is proportional to the number of clusters,Nc. This implies
that a sparser measurement matrix (largerNc) requires more
measurements for the same level of reconstruction as shown
in previous work [17], [22].

Note that there exists atradeoff betweenβ and distance
between nodes belonging to the same cluster. The decrease
of β can be achieved when each basis function should be
overlapped with more clusters, which means that the nodes
within a cluster tend to be farther from each other (which
leads to a increase of transport cost per measurement) because
basis functions are localized in space. Since total transport cost
is a function of number of measurements and transport cost
per measurement, the trade-off allows reducing the number
of measurements at the cost of increasing transport cost per
measurement. To construct clusters jointly aware of them, we
propose a centralized iterative algorithm.

IV. CENTRALIZED ITERATIVE CLUSTERING ALGORITHM

To achieve a good tradeoff between transport cost and
reconstruction accuracy, we need to jointly optimizeβ and
distance between nodes in a cluster. This motivated us to
design a centralized iterative algorithm that can generate
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Fig. 2. Illustration of update of edge weights from (a) to (b). There exist 4
square basis functions (Bi) and 5 nodes (vi) connected by edges,(vi, vj),
with different weights. Assume that the initial node for clustering isv1. At the
1st step, a cluster is formed by{v1, v2} because(v1, v2) has the minimum
weight of1. Then, without update of weights, the weight of an edge,(v1, v3),
remains the same but, with update, it increases from3 to 5 becausev3 and
the cluster,{v1, v2} is overlapped with the same basis function,B1.

optimal clusters that minimize bothβ and distance between
nodes in clusters (transport cost per measurement).

A. Algorithm details

For a given undirected graphG = (V, E), we assume that
sparsifying basis,Ψ, is knowna priori and all the basis func-
tions (columns ofΨ) are normalized to1 so thatβ ∈ [0, 1].
Also, N nodes are placed along a square grid in a field with
size of F by F . To quantify transport cost, we assume that
the cost depends on distance between nodes and define the
distancein hopsasD(e) for an edge,e ∈ E, connecting two
nodes, i.e., the smallest number of hops between two nodes
in a multi-hop network. In addition, unlike what was assumed
for Theorem 3.4, we consider clusters with different number
of nodes in order to maximize performance.

Algorithm 1 Joint Optimization ofβ andD

Given an undirected graph,G(V, E), such that|V | = N .
AssignNc nodes to clusters; one for each cluster,VCi

.
ECi

= ∅, ∀i.
for k = 1 to N − Nc do

Find En = {(v1, v2) | v1 ∈ V, v2 ∈ VCi
, ∀i}

ComputeW (e) = D(e) + λβ(e), ∀e ∈ En

emin = arg mine∈En
W (e)

vmin =
{

v1 | emin = (v1, v2), v2 ∈ VCj

}

Add emin to ECi
andvmin to VCi

.
Remove edges∈ {e | e = (vmin, v), ∀v ∈ VCj

} from E.
Removevmin from V .

end for

The goal of the algorithm is to constructNc clusters that
minimize transport costs assuming that reconstruction is guar-
anteed to be perfect. Transport costs depend on the distance
between nodes and the number of measurements transmitted
which, in turn, depends onβ. Thus we need joint optimization
of β and the distance between nodes. For joint optimization,
we designed an algorithm that iteratively finds an edges with
minimum weight associated with those two quantities then add
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Fig. 3. Joint optimization of differentλ. By running the algorithm with
Daubechies4 basis with 2nd level of decomposition,256 sensors are
separated into16 clusters. Different choices ofλ generate different results;
asλ increases, the edge weights are more sensitive to the changeof β so that
β decreases at the cost of increasingD.

it to one of clusters. We first define the weight for an edge,e,
connected to a cluster as

W (e) = D(e) + λβ(e), λ > 0, (5)

whereβ(e) is the maximum energy overlap between a partial
cluster with the edge and given basis functions.

