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Abstract—We propose a novel computation control method
for variable-complexity Fano decoders with buffers. Our method
substantially lowers the rates of data block loss associated with
conventional Fano decoders. For reasonably large buffer sizes,
our method outperforms Layland’s buffer management scheme
with block loss rates close to the theoretical lower bound.

Index Terms—Buffers, computational complexity, convolu-
tional codes, Fano decoder.

I. INTRODUCTION

VARIABLE-COMPLEXITY (VC) algorithms may be
beneficial in mobile communications systems, since their

computational complexity can be varied (usually as a tradeoff
with certain performance metrics) according to the changing
needs, thereby enabling variable power consumption of the
system. In this work, we investigate the Fano decoder, which
belongs to a family of variable-complexity (VC) channel de-
coders called sequential decoders [1][2]. Refer to [3] (pp. 620)
for a detailed description of the Fano algorithm. The variability
of the complexity of the Fano algorithm as a function of the
channel SNR has been exploited in the past, for example, in
hybrid ARQ schemes [4]. In a typical Fano decoding system,
however, buffer is often required to accommodate the variable
(random) decoding delays of the variable-complexity decoder.
The decoder may need to spend more time decoding noisier
data, thereby causing the buffer to fill up quickly. If we can
force the decoder to operate in a “fast” mode, then we can
avoid data being dropped due to buffer overflow. We refer
to the practice of regulating the level of computation efforts
according to the changing needs as Adaptive Computation
Control (ACC). We seek to design an adaptive computation
control (ACC) policy for the Fano decoder with buffers, such
that if the buffer occupancy is high, the ACC will instruct
the decoder to run sufficiently fast in order to avoid buffer
overflow; otherwise, it will slow down the decoder so that
finer decoding can be achieved (Fig. 1).

There has been extensive research on buffer control tech-
niques in the source coding literature [5][6]. However, to
the best of our knowledge, virtually no computation con-
trol has been used for variable-complexity channel decod-
ing algorithms. In a relevant work [7], Layland proposed a
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Fig. 1. Computation control of a Fano decoding system, where blocks of
data are input at a constant rate R (bits/sec) to the Fano decoder buffer, where
they will be decoded (and thus removed) at a variable rate since the decoding
complexity is variable.

buffer-management strategy called feedback-queueing memory
management (FBQM), for the purpose of reducing the block
erasure (dropping) probability of a sequential decoder with
a finite buffer size. In this paper, we present a computation
control algorithm and demonstrate that the proposed computa-
tion control algorithm not only achieves lower data block loss
rates than the conventional fano decoders, but also requires
less buffer space than Layland’s FBQM scheme for the same
block loss rate.

The remainder of the paper is organized as follows. Sec-
tion II establishes the conditions leading to block losses, based
on which Section III presents the adaptive computation control
(ACC) algorithm for AWGN channels, and points out the
differences between the ACC scheme and Layland’s FBQM
scheme. Simulation results are discussed in Section IV. The
paper is concluded in Section V.

II. DECODING COMPLEXITY AND BIT ERRORS

We assume that concatenated error-control codes are used,
where the inner code is a convolutional code, and the outer
code is a Reed-Solomon (RS) code. A block is considered
lost if (i) it is dropped due to buffer overflow, or (ii) it
contains too many bit errors to be correctable by the outer
error-correcting code. In the following, we establish thresholds
for decoding complexity and bit errors, which will be used to
design computation control algorithm that seeks to minimize
the overall block loss rate.

Consider a Fano decoding system with a buffer size of
Bmax (in bits) as illustrated in Fig. 1. The Fano processor
runs at a clock frequency of f Hz. Decoding a given block
takes c cycles (note that c can vary from block to block).
During the decoding time Td = (c/f), one block (L bits)
will be decoded and then removed from the decoder buffer by
the processor, while (Td × R) bits will be fed into the buffer
from the channel. To avoid overflow, the buffer needs to have
enough space to store all the incoming bits while decoding
the current block.
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Given the buffer occupancy O(t) at time t, if Td × R −
L + O(t) ≤ Bmax, then there exists a threshold C0 as given
in (1), such that if the processor is to decode the block with
complexity c ≤ C0, then no buffer overflow will occur.

