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Abstract—In sensor networks, energy efficient data manipu- the number of sensors, which could be undesirable for large-
lation / transmission is very important for data gathering, due scale sensor networks. As a potential alternative, Corsptes
to significant power constraints on the sensors. As a poterati Sensing (CS) has been proposed because it requires capturin

solution, Compressed Sensing (CS) has been proposed, besau maller number of measurements for successful reconstruc
it requires capturing a smaller number of samples for succesful a smailer number o

reconstruction of sparse data. Traditional CS does not takeex-  tion; specifically, the number of measurements carried o th
plicitly into consideration the cost of each measurement {isimply FC depends on the characteristics (sparseness) of the signa
tries to minimize the number of measurements), and this ign@s  rather than on the dimension of the signal [10], [11], [12]

the need to transport measurements over the sensor network. (which in our case corresponds to the number of sensors in
In this paper, we study CS approaches for sensor networks tha the network.)

are spatially-localized, thus reducing the cost of data géitering. . .
In particular, we study the reconstruction accuracy properties However, while the potential advantages of CS have been

of a spatially-localized distributed CS system. We introdee the acknowledged [13], [14], obstacles remain for it to become
concept of maximum energy overlap between clusters and basi competitive with more established (e.g., transform-bpdath
functions, and show that the corresponding metric can be ust gaihering and compression techniques. A primary reason is
to estimate the minimum number of measurements needed to . S
achieve accurate reconstruction. Based on this metric, werppose that CS theoretical developments have focusednammizing
a centralized iterative algorithm for joint optimization of the the number of measuremeite., the number of values relayed
energy overlap and distance between nodes in each clusteru® to the FC and obtained as linear combinations of samples
simulation results show that we can achieve significant sawy)s obtained by the sensors), rather thanmainimizing the cost of
in transport cost with small reconstruction error. each measuremefite., transport cost for each aggregate). In
fact, in many CS applications (e.g., [15] [16]), each measur
ment is a linear combination ghany (or all) samples of the
Sensor networks consist of numerous tiny and cheap saignal. Clearly, this kind of “dense” measurement system is
sors deployed on any physical region to monitor and reparbt efficient for sensor networks, since each final measuneme
physical phenomena. This makes it possible to directlyzetil would require aggregating samples from many sensors that
space/time localized information for a wide range of agplic are potentially far from each other, so that the total cost ca
tions. To collect information from sensors spread over spapotentially be higher than that of a raw data gathering sehem
and deliver it to a destination (called the fusion center)fFC To address this problensparse measurememjpproaches
energy-aware data manipulation / transmission is requirédhere each measurement requires information from juswa fe
because power is a scarce resource in the sensors. For the getive sensors) have been proposed for both single hop [17]
pose of efficient data gathering, joint routing and compogss and multi-hop [13], [14] sensor networks. While reducing th
has been studied for locally correlated sensor network. dat@imber of samples used to compute each CS measurement
Most of the early work was theoretical in nature and, whileeduces overall cost, it does not guarantee that the negulti
providing important insights, did not fully consider prigel system will be efficient, as the cost also depends on the
details of how compression is to be achieved [1], [2], [3}elative positions of sensors providing information forckea
More recently, it has been shown how practical compressimeasurement. If sensors contributing to a given measuremen
schemes such as distributed wavelets can be adapted to warekfar apart, the cost will still be significant even with arse
efficiently with various routing strategies [4], [5], [6]7] measurement approach. This is why sparse random projection
Transform-based techniques, e.g., wavelet based #BRP in [17]) does not perform well in terms of transport
proaches [4], [5], [8] or the distributed KLT [9], can reduceost [18].
the number of bits to be transmitted to the FC, so as to re-The key observation in this work is that an efficient mea-
duce transport cost. These transform techniques are imtheresurement system needs to beth sparse(few sensors con-
critically-sampled, which means that the number of samplétbute samples to each measurement) apdtially-localized
(transform coefficients) transmitted to the FC is equal ® tl{the sensors that contribute to each measurement are close t
number of sensors. Thus, their cost of gathering scales thp weach other) in order to be competitive in terms of transpast ¢

I. INTRODUCTION



and reconstruction accuracy. In this paper we extend ouk waES is that anV-sample signal#) having a sparse represen-
in [18], where we first proposed the use of a cluster-basdd tetation in one basis can be recovered from a small number of
nigue for CS. In our cluster-based approach each measutenmaasurements (smaller thaw) onto a second basis that is
is a linear of combination of samples captukeithin a single incoherent with the first [10], [11]. More formally, if a sigh
cluster, and clusters selected to contain sensor nodes that are R”, is sparse in a given basib (the sparsity inducing
close to each other. Here, we extend our previous work [184sis or sparsifying basis), than = ®a, |a|y = K, where
by analyzing how the choice of spatial clusters affects th€ < N. The original K-sparse signal can be reconstructed
reconstruction accuracy, for a given spatially-localizpdrsity with O(K log N) densemeasurements by finding the sparsest
basis. Moreover, we propose novel clustering techniquass tsolution to an under-determined linear system of equations
take into consideration both transport cost and recornsruc  In this paper, we consider A-sparse 2D signale € RY,
quality. in a given sparsifying basi@. The signal is measured by