To find a set of edges to formNc clusters such that total
weight of the edges,W (e), is minimized, we design an
algorithm based on a greedy local heuristics. The algorithm
starts fromNc initial nodes for clusters, one for each cluster;
we deterministically choseNc nodes located on the grid with
equal distance to the adjacent starting nodes. At every iteration,
we find edges connected to any of clusters and compute the
weights,W (e). Then, an edge with the minimum weight is
added to the cluster. This procedure continues until every
node is assigned to one of theNc clusters. For details of the
algorithm, refer to Algorithm 1.

The algorithm is similar to Prim’s algorithm [24] for finding
Minimum Spanning Tree (MST). Given weights of edges,
we choose an edge with minimum weight at every step like
Prim’s algorithm. However, we have additional requirements
as compared to Prim’s algorithm. First, our algorithm finds
Nc clusters with minimum total edge weights instead of a
MST. Thus, an edge with the minimum weight is added to
one of clusters to which the edge is connected rather than to a
tree. Second, Prim’s algorithm runs under the assumption that
weight of edges do not change but, in our problem, the edge
weights should be updated at every step.

Once a node with the minimum weight is added to a cluster,
energy overlap of the edges connected to the cluster changes
so that the edge weights should also change. For example, as
shown in Fig. 2, a cluster,C1 = {v1, v2, v3}, is constructed
after two iterations without update so that the total weightwill
be 6 by adding an edge weight of(v1, v2) to that of(v1, v3).
With update of edge weights, however, the edge weight of
(v1, v3) increases at the2nd iteration becausev2 and v3 are
overlapped with the same cluster,B1. Thus,v4 will be added
to the cluster so that the total weights ofC2 = {v1, v2, v4} is
3, smaller than the weight ofC1.

Given a sparsifying basis and positions of sensors, Algo-
rithm 1 generates a set ofNc clusters by minimizing edge
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Fig. 4. λ vs. β × averageD per measurement for three different 2D
Daubechies bases with a single level decomposition.256 sensors with16
clusters are considered. The y-axis indicates the estimated total transport cost
because the number of measurements is proportional toβ by Theorem 3.4.
The optimalλ∗ minimizes the total transport cost for a given basis. AsEB

increases, the results show that optimalλ∗ also increases.

weights associated with aλ. Since edge weights,W (e),
are a linear combination ofD(e) and β(e) with a design
parameterλ, different choice ofλ can affect performance of
the algorithm.

B. Optimal Choice ofλ

The design parameterλ controls the balance between two
competing terms:β(e) andD(e). As λ increases,β(e) is more
dominant factor onW (e) than D(e) so that the edges with
smallerβ(e) have higher chance to be added to a cluster, which
means that the spatial extent of clusters increases. As shown in
Fig. 3, asλ increases,β decreases butD increases. However,
it is not clear how to determine the bestλ with respect to both
reconstruction accuracy and transport cost.

For the same level of reconstruction quality, with larger
λ, the minimum number of measurements,M , decreases
thanks to the decrease ofβ while the distance between nodes
within the same cluster,D, increases. Since transport cost
is determined byC = MD, different λ affects the overall
transport cost and there could exist an (or a range of) optimal
λ that achieves the largest energy savings with the same level
of reconstruction accuracy. To show the existence of optimal
λ∗, for simplicity, we will deriveλ∗ in a toy example.

In the example, we considerK-sparse signal andNc clusters
from N sensors deployed with grid topology in the field with
size ofF by F . The distance between two nodes is defined as
the number of hops in a multi-hop network. Given sparsifying
basis and positions of sensors, we make two assumptions.
First, we assume that all the basis functions have the same
spatial extent, e.g. as would be the same with Haar basis
with a single level of decomposition. We define the number
sensors covered by each basis function asEB so that the hop
distance between basis functions is

√
EB on average. Second,

the energy of basis functions is uniformly spread over space.
If each basis function coversEB sensors in space, the energy
corresponding to any one sensor is equal to1/EB. Thus, if a



cluster is overlapped with a basis function by one sensor,β
can increase by1/EB.