C0 = [Bmax + L − O(t)]
(

f

R

)
. (1)

Since O(t) ≤ Bmax, we have

C0 ≥ Cmin
0 =

fL

R
, (2)

where Cmin
0 is the lower bound of the thresholds. Since

decoding a certain block may require more than C0 cycles
(because c is variable), there exists a family of complexity
thresholds Cm as given in (3), where m is a non-negative
integer, such that if the decoding complexity c < Cm, then at
most m incoming blocks will be lost due to buffer overflow:

Cm = [Bmax + (m + 1)L − O(t)]
(

f

R

)
. (3)

From (1) and (3), we have

Cm = C0 + m

(
fL

R

)
= C0 + mCmin

0 , (4)

which relates Cm (m > 0) to C0.
We further illustrate the relation between C0 and the

normalized buffer occupancy (i.e., the degree of fullness),
F (t) = O(t)/Bmax, which is a system parameter directly
measurable. Assume that the buffer can hold at most M data
blocks, i.e., the buffer size is Bmax = M × L, where M is a
positive integer. Then from (1) and (2), we have

C0 = M

[
1 +

1
M

− F (t)
]

Cmin
0 , (5)

which gives

F (t) = 1 − 1
M

(
C0

Cmin
0

− 1
)

. (6)

As will be discussed in Section III, (6) provides a useful
mapping from a given C0 to F (t). As shown in (7), C0 can
also be related to Q(t) = [Bmax − O(t)]/L, which denotes
the absolute number of vacant blocks in the buffer.

Q(t) =
C0

Cmin
0

− 1. (7)

On the other hand, if the number of error bits b in a decoded
block exceeds a certain bit error threshold Et, then the block
contains uncorrectable bit errors and is declared a lost block.
Et is determined by the error correcting capability of the outer
code in use.

III. THE COMPUTATION CONTROL ALGORITHM

We use Δ as a control parameter, which is chosen from a
discrete set of n admissible values, Δs = {Δ1, Δ2, ..., Δn}.
Our goal is to find the optimal control function Δ = f(O(t)),
which allows the decoder to choose one element from the
set Δs, so as to minimize the overall Probability of Block
Loss (PBL) = limt→∞

[D(t)+U(t)]×L
N(t) , where L denotes the

number of bits in a block, D(t) represents the number of
blocks dropped due to buffer overflow, U(t) represents the

number of decoded blocks having excessive number of bit
errors that are uncorrectable by the outer code, and N(t) is
the total number of bits that have come into the buffer up to
time t (obviously, N(t) = R · t).

Given the joint distribution of decoding complexity and bit
errors, P (b, c|Δi), which can be obtained empirically [8], we
can determine the probability of m blocks being dropped due
to buffer overflow as

Pm =
∑

c∈(Cm−1,Cm]

∑
All b

P (b, c|Δi), (8)

where Cm (m ∈ [1, M ]) are thresholds of decoding com-
plexities that can be determined by using (4) in Section II.
Therefore, the expected number of blocks dropped due to
buffer overflow is

∑M
m=1(m · Pm), where M is such that

Cmax ∈ (CM−1, CM ], with Cmax being the highest pos-
sible decoding complexity for a block. On the other hand,∑

b>Et

∑
All c P (b, c|Δi) gives the probability of the current

block being decoded in error, as it computes the probability
mass in the region where b > Et. By combining these two
types of lost blocks, we can then select the Δ∗ (from the set
of Δ values, Δs) that minimizes the average number of lost
blocks:

Δ∗ = arg min
Δi∈Δs

{
M∑

m=1

(m · Pm) +
∑
b>Et

∑
All c

P (b, c|Δi)

}
.

(9)
A sequence of Δ∗ values selected based on (9) constitute a
control policy that ensures that each block is decoded with
an amount of computation, which collectively will cause the
smallest number of blocks to be lost, after a set of blocks have
been decoded. Although such a control policy does not permit
lookahead and thus is greedy, the best one can do in real-time
channel conditions is to make the decoding decision based
on the buffer state at a give time point and choose the best
Δ value according to (9). Therefore, we are not attempting to
optimize the decoding performance of the very next block, but
rather, we seek to minimize the average number of lost blocks,
which is a global metric based on a sequence of blocks.