More specifically, we have two main contributions in thisV sensors assumed to be positioned on a square 2D grid,
paper. First, we introduce the concept mximumenergy i.e., = is a snapshot of 2D data at a given time stamp. For
overlap between clusters and basis functions, which we ddficient data-gathering from sensors spread over space to
note 3. If basis functions and clusters have similar spatighe FC located at the center of the network, we consider
localization, most of energy of a given basis function igljk distributed measurement strategies that are both sgarde
to be concentrated in a few clusters, which means that orslpatially localized.
measurements taken from those clusters are likely to dortéri  For the spatially-localized sparse projections, as pregos
to reconstructing a signal that contains that specific basis[18], we first divide the network intdV,. clusters of sensors
function. Since the measurement system is not awgvdori  close to each other and force each of filemeasurements to
of where signals will be localized, it needs to gather enoudie obtained from nodes within one of the clusters. Sensors
measurements to reconstruct signals with any spatialifzcal in the same cluster can create a measurement by a linear
tion (refer to the example in Section 11-B for details), aimte combinations of data samples captured within the clustér wi
each cluster overlaps only a few such basis functions, it wdome (random) coefficients. Since each cluster consists of
need to have a larger number of measurements. Converselytiie localized sensors (which contributes to spatiallalzed
the same number of measurements, as the energy of the bpsigections) and the number of sensors in each cluster is
functions is more evenly distributed over clusters (smafle smaller than the total number of sensors (which contributes
this could lead to better reconstruction. To verify this, we sparse projections), this can lead to a energy-efficiatd d
provide a proof that the minimum number of measuremengathering. We will show how this procedure can be represente
for perfect reconstruction is proportional g Therefore, for by a series of CS matrices and a matrix associated with the
given basis functions, we can estimate performance ofréifie cluster formation in following section.
clustering schemes by computing

Second, we propose a centralized iterative algorithm with Spatially-Localized Projections in CS

a design parametep, for joint optimization of the energy  ap aggregation path in a sensor network can be represented
overlap and distance between nodes in each cluster. A JO§¥ a row of the measurement matri®, We place non-zero
optimization is required because there existtraaieoff be-  random coefficients in the positions corresponding to activ
tween( and the distance. To achieve smafiefwhich leads to sensors that provide their data for a specific measurement
a reduction of number of measurements), éach basis funCtigy the other positions are set to zero, which means that the
should be overlapped with more clusters. This means that §gysity of a particular measurement in the matrix depends
nodes within a cluster tend to be farther from each othg, the number of nodes participating in each aggregation. To
because basis functions are localized in space. Since tQhress)s measurements in matrix formulation, we consider
transport cost is a function of the number of measuremenisyown-sampling matrixQ, that chooses\/ measurements

and transport cost per measurement, the trade-off alloysp, equal probability out ofV. This can be expressed as:
reducing the number of measurements at the cost of inciggasin

transport cost per measurement. By joint optimization gisin Yuxi = QuxNPNxNTNx1
an appropriately chosen, we can achieve a good trade-off . .
between transport cost and reconstruction accuracy. Similarly, the aggregations within a cluster can be exgess

In this paper, after formulating problem in Section 2, w8@S @ set of rows ofo. Since V. non-overlapped clusters are
provide our main theoretical results in Section 3. Based &Rnsidered, we can express the measurement system as a block
these, we provide an iterative algorithm in Section 4, th&Hagonal matrix that containd/. square sub-matrice; on

verify the performance by simulation in Section 5. its diagonal, so thaf; represents an aggregation scheme of
the i*" cluster in the network. Therefore, the dimension of

®; is determined by the number of sensors contained in the
it" cluster. To associat®; with data,z; C =, measured by

Before going into details of problem formulation, we brieflysensors in the*" cluster, we consider a permutation matrix,
present about compressed sensing (CS). A key observatiodPinby multiplying ® with the output of Pz, that is

Il. PROBLEM FORMULATION
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cations and values reveal the structure of the clusters ar €2 C4 4
the aggregation coefficients, respectively. Now, we sdpara (a) overlap in spatial domain (b) overiap in sparsifying basis

it into two matrices:® for the coefficients andP for the _ _ _

cluster formation. From now on, we will call the square blocki9: 1- lustration of energy overlap (a) ix 4 grid network of16 sensors; 4
. . . . square clusters and 3 basis functions with different speggolution. Assume

diagonal® a measurement matrix arfd a clustering matrix. that all the basis functions are normalized toand their coefficients are
Here, we need to see how the clustering matrix is relatediform and inversely proportional to extent of basis fimms. (b) in permuted

to the sparsifying basis matrix. Since f-sparse signal is SParsifying basis matrix = P®¥. The entries of each basis function
P fy 9 P gna (column vector of®) is filled with colors if non-zero coefficients exist and

represented by<' non-zero coefficients in a given basls, it otherwise. Note that3 more basis functions exist but omitted.
x = Pa, the measurements are obtained by
- of a basis function is the area of region overlapped by dlaste
y=Q®Pz=Q%® (P‘I’) a=QP%¥a B, is overlapped with two clusterg{ andC,) and the value
of energy overlap witlC; is larger than withC; . In this case,

Multiplied with ¥, the clustering matrixP generatesp, the maximum energy overlap is becauseB, is completely

whose rows are permuted rows W, e.g., if P(i,j) = 1, contained withinC,.