Our derivation ofλ∗ in this example starts from a situ-
ation such thatβ is maximally minimized; all clusters are
overlapped with basis functions by one sensor so thatβ is
minimized to1/EB. By Theorem 3.4, the minimum number of
measurements for perfect reconstruction,M0 = KNC log2 N

EB
.

Now, if we exchange two sensors that belong to different
clusters, thenβ will increase by1/EB, so thatM0 increases
by ∆M . Meanwhile, the hop distance,D, will decrease by√

EB on average. Note that the exact amount of decrease of
D, ∆D depends on the positions of two switching sensors.
Thus, we examine the change of total cost with respect to
different locations of two sensors in a switch.

We first define the distancein hopsbetween two sensors in
the same basis function after the switch asα. For the switch,
we can compute the change of transport cost,∆C = M0D0−
(M0 +∆M)(D0−∆D), and derive a condition that transport
cost can decrease,∆C ≥ 0. Algebraically, it can be seen
that if α < α∗ =

√
EB/2, we can achieve transport cost

savings. Therefore,λ∗ should promote the cost-saving switch
(α ≤ α∗ − 1) but prevent the others(α ≥ α∗). By comparing
edge weights in each situation, we can derive a bound ofλ∗,

1

2
E

3

2

B < λ∗ <
1

2
E

3

2

B + 2EB (6)

The derivation in this example shows the there exists a
range of optimalλ∗ achieving savings of total transport cost at
the same level of reconstruction quality. As shown in (6), the
bound is proportional to the spatial extent of basis functions,
EB . As EB increases,β(e) increases butD(e) does not
change, which meansβ is over-emphasized. Therefore,λ∗

should increase to balance out the dominance ofβ(e). But,
the bound does not depend on physical characteristics of the
network described byF andN because the number of hops
between nodes remains the same irrespective of them. As
shown in Fig. 4, the increase ofEB also increasesλ* that
minimizes the estimated total transport cost. But,λ∗ in (6)
does not perfectly match with that by simulation because the
energy of basis functions in Fig. 4 is not uniformly spread
over space. Note that since the bound is derived under some
unrealistic assumptions for simplification, we need to gener-
alize it to findλ∗ in practical situation. But, this is beyond of
scope of this paper thus we will remain the generalization as
future work.

V. SIMULATION

The simulation consists of two parts. First, we verify The-
orem 3.4 by examining the correlation between the estimated
Mest by Theorem 3.4 and the minimumMsim measured by
simulation. Second, we evaluate the performance of the joint
optimization in terms of transport cost and reconstruction
quality. Each part of the simulation is based on different
clustering scheme and different evaluation for reconstruction
accuracy. The details of different simulation environments will
be described in following subsections.

TABLE I
CORRELATION COEFFICIENT, r ∈ [−1, 1], BETWEENMest AND Msim

N = 1024, Nc = 16
DB4 DB6 DB8

K=20 0.468 0.429 0.513
K=38 0.567 0.503 0.621
K=55 0.694 0.589 0.617

We first introduce common simulation environment in both
parts of simulation. We consider 3 different 2-D Daubechies
basis with 2nd level decomposition: DB4, DB6, and DB8.
For each of the basis, we reconstruct 100 synthesized data
with three different sparsity (K): 20, 38, and 55. Each data
is generated byK random coefficients for each basis. In the
network, 1024 nodes are deployed on the square grid in a
region of interest and FC located at center of the field collects
measurements from sensors with error free communication.
For given clusters in a network, we do not assume any priority
is given to specific clusters for measurements, i.e., we collect
the same number of localized measurements for each cluster.
With M measurements, data is jointly reconstructed with
gradient pursuit for sparse reconstruction (GPSR) [25].

A. Reconstruction accuracy andβ

To verify Theorem 3.4, we first measure the minimum
number of measurements,Msim, required for perfect re-
construction in our simulation. To measureMsim, we eval-
uate reconstruction accuracy by perfect reconstruction rate
(Prr). We consider that each data is perfectly reconstructed
if max |x − x̂| < 10−3 then Prr is computed over 100
synthesized sparse data. The minimumMsim for perfect
reconstruction is the smallestM that satisfies the perfect
reconstruction rate larger than 0.99.

