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ABSTRACT

In this paper we present an adaptive compressed sensing (CS) frame-
work for depth map compression using a family of graph-based
transforms (GBT). To improve overall performance we propose a
greedy algorithm that selects for each block a GBT that minimizes
a metric that takes into consideration both the edge structure of the
block and the characteristics of the CS measurement matrix, using
an estimate of average mutual coherence. As compared to coding
using H.264/AVC, the proposed approach applied to intra-frames
shows an average of 39 % bitrate savings or 3.8 dB PSNR gain
for views rendered using a depth image based rendering (DIBR)
technique.

Index Terms— Compressed Sensing (CS), Graph-based Trans-
form (GBT), Depthmap Compression

1. INTRODUCTION

Standard compressed sensing (CS) theory prescribes that robust sig-
nal recovery is possible when a signal is sparse in a given sparsifying
basis. Based on the signal characteristics, the sparsifying basis is
often assumed to be known a priori at the decoder. However, for
coding applications where signals are first captured and then com-
pressed, better performance can be achieved by adaptively selecting
a transform or sparsifying basis and then signaling the chosen trans-
form to the decoder. For instance, for piecewise smooth signals,
where sharp edges exist between smooth regions, edge-adaptive
transforms can provide sparser representation at the cost of some
overhead.

In this paper we consider block-based depth map compression
as an example application. Previous work has shown that edge adap-
tive transforms can be more efficient than standard transforms (e.g.,
DCT) due to the piecewise smooth nature of these signals [1]. More-
over, correct representation of edges is important because errors in
edge information lead to significant degradation of the quality of
interpolated views in 3-D TV applications [2, 3]. For depth map
compression, CS-based methods have been recently proposed. CS
is applied by either projecting depth map on random sensing matrix
(Cartesian grid sampling technique) [4] or down-sampling 2D-DCT
coefficients [5]. However, performance gains achieved by these tech-
niques are limited because the standard DCT is chosen as the spar-
sifying basis, which is inefficient for coding blocks containing arbi-
trarily shaped edges (i.e., neither vertical, nor horizontal) separating
smooth regions.

To improve the efficiency of depth map coding, a graph based
transform (GBT) has been proposed as it provides a sparser represen-
tation, especially when arbitrary edges (e.g., diagonal or a mixture
of horizontal and vertical edges) exist in a block [1]. This transform

is based on representing each block as a graph, where each vertex
corresponds to a pixel, and vertices are linked only when no strong
edges are present between the corresponding pixels. For any given
block, different graphs can be chosen, leading to different trans-
forms, which depend on the edge structure and therefore requiring
that overhead bits be sent to the decoder. In [1] it was shown that
these adaptive GBTs improved performance as compared to DCT-
only methods, even when the overhead was taken into account. This
work was further extended in [6], which proposed a simple cost func-
tion and a search technique to optimize the GBT selection for each
block, balancing the increased sparseness achievable if more edges
are considered, with the added overhead required for transmitting
this information to the decoder.

In this paper, we propose a novel CS approach where the adap-
tive GBT is used as a block-adaptive sparsifying basis. We con-
sider the problem of, given a specific sensing matrix (a Hadamard
matrix in our work), optimizing the choice of GBT, by taking into
account the quality of reconstruction and the overhead required to
specify the GBT. Note that the approach in [6] aims at selecting a
GBT that provides maximum sparsity for a block, without requiring
excessive overhead. A key result in this paper is to show that max-
imum sparsity does not guarantee optimal performance when using
CS. As studied in [7, 8], CS reconstruction depends on not only the
sparsity of signal representation but also the mutual coherence be-
tween sensing matrix and sparsifying basis. Thus, a GBT provid-
ing the sparsest representation of depth map data is not necessarily
maximally incoherent with a given sensing matrix. Thus, joint opti-
mization is required to select best GBT for a given depth map, taking
into account rate overhead (to specify the transform), sparsity of the
representation and mutual coherence. We propose a greedy iterative
algorithm that evaluates a metric for different edge configurations
before selecting one. This algorithm uses a low-complexity estimate
of the mutual coherence, so that explicit construction of the GBT at
the encoder is only required once the edge map has been selected
(i.e., it is not required in the iterative process leading to this selec-
tion). The proposed block adaptive CS approach is integrated within
an H.264 codec. When evaluating its intra coding performance on
three depth map sequences, we observe 3.8 dB PSNR gain in the
quality of interpolated views obtained from the decoded depth map,
or an average of 39 % bitrate savings.