th?vlth row of ¥ is replaced by thg™ row of W: ¢f = Intuitively, measurements taken from a cluster can also
21 P, )] whered] andip] are row vectors o and  convey information about data in other clusters when basis
¥, respectively. After permutation by the clustering matriunctions overlap with more than one cluster, e.§y in
the measurement matrices for each clusitey, are correctly Fig. 1 (a) can be identified with measurements from those
associated with data measured by sensors in the corresgpndiusters (5 andCs). If a specific basis function is completely
clusters,x;. contained within a cluster, e.dg3;, then only measurements
In summary, a cluster-based measurement system leads fmen C; are likely to contribute to reconstructing a signal that
block diagonal measurement matrix with appropriate permgentainsB;.
tation related to the physical positions of sensors. No#& th For example, for d(-sparse signal, the worst case scenario
recent work [21] [22], seeking to achieve fast CS compumatiois when all K basis functions supporting data are completely
has also proposed measurement matrices with a block-didigatbntained in a single cluster, e.@; in Fig. 1 (a). To achieve
structure, with results comparable to those of dense randangood reconstructiorQ(K log N) projections would be re-
projections. Our work, however, is motivated by achievinguired from each cluster, leading to a total@fK N, log N)
spatially localized projections so that our choice of blockrojections. There would be two reasons for this poor perfor
diagonal structure will be constrained by ttieterministicoo- mance. First, the identity of this cluster is not knowpriori.
sitions of the sensors instead of uniform#yndompermutation So it is not possible to concentrate projections within that
considered in [21] [22]. cluster without measuring information in the others. Segon
projections from other clusters not overlapped with thassd
) ) ) . vectors do not contribute to reconstruction performance as
A clustering matrix,P?, can be associated to any clustering, -1 as projections from the overlapped cluster.
scheme so that our goal is to design an appropri€0  Tpyg for the same number of measurements, as the energy
achieve both efficient routing and adequate reconstructigipasis functions is more evenly distributed over clustérs
accuracy. Though it is clear that gathering within spatiall 4 lead to better reconstruction performance becauise it
localized clusters leads to lower costs, it is not obvious o o likely that information in only one cluster is requiried
may affect reconstruction accuracy. Thus, an important 992.onstruction. To quantify the distribution of energy dap

of this paper is to study the interaction between localized,e; clusters. we define the maximum energy overiaps
gathering and reconstruction. A key observation is that@®p ¢,ows: '

to achieve both efficient routing and adequate reconstncti
accuracy, the relationship between sparsifying basis &rsd ¢
ters should be considered [18]. _ Iy _ 207 5

The relationship can be explained by the overlap between H(¥) = H(PY) Hﬁx;wl (3), A(E) € [0,1]
basis functions and clusters. As illustrated in Fig. 1 (a)e¢
basis functions ,, B2, Bs) have overlaps with four square ([ shows the maximum amount of energy of a basis
clusters (1, Cs, Cs, Cy). In the example, the energy overlagunctions captured by a single cluster. The matirx is a

B. Maximum Energy Overlap

Definition 2.1: Maximum energy overlap? (¥)



rectangular sub-matrix corresponding to t#i& cluster. For By assumption, each square sub-matd, has the same
example, as depicted in Fig. 1 (b), we first compute the swize and so does eadli;. And U is an orthogonal matrix
of squared entries (colored cells) for each pair(&%,C;); because® and ¥ are orthogonal by assumption and the
For B;, energy overlap id4 with C; and zero with the other clustering matrix,P, is a permutation matrix, so that
clusters. Then take the maximum value of the computed sums.

If g is 1 (maximum value), it indicates that there exists at ~ ~ ~ =~
least one basis function completely covered by a cluster irVTU = (®PV)T(2P¥) = (¥TPTOT)(®PY) = Iy

space such as the overlap betwBerand C in Fig. 1 (a).  Since U is orthogonal, mutual coherence is defined as
In contrast, smalls means that most of basis functions arg [12].
overlapped with multiple clusters in space.

As basis functions are overlapped with more clusters, weDefinition 3.1: Mutual coherence [12]
will have potentially higher chance to reconstruct sign&lor two orthogonal matrices®(*® = In,®¥T¥ = Iy),
correctly. To further improve localized CS performance, @utual coherence is defined aglU) = max; ; |U(4,5)| =
clustering scheme that minimizes overlap should be chosemx; ; |¢(i)1(5)|, where ¢(i) is a row vector of® and
The degree of overlapping between basis functions andeciisty(j) is a column vector of. Note thatu(U) € [0, 1]
can be measured in many different waysjs one possible . Lo =
approach to measure worst case energy overlap between bas-,g]e coherence is a measure of similarity betw_éeand\ll.
functions and clusters. We will show ho@ affects recon- A small value ofy(U) indicates thate and ¥ are incoherent

struction accuracy with respect to the minimum number Wth each ofcher_, .e., no element of one basy fas asparse

measurements for perfect reconstruction in followingisect representation in terms of the other basly.(The minimum
number of measurements for perfect reconstruction can be

I1l. THEORETICAL RESULT Computed as fo”ows_
As shown in previous sections, the maximum energy over-

lap, 3, is determined for given sparsifying basi, and a clus-

tering schemeP. Here, we show how affects reconstruction

accuracy by deriving the minimum number of measureme

for perfect reconstruction as a function 6f

Theorem 3.2:Minimum number of measurements [12]
Let U = @¥ be anN x N orthogonal matrix UTU = I)
Adth [U (4, )| < p(U). For a given signale = Wa, if a is
supported on a fixedafbitrary) setT" with K non-zero entries,
o _ the [; optimizer can recoveg exactly with high probability
A. Definitions and Assumptions if the number of measurementd satisfies