To collect spatially-localized projections,N sensors are
separated intoNc non-overlapped clusters with the same size;
every cluster containsN/Nc sensors. We consider20 different
clustering schemes. For each clustering scheme, we divideN
sensors in the field into16 localized clusters with radial shape
going from FC to the boundary of the network. To generate
20 different clustering schemes, we rotate16 clusters with a
certain angle for each clustering scheme.

To estimateMest, for given Ψ and K, we first compute
β for each clustering scheme so that we have20 different
values ofβ, one for each clustering scheme. Then,Mest is
computed by Theorem 3.4. To check ifMest and Msim are
correlated to each other, we use Pearson’s linear correlation
coefficient,r ∈ [−1, 1] [26]. Note that we need to consider a

TABLE II
CORRELATION COEFFICIENT, r ∈ [−1, 1], BETWEEN MAXIMUM ENERGY

OVERLAP AND MSE FOR EACH BASIS

N = 1024, Nc = 16, M = 410
DB4 DB6 DB8

K=20 0.334 0.560 0.499
K=38 0.458 0.633 0.564
K=55 0.448 0.614 0.664



0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
21

21.5

22

22.5

23

23.5

Beta

A
ve

ra
ge

 D
 / 

M
Beta vs. Average hop distance(D) per measurement(M)

Fig. 5.β vs. average number of hops per measurement. Each point corresponds
to the result of Algorithm 1 with differentλ. The points with red circle are
chosen for the evaluation of transport cost and MSE in Fig. 6

constant value to explainO operator forMest as1 because the
correlation coefficient is a measure of the linear dependence
between two variables so that does not change regardless of
the constant.

As shown in Table I, the correlation value is around 0.55 for
differentK andΨ, which shows thatβ affects reconstruction
accuracy in terms of the minimum number of measurements
for perfect reconstruction. However, our bound is not tight
enough to estimate the exact number of measurements because
there exists a gap betweenMest and Msim. The reason is
that β measures the worst energy overlap so thatβ can lose
accuracy when a few large energy overlap exist. However,β is
a useful metric because, based onβ, we can compare different
clustering schemes and also design a clustering scheme by
optimizing β as discussed in Section IV.

Since the maximum energy overlap is to measure worst case
energy overlap,β can be misleading in a situation where a
small number of large energy overlap dominate the others. For
example, suppose there exists an energy overlap with value
of 1 (perfect overlap) but the others are relatively small, that
is, β = 1. However, successful reconstruction is possible with
high quality if the basis function associated to the large energy
overlap is not in the data support. Therefore, it would be
meaningful to examine the impact of maximum energy overlap
of each basis function and clusters on the error occurred by
the basis function.

For each basis function, we defineβi measuring the max-
imum energy overlap between theith basis function and
clusters. Thus,βi’s show distribution of energy overlap with
respect to basis functions. Table II shows the average correla-
tion betweenβi and error occurred by corresponding basis
function. The simulation results show that basis functions
with larger βi generate more errors. This implies that basis
functions with concentrated energy on fewer clusters have
lower probability to be identified by spatially-localized mea-
surements.
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Fig. 6. Transport cost ratio vs. MSE. The x-axis is the ratio of total transport
cost of spatially-localized CS to the cost for raw data gathering without any
manipulation. We compare performance of results by joint optimization with
two different λ’s with that of SPT64 in [18]

B. Joint optimization

To evaluate the joint optimization, we use mean squared
error (MSE) as a metric for reconstruction accuracy. This
is because, in practice, we are more interested in the level
of error associated to transport cost. For the cost evaluation,
transmission cost is computed by

∑

(bit) × (number of hops)
but the work could be extended to use more realistic cost
metrics. Since we allocated the same number of bits for each
measurement, transmission cost depends on the product of the
number of measurements with the distance in hops. The cost
ratio in our simulation is the ratio to the cost for raw data
gathering without compression.