We can construct a lookup table that stores the (C0, Δ∗)
pairs given by (9). Note that in a practical system, more
than one lookup table may be needed to account for different
channel conditions, since the joint distributions P (b, c|Δi)
in (9) vary with the channel SNR. For a certain channel
SNR, a corresponding lookup table can be constructed off-line
based on the empirical complexity / BER statistics collected
under that particular channel SNR during the training stage.
However, should there be a mismatch between the actual
channel condition and the channel characteristics assumed in
the design, the control performance will suffer. Under such
circumstances, some SNR estimation techniques for AWGN
channels [9] could be employed, so that the control can be
switched among multiple lookup tables that cover the SNR
range of interest.

Given the buffer size M (blocks), we can use (6) to
construct another lookup table that maps the normalized buffer
occupancy F (t) to Δ∗ (see Table I for an example). Thus the
computation control algorithm proceeds as follows:
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• (Step 1) Before decoding the current block in the buffer,
measure the current normalized buffer occupancy F (t).

• (Step 2) Find the Δ∗ corresponding to F (t) using table
lookup.

• (Step 3) Decode the current block by using Δ∗.
• (Step 4) Go back to Step 1 to decode the next block.

In [7], it was shown by Layland that a buffer-management
strategy for variable-complexity sequential decoders, known
as feedback-queueing memory management (FBQM) scheme,
was capable of achieving a block erasure probability very
close to the theoretical lower bound. For a detailed description
of FBQM scheme, refer to [7]. Here we point out several
major differences between our adaptive computation control
(ACC) scheme and the FBQM scheme. First of all, unlike the
FBQM scheme, the ACC scheme uses a linearly managed
buffer. Since data blocks are decoded in a first-in-first-out
fashion, there is no need for block reordering after decoding.
Second, the ACC scheme can adaptively vary the amount of
computation on noisy blocks by choosing a different Δ value,
in order to avoid blocks being dropped due to buffer overflow.
In contrast, the FBQM scheme assumes that the same Δ value
is used for each block. Thus the decoding complexity of a
certain block is considered fixed. Furthermore, a second buffer
is required for the FBQM scheme to reorder (unscramble)
the decoded blocks that are released from the decoder buffer.
A decoded block cannot leave the reordering buffer until all
other blocks that arrived at the decoder buffer prior to this
block have departed from the reordering buffer. The total
buffer space required is then increased due to the need for
the unscrambling buffer, which should be large enough to
accommodate all the decoded blocks emitted from the decoder
buffer. The size of the unscrambling buffer can be determined
through simulations.

IV. SIMULATION RESULTS AND DISCUSSIONS

In the simulations, BPSK is used for transmission. Encoded
data are transmitted over an AWGN channel, and hard-
decision decoding is used as an example, without loss of
generality. For the inner code, the following (2, 1, 7) non-
systematic convolutional code is used in the simulation with
generator polynomials G(0)(D) = 1 + D + D2 + D5 + D7,
G(1)(D) = 1+D3+D4+D5+D6+D7. The best Δ value for
decoding a block is selected from a small set Δs = {1, 5, 13},
whose elements were determined empirically to provide the
desirable tradeoffs between the decoding complexity and the
associated bit error rates [8]. In practice, we can certainly
consider more candidate Δ values to achieve finer granularity
in computation control, albeit at the expense of increased
complexity in generating the lookup table.

Fig. 2(a) shows the relation between buffer sizes and the
probability of block loss (PBL) between the following three
decoding schemes (the AWGN channel has a SNR = 4 dB): (i)
the conventional linear buffer scheme with a fixed Δ used for
decoding of all blocks; (ii) the adaptive computation control
based on the algorithm given in Section III, where the lookup
table used is shown in Table I. The PDF’s P (b, c|Δi) used to
generate the lookup table are estimated from empirical traces
consisting of 105 (b, c) pairs, obtained from a decoding system

TABLE I
THE LOOKUP TABLE (NORMALIZED BUFFER OCCUPANCY VERSUS Δ∗).

NA: NOT APPLICABLE.