We consider a clustering scheme wheke sensors are 9
separated intdV. non-overlapped clusters. For simplicity, we M = O(Ku“(U)N log N) ©
assume these clusters contain the same number of sensors, so

that® hasN. square sub-matrices with size 8/ N.x N/Nc  The bound of measurements by Theorem 3.2 decreases as

along its diagonal. Therefore, if each sub-matrix is ortv@, & and ¥ are more incoherent, i.e., the minimum number of

then @ is also orthogonal, and vice versa. _ measurements for perfect reconstruction is determineg: by
Based on the problem formulation, our main result is basegt given K and N. Thus, if we can derive how changes

on three assumptions. First, the sparsifying babisis orthog- 35 a function of3, then we can also compute the bound of
onal. Second, the maximum absolute value of entries in thigasurements.

sparsifying basis is boundethax; ; [ ¥ (i, j)| < 1/v/Tog N, in _

order to prevent the degenerate cases such as the cananicaPb Main Result

sis in spatial domain® = I). This assumption is satisfied by To get the bound on the number of measurements, we
bases such as DCT and Daubechies wavelet with a certain I€fitgt derive an asymptotic upper bound on mutual coherence.
of decomposition. Lastly, the measurement matfix,is an With this bound, we can attain the minimum number of
orthogonalized i.i.d. Gaussian matrig{i, j) ~ N(0, N./N) measurements for perfect reconstruction by using Theorgm 3
and®T® = I. In order to evaluate the coherence betwedsecause all the matrices are orthogonal.

measurement matrixP, and permuted sparsifying basis ma-

trix, ¥(= P¥), we define aV x N matrix U: Proposition 3.3:1f the measurement matrix®, is orthog-
onalized i.i.d. Gaussiany (0, %) and orthogonal sparsifying
(& v, basis, ¥ and clustering matrixP are knowna priori, then
b, v, w(U) is asymptotically bounded by
Unxn =
éNc ‘IlNc PT

pU) < O(\/B%IOgN)] =1- 0(%) ®)

= : 1 . - -
: @) Proposition 3.3 quantifies the probability that coherence
LUN. = &N YN, exceeds a certain bound. The probability that coherencetis n




bounded b)O(, /ﬁ% log N) is close ta) asV increases. For B, Bi B B+
the proof, the main technical tools are large deviation iraq
ities of sum of independent random variables. Specifictily, sz/ e g
result is derived from Bernsteins deviation inequality][28d o 4Py
a union bound for the supremum of a random process. Refe @ @ @__@
to Appendix A for details of proof. we/ e we N N e
With aforementioned assumptions and Proposition 3.3, w LN LN
present the impact of on reconstruction accuracy in terms @ @
of the number of measurements.
B3 B4 Bs B4
Theorem 3.4:For a given signale = Wa with |a|p = (a) 1% iteration (b)2"¢ iteration

K and a clustering (permutation) scheme with parameter

.. . . Fig. 2. lllustration of update of edge weights from (a) to. (bhere exist 4
B e [0’ 1]’ the optimizer can recovex exaCtly with hlgh square basis functionsB¢) and 5 nodes;) connected by edgegy;, v;),

probability if the number of measurement$ satisfies with different weights. Assume that the initial node forstering isv; . At the
5 15t step, a cluster is formed b1, v2} becausgvi, v2) has the minimum
M = O(KfBN.log” N) (4) weight of1. Then, without update of weights, the weight of an edge, vs),

remains the same but, with update, it increases fBota 5 becausevs and
the cluster{v1,v2} is overlapped with the same basis functidsy,.
Based on the bound of coherence by Proposition 3.3, we can
derive Theorem 3.4, the minimum number of measurememgtimal clusters that minimize both and distance between
for perfect reconstruction, by using Theorem 3.2 becauge, odes in clusters (transport cost per measurement).
assumptionfJ is orthogonal. A Algorithm details
Theorem 3.4 implies that if the measurement matrix is dense ] )
(3 =1 and N, = 1), the number of measurements is nearly FOr @ given undirected grapti = (V, £), we assume that
minimal (except for additiondbg N factor), regardless of the SParsifying basis¥, is knowna priori and all the basis func-
sparsifying matrix. The bound for dense measurement mathgns (columns of¥) are normalized td so thatj € [0,1].
is identical with the boundQ(K N, log N) by SRM [22]. Also, N nodes are placeo_l along a square grid in a field with
However, for sparse measurement matrix, the bound in [29F€ Of £ by F'. To quantify transport cost, we assume that
does not involve a deterministic terns, describing rela- the cost depends on distance between nodes and define the

tionship between clusters and basis functions because SEiancein hopsas D(e) for an edge¢ € £, connecting two
approach assumes uniformly-random clustering. nodes, i.e., the smallest number of hops between two nodes

In general, the number of measurements is proportionalifba multi-hop network. In addition, unlike what was assumed

the maximum energy overlap because basis functions wigy Theorem 3.4, we consider clusters with different number

more uniformly distributed energy increase the probapili®f Nodes in order to maximize performance.