In our simulation, we consider a signal with sparsity of38
in 2D Daubechies-4 basis with the2nd level of decomposition.
Located at center of the field, FC collectsM measurements
from 64 clusters. For energy efficiency, measurements from
each cluster are routed to FC along shortest path for energy
efficiency. For comparison with other CS approaches, we
consider a clustering scheme based on shortest path tree (SPT)
that showed the best performance in [18].

As discussed in Section IV, in general, smallerβ can be
achieved by the increase of distance between nodes in the
same cluster. The tradeoff can also be observed in Fig. 5;
as λ increases, we can achieve smallerβ but result in larger
hop distance per measurements as discussed in Section IV.
In addition, Fig. 5 shows that, asλ increases,β decreases
quickly but it is saturated at some point. After that, transport
cost increases without improvement ofβ. Thus, we can expect
that one ofλ’s around the saturation will correspond to optimal
λ∗ showing the best performance in terms of total transport
cost and reconstruction accuracy.

Figure 6 shows the overall performance with differentλ.
Each curve shows the average MSE over100 synthesized data
and the variation of reconstruction accuracy is expressed by
three times of standard deviation. As expected, aλ with the



value of16 located at the sharp transition in Fig. 5 shows the
best performance. With the bestλ and 64 clusters of1024
sensors, we can achieve40% cost saving with respect to raw
data-gathering with small mean squared error(≤ 1 × 10−4).
Compared with SPT-based clustering scheme, our clustering
scheme with joint optimization performs better. The clusters in
SPT-based clustering scheme consume less energy to construct
a measurement. However, the savings in transport cost is
compensated by larger number of measurements required
for the same level of reconstruction quality which can be
explained by large value ofβ(= 0.83).

VI. CONCLUSION

To achieve energy efficient data gathering in WSN, we
exploit a sparse and spatially-localized CS measurement sys-
tem that is aware of transport cost per measurement by
constructing measurements within spatially-localized clusters.
However, while the spatially-localized measurement system
leads to lower transport cost, it is not obvious how it affects
reconstruction accuracy. Thus, we first introduced a metricto
measure the maximum energy overlap between clusters and
basis functions,β. Then we showed that the metric has an
impact on reconstruction accuracy with respect to the number
of measurements for perfect reconstruction. By exploitingthe
tradeoff betweenβ and distance between sensors in clusters,
we propose a centralized iterative algorithm with a design
parameter,λ, to construct clusters that are jointly aware of
energy efficiency and reconstruction quality. Our simulation
results show that, with an an appropriately chosenλ, we
can achieve significant savings in transport cost with small
reconstruction error.

APPENDIX

A. Proof of Proposition 3.3

In this section, we present the details of the proof of
Proposition 3.3. The goal is to bound the coherence in terms
of β with high probability. The sketch of proof is similar to
that of SRM in [22] but the details are different. First, in
our problem, the randomness comes from being due to the
coefficients of the measurement matrix,Φ(i, j), instead of
the uniform permutation as in SRM. Second, we consider an
additional quantity,β, as well as the number of clusters,Nc.

Before going into the details of proof, we approximate a
bound related toE[U2

i (j, k)] for simplicity. Basically,Ui(j, k)
is the inner product between thejth row of Φi andkth column
of Ψ as shown in (1). Suppose thatXl = Φi(j, l)Ψi(l, k) so
that Ui(j, k) =

∑

l Φi(j, l)Ψi(l, k) =
∑

l Xl. Note thatγ =
maxi,j |Ψ(i, j)| ≤ 1/

√
log N by assumption andΦ(j, k) ∼

N(0, Nc/N). Therefore,|Xl| can be bounded by the product
of γ and three times of the standard deviation ofΦ(j, k) with
high probability.

|Xi| = |Φi(j, l)Ψi(l, k)| ≤ 3σγ ≤ 3

√

Nc

N log N

The next approximation is concerned withE[U2
i (j, k)].