2. PROBLEM FORMULATION

For the construction of GBT, each depth block is represented as a
graph, G(V,E) with nodes (pixels) and links (connections) between
pixels. Note that we only use the term “edge” only to refer to image
edges in order to avoid confusion. A link is present in the graph only
when no edge was selected between the two corresponding pixels.
In this work, we assume 4-neighbor connectivity for the pixels so



that each node, V , can have at most 4 links. From the graph, the
adjacency matrix A is formed, where A(i, j) = A(j, i) = 1 if
pixel positions i and j are immediate neighbors not separated by an
edge. Otherwise A(i, j) = A(j, i) = 0. Then we compute the
degree matrix D, where D(i, i) is the number of links connected to
ith pixel and D(i, j) = 0, ∀i 6= j. Then, the Laplacian matrix can
be computed as:

L = D −A =

−1 if (i, j) ∈ E
di if i = j
0 otherwise

(1)

A spectral decomposition, defined as the projection of a signal
onto the eigenvectors of L, can be interpreted as providing the “fre-
quency” contents of the graph signal [9]. Note that L is symmetric,
leading to real eigenvalues and a set of orthogonal eigenvectors.
Thus we define the GBT for a given graph as the eigenvector matrix,
Ψ, whose columns are the eigenvectors of the Laplacian L of the
graph. Since Ψ is orthogonal, its inverse is ΨT . In our depth map
compression application, block-adaptive GBTs are applied to resid-
ual blocks obtained after intra/inter prediction, where the graph from
which the GBT is derived is chosen based on the edges present in
each residual block. For each block, these edges could be detected
by applying a simple threshold to the difference between neighbor-
ing residual pixel values [1]. However, using the same threshold for
all blocks is suboptimal because it does not take into account the
overhead required to transmit the chosen edge map to the decoder,
which tends to increase with the number of edges. Thus, two blocks
may achieve similar levels of sparsity for a given threshold, but the
block where more edges are identified may require a higher overall
rate. As an alternative, the work in [6] seeks to find the optimal edge
map for each block by considering this overhead.

A key observation in our work is that the optimal GBT (which
[6] attempts to obtain) may not provide optimal performance if CS
used. This is because performance depends both on the level of spar-
sity and on the incoherence between the sparsity basis and the mea-
surement matrix, which is very important for reconstruction as stud-
ied in [7, 8]. Thus, for any GBT chosen as the sparsifying basis, Ψ,
we can compute the mutual coherence, µ(ΦΨ). Based on the mu-
tual coherence, the minimum number of measurements for perfect
reconstruction can be computed by M = O(Kµ2(U)N logN) [7].
The bound on the number of measurements decreases as Φ and Ψ
becoming increasingly incoherent. Thus, if we can derive how µ
changes for different GBT’s, then we can also compute a bound on
the number of measurements, which would then helps us design a
cost function to select the best GBT given that CS will be used.

3. OPTIMAL GBT FOR COMPRESSED SENSING

3.1. Bound on the mutual coherence

In this work, we derive bound on the mutual coherence for the given
GBT matrix, Ψ, and Hadamard matrix, Φ. Since both matrices are
deterministic, it is straightforward that the mutual coherence is also
deterministic, so the mutual coherence could be computed for each
candidate GBT. However, GBT construction is a complex operation
as it requires finding all the eigenvectors of the Laplacian matrix.
The complexity grows as the size of graph (equivalently, the size of
block in depth map compression) increases. Even if there exist only
a few GBTs that are truly useful and for those we could precompute
the mutual coherence, the number of candidates of useful GBTs also
increases with the size of graph, which leads to larger memory re-
quirements. Thus it would be desirable to avoid having to construct
GBTs at every stage of the search for the optimal GBT. In what fol-

lows, we derive upper and lower bounds on the mutual coherence
then use their average to estimate the mutual coherence of the block.

We first derive the upper bound of the mutual coherence.

Theorem 3.1. For a given graphG(V,E), the mutual coherence, µ,
between Hadamard sensing matrix, Φ and a graph-based transform
matrix, Ψ, satisfies

µ ≤

√
max∀iNGi

N
,

where NGi denotes the size of signal (equivalently, the number of
pixels) in the group i. If a graph is connected, then all the pixels be-
long to one group (segment) thus the mutual coherence is bounded
by 1 because the DC component of the Hadamard basis is identical
to the eigenvector corresponding to the zero eigenvalue of the graph
Laplacian. In contrast, a fully disconnected graph where all the pix-
els are separated by edges can achieve the minimum bound for the
mutual coherence. However, this increases the overhead to encode
the edge map so that the coding gain is limited. The proof is trivial
because all the entries of Hadamard matrix are ±1/

√
N and all the

basis functions of GBT (columns of Ψ) are normalized to 1, thus
the maximum absolute value of the inner-products is bounded by the
maximum size of group normalized by N . Next, a lower bound on
mutual coherence is derived.