of correct reconstruction. Also, the number of measurement—— _ _

is proportional to the number of clusterd,.. This implies ~gorithm 1 Joint Optimization off and D

that a sparser measurement matrix (largg) requires more  Given an undirected grapli(V, E), such thafV| = N.

measurements for the same level of reconstruction as showA\ssign N nodes to clusters; one for each clusfe;, .

in previous work [17], [22]. Ec, =2, Vi.
Note that there exists &radeoff betweens and distance for k=1to N — N, do

between nodes belonging to the same cluster. The decrease Find £y, = {(v1,v2) [ v1 € V,v2 € Vi, Vi}

of 3 can be achieved when each basis function should be ComputeW(e) = D(e) + AB(e), Ve € E,

overlapped with more clusters, which means that the nodes €min = argmin.cp W(e)

within a cluster tend to be farther from each other (which  Umin = {v1 | €min = (vi,v2),v2 € Vi, }

leads to a increase of transport cost per measurement)deecau Add €min 10 E¢, andvm, to Ve,

basis functions are localized in space. Since total tramspst Remove edges {e | e = (vjmin,v), Vv € V¢, } from E.

is a function of number of measurements and transport cost Removev,;, from V.

per measurement, the trade-off allows reducing the numbegend for

of measurements at the cost of increasing transport cost per

measurement. To construct clusters jointly aware of them, w The goal of the algorithm is to construgf. clusters that

propose a centralized iterative algorithm. minimize transport costs assuming that reconstructiomés-g

anteed to be perfect. Transport costs depend on the distance

IV. CENTRALIZED ITERATIVE CLUSTERING ALGORITHM  patween nodes and the number of measurements transmitted
To achieve a good tradeoff between transport cost awthich, in turn, depends ofi. Thus we need joint optimization

reconstruction accuracy, we need to jointly optimjzeand of g and the distance between nodes. For joint optimization,

distance between nodes in a cluster. This motivated uswe designed an algorithm that iteratively finds an edges with

design a centralized iterative algorithm that can generaténimum weight associated with those two quantities thesh ad
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Fig. 3. Joint optimization of different\. By running the algorithm with
Daubechies4 basis with 2¢ level of decomposition,256 sensors are 6F
separated intd6 clusters. Different choices of generate different results;
as\ increases, the edge weights are more sensitive to the cloéyeo that

3 decreases at the cost of increasibg ) 5 10 15 20 2 3 3 40
Lambda

it to one of clusters. We first define the weight for an edge, Fi9- 4- A vs. § x averageD per measurement for three different 2D
Daubechies bases with a single level decomposititiié sensors with16
connected to a cluster as

clusters are considered. The y-axis indicates the estihtatal transport cost
because the number of measurements is proportiongl by Theorem 3.4.
Wi(e) = D(e) + AB(e), A >0, (5) The optimalA* minimizes the total transport cost for a given basis. A
increases, the results show that optimal also increases.

whereg(e) is the maximum energy overlap between a partial

cluster with the edge and given basis functions. weights associated with a. Since edge weightsiV (e),
To find a set of edges to fornV. clusters such that total are a linear combination oP(e) and 3(e) with a design

weight of the edgesV(e), is minimized, we design an parameter), different choice of\ can affect performance of
algorithm based on a greedy local heuristics. The algorithiie algorithm.

starts from.V,. initial nodes for clusters, one for each cluster;

we deterministically chosé/. nodes located on the grid with B. Optimal Choice of\

equal distance to the adjacent starting nodes. At eveatiter,  The design parametey controls the balance between two
we find edges connected to any of clusters and compute #gnpeting terms3(e) andD(e). As ) increasesj(e) is more
weights, W (e). Then, an edge with the minimum weight isdominant factor oni¥’(e) than D(e) so that the edges with
added to the cluster. This procedure continues until evegphaller3(e) have higher chance to be added to a cluster, which
node is assigned to one of thé. clusters. For details of the means that the spatial extent of clusters increases. Asrshow
algorithm, refer to Algorithm 1. Fig. 3, as) increasesf? decreases bub increases. However,

The algorithmis similar to Prim’s algorithm [24] for findingit is not clear how to determine the bestith respect to both
Minimum Spanning Tree (MST). Given weights of edgeseconstruction accuracy and transport cost.
we choose an edge with minimum weight at every step like For the same level of reconstruction quality, with larger
Prim’s algorithm. However, we have additional requirersenf\, the minimum number of measurement&], decreases
as compared to Prim’'s algorithm. First, our algorithm findghanks to the decrease Gfwhile the distance between nodes
N, clusters with minimum total edge weights instead of within the same clusterD, increases. Since transport cost
MST. Thus, an edge with the minimum weight is added t8 determined byC' = M D, different \ affects the overall
one of clusters to which the edge is connected rather than teransport cost and there could exist an (or a range of) optima
tree. Second, Prim’s algorithm runs under the assumptian th\ that achieves the largest energy savings with the same level
weight of edges do not change but, in our problem, the edgereconstruction accuracy. To show the existence of optima
weights should be updated at every step. A*, for simplicity, we will derive \* in a toy example.