Note that V ar(Ui(j, k)) is equal to E[Ui(j, k)2] because
E(Ui(j, k)) = 0. V ar(Ui(j, k)) can be approximated with
respect toβ.

V ar(Ui(j, k)) = E[Ui(j, k)2]

= E



(

N/Nc
∑

l=1

Φi(j, l)Ψi(l, k))2



 (7)

= E





N/Nc
∑

l=1

Φ2
i (j, l)Ψ

2
i (l, k)





=

N/Nc
∑

l=1

E[Φ2
i (j, l)]Ψ

2
i (l, k) =

N/Nc
∑

l=1

Nc

N
Ψ2

i (l, k)

≤ Nc

N
β (by definition ofβ)

In (7), the cross terms are zero sinceE(Φi(j, l)) = 0 and
Φi(j, l)’s are independent. Now, we present the details of the
proof of Theorem 3.3. The main technical tools are large
deviation inequalities of sum of independent random variables.
Specifically, this is derived from Bernsteins deviation inequal-
ity and a union bound for the supremum of a random process.

Pr[µ ≤ α]

= Pr[max
j,k

|U(j, k)| ≤ α]

= 1 − Pr[max
j,k

|U(j, k)| > α]

= 1 − Pr(
⋃

i

max
j,k

|Ui(j, k)| > α)

≥ 1 −
Nc
∑

i=1

N/Nc
∑

j=1

N
∑

k=1

Pr(|Ui(j, k)| > α) (by Union Bound)

The tail probability ofUi(j, k) is obtained by Theorem A.1.
Note thatUi(j, k)’s are independent random variables because,
by assumption,Φ(i, j)’s are i.i.d. Gaussian random variables
with zero mean.

Theorem A.1:Bernstein’s inequality [23]
If X1, X2, . . . , Xn are independent (not necessarily identical)
and zero-mean random variables, and|Xi| ≤ M, ∀i, then

Pr

[
∣

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

∣

≥ α

]

≤ 2 exp

(

− α2/2
∑i=n

i=1 E[X2
i ] + Mα/3

)

(8)

Suppose thatXl = Φi(j, l)Ψi(l, k). Then, by the ap-

proximation, we haveM = 3
√

Nc

N log N and
∑

E[X2
i ] =

V ar(Ui(j, k)) ≤ Nc

N β. By substitutingM and
∑

E[X2
i ] to

Bernstein’s inequality,



Pr[µ ≤ α]

≥ 1 −
Nc
∑

i=1

N/Nc
∑

j=1

N
∑

k=1

2 exp

(

− α2/2

V ar(Ui(j, k)) + Mα/3

)

(by Berstein inequality)

≥ 1 − 2N2 exp

(

− α2/2

(βNc/N) + (3
√

Nc/N log N)α/3

)

(by approximation)

= 1 − exp

(

log 2N2 − α2/2

(βNc/N) + (
√

Nc/N log N)α

)

We need to find the minimumα, α∗, such that probability,
Pr[µ ≤ α∗], asymptotically goes to ‘1’. To achieve the
asymptotic behavior, the2nd term (exp term) in the last
inequality should be zero with largeN , which means that
the2nd order polynomial inside theexp term is negative. The
polynomial can be expressed as a function ofα.

f(α) = −α2/2 +

√

Nc

N log N
log 2N2α +

βNc

N
log 2N2

To find α∗ for large N , we first check the characteristics
of f(α). Since f(0) > 0, f ′(0) > 0, and f ′′(0) < 0, the
larger root of f(α) is the minimumα such thatPr[µ ≤
α∗] = 1 for largeN . Algebraically, the larger root off(α) is

O(
√

β Nc

N log N). Thus, we can conclude that

Pr[µ ≤ α∗] = 1 − O(1/N),

where α∗ = O(

√

β
Nc

N
log N)

�

With the asymptotic bound of coherence above, we can
derive Theorem 3.4, the minimum number of measurements
for perfect reconstruction, by Theorem 3.2.
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