Theorem 3.2. For a given graphG(V,E), mutual coherence, µ, be-
tween an arbitrary sensing matrix, Φ and a graph-based transform,
Ψ, satisfies

µ ≥ max
∀k

√∑
(l,m)∈E (Φ(k, l)−Φ(k,m))2

2|E|
,

where |E| indicates the number of links between pixels, which
equals to 24 (total possible number of edges in 4 × 4 block) - the
number of edges in the block. The numerator of the bound is a
squared sum of difference of Φ(i, j) corresponding to connected
pixels where no edge exists. The bound indicates that the lower
bound of the mutual coherence increases as more pixels correspond-
ing to high variation of Φ are connected.

The proof is based on the fact that xTLx =
∑

(i,j)∈E(x(i) −
x(j))2, for any x ∈ <V . Let xT = Φ(k, :). Since L = ΨΛΨT ,

xTLx = Φ(k, :)(ΨΛΨT )Φ(k, :)T (2)

=
∑

(l,m)∈E
(Φ(k, l)−Φ(k,m))2 , k ∈ {1, 2, . . . , N} (3)

(2) can be expressed as follows:

Φ(k, :)(ΨΛΨ
T

)Φ(k, :)
T

= U(k, :)ΛU(k, :)
T

=
∑
i

λiU(k, i)
2
, (4)

where U = ΦΨ and λi is ith eigenvalue of Laplacian matrix of a
given graph. From (3) and (4),∑

(l,m)∈E
(Φ(k, l)−Φ(k,m))2 =

∑
i

λiU(k, i)2 (5)

≤
(∑

i

λi

)(
max
∀i

U(k, i)

)2

, (6)

where
∑
i λi = Trace(L) = 2|E| because the total sum of diag-

onal entries in L is the twice of the total number of links between
pixels. From (6), we have

max
∀i
|U(k, i)| ≥

∑
(l,m)∈E (Φ(k, l)−Φ(k,m))2

2|E|
(7)



Thus, the lower bound of the mutual coherence is derived:
µ = maxi,j |U(i, j)| = max

∀(k,i)
|U(k, i)|

≥ max
∀k

√√√√∑
(l,m)∈E (Φ(k, l)−Φ(k,m))2

2|E|
(8)

Note that both lower bound, µlower , and upper bound, µupper ,
can be computed without constructing GBT. The upper bound is de-
termined by the maximum size of group in the graph and the lower
bound by the edge map and the given Hadamard sensing matrix. To
approximate the mutual coherence between the two bases, we take
the average µavg =

µlower+µupper

2
. Since the mutual coherence

is the maximum correlation between two bases, the mutual coher-
ence can be misleading especially when only a few correlations are
large but the others are small. Thus, instead of looking at the maxi-
mum correlation, the average of a certain amount of the largest cor-
relation provides better estimate for the CS performance as studied
in [10]. Thus, µavg can be used as an alternative metric to the mutual
coherence. The averaged mutual coherence will be used to approxi-
mate the rate for CS measurements to find optimal adjacency matrix,
which will be covered in the following section.

3.2. Iterative GBT construction for CS

To find the best sparsifying basis, Ψ, we iteratively evaluate a series
of adjacency matrices using their average mutual coherence, µavg .
We assume 4-neighbor connectivity in 4-by4 block, for simplicity,
so that there exist 12 horizontal edges and 12 vertical edges. Instead
of searching the whole space of 224 possible adjacency matrices, we
propose a greedy algorithm to find the optimal adjacency matrix.
By defining a cost function in (9), the cost for removing each edge
can be calculated. At the initial state, there exist edges when the
pixel values between neighboring pixels are different. Thus, in the
initial graph, all the links between pixels with the same value are
connected. The algorithm iteratively finds a link with the minimum
pixel difference at every iteration then add the link if the updated
cost is smaller than the one in previous iteration. After searching all
the links excluding the links in the initial state, the approach can find
the optimal adjacency matrix. The cost function to be used in the
algorithm is defined as:

Cost = Costmeasurement rate + kCostedge rate

= log2(

(∑
i aij(xi − xj)2

)
µ2avg

2Q2
) + km. (9)

In the cost function Q is a quantization step size. The edge rate is
that needed to code the adjacency matrix, which can be represented
using 24 bits then compressed using entropy coding. The scaling
factor k can be applied to control the trade-off between the coeffi-
cient rate and edge rate, which is empirically determined in our ex-
periment. x is a vector representing the input depth map block thus
xi is the value of pixel i. aij is the corresponding element in the
adjacency matrix thus

∑
i,j aij(xi − xj)

2 is a squared sum of dif-
ference between connected pixels which estimates the cost of GBT
coefficient thus it approximates the sparseness of GBT coefficients.
Note that the cost function is identical to the one proposed in [6] ex-
cept for µ2

avg . The average mutual coherence, µavg , is involved to
estimate the rate of measurements because the number of measure-
ments is proportional to Kµ2 logN as studied in [7]. Note that we
can ignore logN term because total number of pixels in each block
does not change during the algorithm.