Once a node with the minimum weight is added to a cluster, In the example, we considéf-sparse signal an¥, clusters
energy overlap of the edges connected to the cluster chanfyjemn NV sensors deployed with grid topology in the field with
so that the edge weights should also change. For examplesiag of I’ by F. The distance between two nodes is defined as
shown in Fig. 2, a clusteiCy = {v1,v2,v3}, is constructed the number of hops in a multi-hop network. Given sparsifying
after two iterations without update so that the total weighlt basis and positions of sensors, we make two assumptions.
be 6 by adding an edge weight ¢b;,v2) to that of (v1,v3).  First, we assume that all the basis functions have the same
With update of edge weights, however, the edge weight gpatial extent, e.g. as would be the same with Haar basis
(v1,v3) increases at the™? iteration because, andvz are with a single level of decomposition. We define the number
overlapped with the same clustés;. Thus,vs will be added sensors covered by each basis functiorZasso that the hop
to the cluster so that the total weights@f = {v1,v2,v4} is  distance between basis functions,i€’z on average. Second,

3, smaller than the weight of’;. the energy of basis functions is uniformly spread over space

Given a sparsifying basis and positions of sensors, Algti-each basis function coverSg sensors in space, the energy
rithm 1 generates a set df. clusters by minimizing edge corresponding to any one sensor is equal t&'z. Thus, if a



. . . . TABLE |
cluster is overlapped with a basis function by one sensor, correLaTION COEFFICIENTF € [—1, 1], BETWEEN Mest AND My,

can increase by /Fp.

N = 1024, N, = 16

_Our derivation _of)\* in_ this exampl_e starts from a situ- DB, | DBs | DBs
ation such thats is maximally minimized; all clusters are K=20 | 0.468 | 0.429 | 0.513
overlapped with basis functions by one sensor so thas K=38 | 0.567 | 0.503| 0.621

K=55 | 0.694 | 0.589 | 0.617

minimized tol/E'z. By Theorem 3.4, the minimum number of
measurements for perfect reconstructidify, = M
Now, if we exchange two sensors that belong to different
clusters, then3 will increase byl/Ep, so thatM, increases  We first introduce common simulation environment in both
by AM. Meanwhile, the hop distance), will decrease by parts of simulation. We consider 3 different 2-D Daubechies
VE5 on average. Note that the exact amount of decreaseb@isis with 2" level decomposition: DB4, DB6, and DBS.
D, AD depends on the positions of two switching sensorsor each of the basis, we reconstruct 100 synthesized data
Thus, we examine the change of total cost with respect with three different sparsityK): 20, 38, and 55. Each data
different locations of two sensors in a switch. is generated byX random coefficients for each basis. In the

We first define the distanda hopsbetween two sensors innetwork, 1024 nodes are deployed on the square grid in a
the same basis function after the switchcasor the switch, region of interest and FC located at center of the field ctdlec
we can compute the change of transport cost, = MyD,— Mmeasurements from sensors with error free communication.
(Mo +AM)(Dy — AD), and derive a condition that transporior given clusters in a network, we do not assume any priority
cost can decreasé)lC > 0. Algebraically, it can be seenis given to specific clusters for measurements, i.e., weecoll
that if « < o* = /Ep/2, we can achieve transport costhe same number of localized measurements for each cluster.
savings. Therefore\* should promote the cost-saving switchVith M/ measurements, data is jointly reconstructed with
(o < o* — 1) but prevent the other@y > o*). By comparing gradient pursuit for sparse reconstruction (GPSR) [25].
edge weights in each situation, we can derive a bouni*of .

A. Reconstruction accuracy antl
lEé <\ < lEé +2FEp (6) To verify Theorem 3.4, we first measure the minimum
2 2 number of measurementdy,;,,, required for perfect re-

The derivation in this example shows the there exists canstruction in our simulation. To measulé,;,,, we eval-
range of optimal\* achieving savings of total transport cost atiate reconstruction accuracy by perfect reconstructide ra
the same level of reconstruction quality. As shown in (63 th Prr). We consider that each data is perfectly reconstructed
bound is proportional to the spatial extent of basis fumgjo if max|z — 2| < 1072 then Prr is computed over 100
Ep. As Ep increases,3(e) increases butD(e) does not synthesized sparse data. The minimuh;,, for perfect
change, which meang is over-emphasized. Thereforg; reconstruction is the smallest/ that satisfies the perfect
should increase to balance out the dominanceg(@f. But, reconstruction rate larger than 0.99.
the bound does not depend on physical characteristics of thgo collect spatially-localized projectionsy sensors are
network described by and N because the number of hopsseparated intdV, non-overlapped clusters with the same size;
between nodes remains the same irrespective of them. égry cluster containd’/N, sensors. We considép different
shown in Fig. 4, the increase dfp also increases* that clustering schemes. For each clustering scheme, we diVide
minimizes the estimated total transport cost. BMt,in (6) sensors in the field intd6 localized clusters with radial shape
does not perfectly match with that by simulation because tgeing from FC to the boundary of the network. To generate
energy of basis functions in Fig. 4 is not uniformly spreagp different clustering schemes, we rotdté clusters with a
over space. Note that since the bound is derived under sogegtain angle for each clustering scheme.
unrealistic assumptions for simplification, we need to gene To estimatelM.;, for given ¥ and K, we first compute
alize it to find A* in practical situation. But, this is beyond of 3 for each clustering scheme so that we havedifferent
scope of this paper thus we will remain the generalization @glues of 3, one for each clustering scheme. Théd,,; is
future work. computed by Theorem 3.4. To checkM.,,; and M,;,, are
correlated to each other, we use Pearson’s linear cooglati

coefficient,r € [—1, 1] [26]. Note that we need to consider a
The simulation consists of two parts. First, we verify The-

orem 3.4 by examining the correlation between the estimated

V. SIMULATION

. TABLE Il
Mes; by Theorem 3.4 and the minimud,;,, measured by CORRELATION COEFFICIENTr € [—1, 1], BETWEEN MAXIMUM ENERGY
simulation. Second, we evaluate the performance of the join OVERLAP AND MSE FOR EACH BASIS
optimization in terms of transport cost and reconstruction N = 1024, N, = 16, M = 410
quality. Each part of the simulation is based on different DBy | DBs | DBs
clustering scheme and different evaluation for reconsisoc K=20 | 0.334 | 0.560 | 0.499