Buffer Size (blocks) Δ∗ = 1 Δ∗ = 5 Δ∗ = 13

1 NA 0 1
5 NA [0, 4/5] 1
10 NA [0, 9/10] 1
20 NA [0, 19/10] 1
25 [0, 3/25] [4/25, 24/25] 1
30 [0, 8/30] [9/30, 29/30] 1
40 [0, 17/40] [18/40, 39/40] 1
50 [0, 27/50] [28/50, 49/50] 1

with L = 128 bits, f = 108 Hz, R = 106 bits/sec, and Et = 8
bits. (iii) Layland’s FBQM scheme, which uses a fixed Δ and
requires a reordering/unscrambling buffer in addition to the
block decoding buffer.

As shown in Table I, the buffer sizes can be roughly divided
into three ranges: (i) When the buffer size M (blocks) is small,
i.e., M ∈ [1, 20], Δ = 1 is never chosen by the ACC scheme,
which suggests that larger Δ values could offer better tradeoffs
between buffer overflow and bit errors. The PBL of the ACC
scheme goes far below that of the linear buffer scheme with
a fixed Δ = 1. For the extreme case where the buffer can
hold only one block, Δ = 13 is almost always chosen by
the ACC scheme due to the buffer being full most of the
time. For all other buffer sizes in this range, Δ = 5 is always
selected by the ACC scheme when the buffer is not full, so
that the ACC performs very closely to the Δ = 5 scheme and
better than the Δ = 13 scheme. (ii) As the buffer gets larger,
i.e., M ∈ [25, 40], the benefit of using the ACC becomes
much more pronounced. For example, as shown in Table I,
if the buffer size is 30 blocks, we should choose Δ = 1 if
the buffer has less than 9 blocks in it. When the normalized
buffer occupancy rises above 30%, Δ = 5 will be selected.
When the buffer is full, Δ = 13 (the largest possible value)
will be chosen to minimize the probability of overflow. In this
range of buffer sizes, the ACC scheme outperforms all fixed Δ
schemes, while achieving a PBL significantly lower than that
of the scheme with Δ = 13. (iii) As the buffer size increases
(M ≥ 40 blocks), the probability of buffer overflow decreases.
Hence the ACC scheme tends to choose Δ = 1 over a wider
range of buffer occupancies. As can be expected, if the buffer
size is further increased, the ACC scheme will almost always
pick Δ = 1, thereby gradually degenerating into a fixed Δ
scheme without control.

Furthermore, as shown in Fig. 2 (a), except for very small
buffer sizes (< 7 blocks), the ACC scheme achieves lower
PBL than the FBQM scheme regardless of the Δ value.
For very small decoder buffer, the impact of using an extra
reordering buffer would be insignificant. The reason is that
the number of decoded blocks that might become out-of-order
depends heavily on the size of the decoder buffer. Therefore,
if reordering is taken account, the FBQM would be beneficial
only for small decoder buffer sizes. The same observation can
also be made by comparing the average latency experienced
by any decoded block passing through a decoding system.
As can be seen in Fig. 2 (b), for a given Δ, the linearly
managed (FIFO) buffer incurs a smaller average delay than
the FBQM-unscrambler combination whenever the buffer size
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Fig. 2. (a) Probability of block loss as a function of buffer size for three
schemes: linear buffer scheme (with fixed Δ’s), linear buffer with adaptive
computation control (ACC) by varing Δ’s, and Layland’s FBQM scheme with
a reordering buffer), and (b) Average latency (in clock cycles) per decoded
block.

is greater than a certain threshold. In the literature, sufficiently
large buffer sizes are generally recommended for avoiding
buffer overflow in sequential decoders [10][11]. In practical
implementations of Fano decoders, the actual buffer size in
use is usually selectable from a range of values. For example,
buffer sizes of up to 16 blocks of data have been used in

the simulation of a high-speed Fano decoder for deep space
communications [12], with varying probabilities of block loss
due to buffer overflow.

V. CONCLUSIONS

We introduce an efficient computation control (ACC) al-
gorithm for Fano decoders with buffers. The ACC algorithm
dynamically determines the best Δ value based on the nor-
malized buffer occupancy by consulting lookup tables, which
can be constructed offline using empirically obtained statis-
tics. Our study showed that the ACC algorithm significantly
outperforms the conventional Fano decoding algorithm using

a fixed Δ value. For reasonably large buffer sizes, the ACC
scheme compares favorably to Layland’s FBQM scheme,
which is known for its theoretical lower-bound approaching
performance for sequential decoders, especially after taking
into account factors such as the block loss rate, decoder
latency, and the complexity of the buffer control logic.
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