4. EXPERIMENTS

The experiment is based on H.264/AVC reference software JM17.1.
For simplicity, only 4× 4 transform block size is used in our exper-

iments, but it can be easily extended to other block sizes. As test se-
quences in our experiments, we use only intra-frames of depth map
sequences Ballet, Newspaper, and Mobile. With RD optimization
with respect to H.264/AVC, GBT and CS-GBT, the encoder chooses
the best mode and transmits extra bits to signal transform mode for
each block. For CS-GBT, the encoder encodes 4 Hadamard measure-
ments corresponding to 4 lowest frequency bases. To reconstruct
depth map from Hadamard measurements, MOSEK C-library [11]
is employed to solve L1 minimization, which is then integrated into
JM17.1.
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Fig. 1. RD curve comparison of i) H.264/AVC ii) GBT and CS-GBT
with optimal adjacency matrix [6] iii) CS-GBT with optimal adja-
cency matrix with averaged mutual coherence discussed in Section
3.2 for different sequences: (a) Ballet (b) Newspaper (c) Mobile

For comparison, we construct GBT matrix using two different
greedy algorithms with different cost metric; i) GBT construction
without mutual coherence [6] ii) GBT construction with mutual co-
herence discussed in Section 3.2. The scaling factor in (9) is em-
pirically chosen as 0.03 which equals to the one in the cost func-
tion of [6]. For both cases, the resulting adjacency matrices are
entropy coded and sent to the decoder. The decoder can construct
the equivalent GBT matrix from the losslessly-encoded adjacency
matrix (equivalently, edge map). For CS-GBT approach, one can
choose between DCT, GBT, and CS to achieve the best performance.
For example, for each block, the RD cost can be calculated for DCT,
GBT, and CS. Then the best one is selected. The overhead indi-



cating the chosen transform is encoded into the bitstream for each
block, and the optimal adjacency matrix is provided only for blocks
coded using GBT or CS. We consider QP values of 24, 28, 32, and
36 to encode depth maps. As a reference, we also compare those
approaches to H.264/AVC for the depth map compression. The re-
construction quality is evaluated by PSNR calculated by comparing
the ground truth video and the synthesized video using the decoded
depth maps.

(a) DCT

(b) GBT with optimal adjacency matrix

(c) CS+GBT with optimal adjacency matrix for CS

Fig. 2. Perceptual improvement in Ballet sequence: comparison of i)
H.264/AVC ii) GBT and CS-GBT with optimal adjacency matrix [6]
iii) CS-GBT with optimal adjacency matrix with averaged mutual
coherence discussed in Section 3.2

From the comparison of RD curves in Fig. 1, it is observed that
significant bitrate savings can be achieved using GBT alone and that
further gains can be achieved with CS-GBT.

From the RD curves, it is shown that CS-GBT approach using
optimal adjacency matrix considering the average mutual coherence
outperforms H.264/AVC. Also, our proposed approach shows better
performance than GBT and CS-GBT using optimal adjacency matrix
proposed in [6]. Noticeable PSNR improvement over other methods
is observed because, with our optimal adjacency matrix for CS, more

Table 1. BD-PSNR/bitrate results of CS-GBT compared to
H.264/AVC.

Sequence BD-PSNR BD-bitrate
Ballet 0.9 -49.4

Newspaper 1.5 -26.8
Mobile 9.2 -42.8

Table 2. BD-PSNR/bitrate results of CS-GBT with optimal adja-
cency matrix for CS compared to CS-GBT with optimal adjacency
matrix [6]

Sequence BD-PSNR BD-bitrate
Ballet 0.3 -7.8

Newspaper 0.9 -16.1
Mobile 2.4 -9.7

blocks are chosen to be coded using Hadamard measurements. The
performance also depends on the amount of strong edges in a frame
and the level of noise around the edges. Among three sequences
in our experiment, Mobile sequence contains stronger edges along
the object boundary with relatively less noise compared to other se-
quences, thus it shows the best performance. Also, the perceptual
improvement in Ballet sequence is shown in Fig. 2. As marked
by blue circles, we can notice clear edges reconstructed by our pro-
posed approach. The results for three different sequences are shown
in Table 1 and Table 2 in terms of BD-PSNR and BD-bitrate.

5. CONCLUSION

For depth map compression, we propose a novel CS approach where
the adaptive GBT is used as a block-adaptive sparsifying basis.
Based on the observation that maximum sparsity does not guarantee
optimal performance when using CS, we propose a greedy algo-
rithm that selects for each block a GBT that minimizes a metric
that takes into consideration both the edge structure of the block
and the characteristics of the CS measurement matrix, using an es-
timate of average mutual coherence. As compared to coding using
H.264/AVC, the proposed approach applied to intra-frames shows a
significant gain for interpolated views.
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