. . i . . . K=38 | 0.458 | 0.633 | 0.564
accuracy. The details of different simulation environnsemi! K=55 | 0448 | 0614 | 0664

be described in following subsections.
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Fig. 5.3 vs. average number of hops per measurement. Each poinsponds Fig. 6. Transport cost ratio vs. MSE. The x-axis is the rafidotal transport

to the result of Algorithm 1 with differenfA. The points with red circle are cost of spatially-localized CS to the cost for raw data gatigewithout any

chosen for the evaluation of transport cost and MSE in Fig. 6 manipulation. We compare performance of results by joiriinopation with
two different X's with that of S PTe4 in [18]

constant value to explaif® operator forM.,; asl because the
correlation coefficient is a measure of the linear depengle
between two variables so that does not change regardless dofo evaluate the joint optimization, we use mean squared
the constant. error (MSE) as a metric for reconstruction accuracy. This
As shown in Table I, the correlation value is around 0.55 fas because, in practice, we are more interested in the level
different K and ¥, which shows thats affects reconstruction of error associated to transport cost. For the cost evaluati
accuracy in terms of the minimum number of measuremertansmission cost is computed By (bit) x (number of hops)
for perfect reconstruction. However, our bound is not tightut the work could be extended to use more realistic cost
enough to estimate the exact number of measurements becawnstics. Since we allocated the same number of bits for each
there exists a gap betweev.,; and Mg;,,. The reason is measurement, transmission cost depends on the product of th
that 5 measures the worst energy overlap so thatan lose number of measurements with the distance in hops. The cost
accuracy when a few large energy overlap exist. Howe¥&, ratio in our simulation is the ratio to the cost for raw data
a useful metric because, based@®mwe can compare different gathering without compression.
clustering schemes and also design a clustering scheme bjn our simulation, we consider a signal with sparsity3sf
optimizing 8 as discussed in Section IV. in 2D Daubechies-4 basis with tR&? level of decomposition.
Since the maximum energy overlap is to measure worst cdsecated at center of the field, FC collect¢ measurements
energy overlap/s can be misleading in a situation where drom 64 clusters. For energy efficiency, measurements from
small number of large energy overlap dominate the others. Feach cluster are routed to FC along shortest path for energy
example, suppose there exists an energy overlap with vagféiciency. For comparison with other CS approaches, we
of 1 (perfect overlap) but the others are relatively small, thabnsider a clustering scheme based on shortest path tré&g (SP
is, 8 = 1. However, successful reconstruction is possible witihat showed the best performance in [18].
high quality if the basis function associated to the largergn As discussed in Section 1V, in general, smallercan be
overlap is not in the data support. Therefore, it would bechieved by the increase of distance between nodes in the
meaningful to examine the impact of maximum energy overlaame cluster. The tradeoff can also be observed in Fig. 5;
of each basis function and clusters on the error occurred &y ) increases, we can achieve smaliebut result in larger
the basis function. hop distance per measurements as discussed in Section V.
For each basis function, we defirle measuring the max- In addition, Fig. 5 shows that, a& increases decreases
imum energy overlap between th&* basis function and quickly but it is saturated at some point. After that, traorsp
clusters. Thusg3;’s show distribution of energy overlap with cost increases without improvement@fThus, we can expect
respect to basis functions. Table Il shows the averageleerréhat one of\'s around the saturation will correspond to optimal
tion betweens; and error occurred by corresponding basis* showing the best performance in terms of total transport
function. The simulation results show that basis functiorgost and reconstruction accuracy.
with larger 8; generate more errors. This implies that basis Figure 6 shows the overall performance with different
functions with concentrated energy on fewer clusters hatach curve shows the average MSE oi@d synthesized data
lower probability to be identified by spatially-localizedear and the variation of reconstruction accuracy is expressed b
surements. three times of standard deviation. As expected, with the

R Joint optimization



value of 16 located at the sharp transition in Fig. 5 shows the The next approximation is concerned with[U?(j, k)].
best performance. With the beatand 64 clusters of1024 Note that Var(U;(j,k)) is equal to E[U;(j, k)?] because
sensors, we can achied6% cost saving with respect to rawE(U;(j,k)) = 0. Var(U;(j, k)) can be approximated with
data-gathering with small mean squared efrgrl x 10~%). respect to3.

Compared with SPT-based clustering scheme, our clustering

scheme with joint optimization performs better. The clusta

SPT-based clustering scheme consume less energy to ainstfier (Us(j, k) = E[U;(j, k)?]

a measurement. However, the savings in transport cost is [ ~/N.

compensated by larger number of measurements required =F (Z ®;(5,0)V;(1, k))? @)
for the same level of reconstruction quality which can be =1

explained by large value of(= 0.83). :N/NC

2/ 2
VI. CONCLUSION =E lz; ;5 DV F)
To achieve energy efficient data gathering in WSN, we N/N. N/N.

exploit a sparse and spatially-localized CS measurement sy - Z E[®2(5,D]¥3(1, k) = Z &\1,12(1, k)
tem that is aware of transport cost per measurement by =1 =1 N
constructing measurements within spatially-localizadstdrs. N, _
However, while the spatially-localized measurement syste = Wﬁ (by definition of )

leads to lower transport cost, it is not obvious how it affect ) _

reconstruction accuracy. Thus, we first introduced a mearic'n (7), the cross terms are zero siné&®;(j,1)) = 0 and
measure the maximum energy overlap between clusters &/ !)'s are independent. Now, we present the details of the
basis functionsj3. Then we showed that the metric has aR"e0f of Theorem 3.3. The main technical tools are large
impact on reconstruction accuracy with respect to the numigi€Vviation inequalities of sum of independent random véegb

of measurements for perfect reconstruction. By exploithrg _Speuﬂcally,_thls is derived from Bernsteins deviationgoal-
tradeoff betweeng and distance between sensors in clustefdy @nd & union bound for the supremum of a random process.
we propose a centralized iterative algorithm with a design

parameter\, to construct clusters that are jointly aware of
energy efficiency and reconstruction quality. Our simolati
results show that, with an an appropriately chosenwe = PT[makX|U(j7k?)| <o
can achiev_e significant savings in transport cost with small_ 1_ Ij-;r[max|U(j k)| > a]
reconstruction error. .k ’

Prlu <

APPENDIX =1- PT(U Ii;f}cX|Ui(J, k)| > a)

A. Proof of Proposition 3.3 Ne

N. N/
In this section, we present the details of the proof of =1 _Z Z
Proposition 3.3. The goal is to bound the coherence in terms =1 =1
of 4 with high probability. The sketch of proof is similar to

that of SRM in [22] but the details are different. First, in . . o .
our problem, the randomness comes from being due to theThe tail probability ofU; (4, k) is obtained by Theorem A.1.

coefficients of the measurement matrik(:, j), instead of ote thatUi(_j,k)’s'are indepg_ndent randpm variables bepause,
the uniform permutation as in SRM. Second, we consider gxtﬁssumptlonﬂz,g)s are i.i.d. Gaussian random variables
additional quantity3, as well as the number of clusters,. W' #€f0 mean.

Before going into the details of proof, we approximate a Theorem A.1:Bernstein’s inequality [23]
bound related td=[U?(j, k)] for simplicity. Basically.Us(j, k) it x, x,..... X, are independennpt necessarily identicjl
is the inner product between th& row of ®; andk*" column and zero-mean random variables, aad| < M, Vi, then

of ¥ as shown in (1). Suppose thay = ®;(5,1)¥;(l, k) so
a?/2
>al <2exp | ———
i1 BIX?] + Ma/3
(8)

N
> Pr(|Ui(j,k)| > a) (by Union Bound)
k=1

n

S

=1

that U;(j,k) = >, ®i(4,0)¥:(l, k) = >, X;. Note thaty =
max; ; |¥(i,5)] < 1/yIog N by assumption an@(j, k) ~ 7
N(0,N./N). Therefore|X;| can be bounded by the product
of v and three times of the standard deviation®df, k) with
high probability.

Suppose thatX; = &,(4,0)¥;(l,k). Then, by the ap-

proximation, we haveM = 3,/xpey and 3 E[X?] =

X, = |90 ) Wi(L, K)| < 307 < 3 N, Var(U;(j,k)) < ZepB. By substitutingd/ and 3~ E[X?] to
- - Nlog N Bernstein’s inequality,




(7]
(8]

1Y » o’/ o

- —2 s ,; P (‘Var<Ui<j,k>> +Ma/3) [10]
(by Berstein inequality) [11]
2

>1-92N%exp | — /2

(BN:/N) + (3y/N./Nlog N)a/3 [12]
(by approximation) [13]
a?/2

(BNe/N) + (v/Ne/Nlog N)ax

— _ 2 —
=1—exp | log2N 4]

[15]
We need to find the minimurm, o*, such that probability,
Prln < «*], asymptotically goes to ‘1’. To achieve thel
asymptotic behavior, th@"? term (xp term) in the last
inequality should be zero with larg&, which means that [17]
the 2¢ order polynomial inside thexp term is negative. The [18]
polynomial can be expressed as a functiorvof

[29]

BN,

(&

Nlog N

fla)=—a?/2+ log 2N?a + log 2N? [20]

21

To find o* for large N, we first check the characteristics[ :
of f(a). Since f(0) > 0, f/(0) > 0, and f”(0) < 0, the [22
larger root of f(«) is the minimuma such thatPr{py <
a*] =1 for large N. Algebraically, the larger root of («) is

O( 6% log N). Thus, we can conclude that

[23]

[24]

[25]
Priu<a*]=1-0(1/N),

N,
where o = O(\/ﬁﬁc log N)

With the asymptotic bound of coherence above, we can
derive Theorem 3.4, the minimum number of measurements
for perfect reconstruction, by Theorem 3.2.

[26]

O
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