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Abstract—While much of multiview video coding focuses on
the rate-distortion performance of compressing all frames of all
views for storage or non-interactive video delivery over networks,
we address the problem of designing a frame structure to enable
interactive multiview streaming, where clients can interactively
switch views during video playback. Thus, as a client is playing
back successive frames (in time) for a given view, it can send a
request to the server to switch to a different view while continuing
uninterrupted temporal playback. Noting that standard tools for
random access (i.e., I-frame insertion) can be bandwidth-ineffi-
cient for this application, we propose a redundant representation
of I-, P-, and “merge” frames, where each original picture can be
encoded into multiple versions, appropriately trading off expected
transmission rate with storage, to facilitate view switching. We
first present ad hoc frame structures with good performance
when the view-switching probabilities are either very large or
very small. We then present optimization algorithms that generate
more general frame structures with better overall performance for
the general case. We show in our experiments that we can generate
redundant frame structures offering a range of tradeoff points
between transmission and storage, e.g., outperforming simple
I-frame insertion structures by up to 45% in terms of bandwidth
efficiency at twice the storage cost.

Index Terms—Media interaction, multiview video coding, video
streaming.

I. INTRODUCTION

M ULTIVIEW video consists of sequences of spatially
correlated pictures captured simultaneously and peri-

odically by multiple closely spaced cameras. The cameras can
be parts of a real physical camera system [1] or a virtual camera
setup inside a computer [2] using API manipulation of graphics
cards [3]. Much of the previous research in multiview video
focuses on compression: to design coding techniques exploiting
temporal (across time) and spatial (across view) correlation to
encode all frames of all views of a multiview sequence in a
rate-distortion optimal manner [4]–[7].
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Compression of all multiview data in an interdependent way
is a sensible objective when the intended application is storage
of the entire data set, or non-interactive delivery over networks,
i.e., where, as in TV broadcast [8], the clients’ potential inter-
action with the received multiview content does not effect how
and what data is delivered from the server.

In this paper, we focus instead on the problem of interac-
tive multiview video streaming (IMVS). In this problem, after
one representation of a multiview sequence is pre-encoded and
stored at the server, streaming clients interactively request de-
sired views for successive video frames in time. Each client re-
quests and plays back one single view at a time out of possibly
many available views, meaning that the requested data corre-
sponds to only a small subset out of a large set of available mul-
tiview data at the server. The encoding is done once at the server
for a possibly large group of clients, each of which can navigate
the content by playing it back (in time) while switching views,
thus resulting in a different traversal of views across time for
each user. Our goal is to provide a desired level of view interac-
tivity with minimum expected transmission bandwidth cost. The
extent of view interactivity is determined by the view switching
period ; i.e., view switching can only take place at multiples
of frames.

A natural approach to enable this kind of interactive view
switching is to make use of standard random access tools, i.e.,
making every th frame (in all views) an I-frame. Our work is
based on the observation that random access and view switching
are fundamentally different functionalities, and thus efficient
tools for one problem may not provide the best solution for the
other. For random access to a frame, one can make no assump-
tions about which frames are available at the decoder; indepen-
dently coded I-frames are therefore well suited for this purpose.
View switching, on the other hand, arises when temporal play-
back is not interrupted; i.e., successive frames in time are dis-
played, but one wishes to switch point of view. The key differ-
ence with respect to random access is that the decoder has access
to some of the frames (possibly from a different view) immedi-
ately preceding in time the requested frame. Thus, since consec-
utive frames in different views tend to be correlated, using an
I-frame for switching can be inefficient in terms of bandwidth.

The main focus of our work is then to study alternatives for
view switching that are more bandwidth-efficient than simple
I-frame insertions. Note that our proposed tools do not support
random access, and thus we are not advocating using these tools
instead of random access tools such as I-frame insertion. Rather,
we propose to consider view switching and random access as
two explicitly different functionalities, supported by different
tools. It will then be up to the system designer to select the
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Fig. 1. Examples and transmission rate/storage tradeoffs at one switching point using I-, various M-, and redundant P-frames. (a) Redundant P-frames and M-frame.
(b) Rate/storage tradeoffs at one switching point.

appropriate setting for a given application. For example, one
may select a parameter for view switching and separately
allow random access at every th frame, where typically

.
One can see that the design of a multiview representation to

permit interactive view switching can involve a tradeoff between
expected transmission rate and required storage space. For sim-
plicity consider the case, i.e., we require a user’s ability
to switch views at any time, but restrict allowable switching to
view from a neighboring view in a one-dimensional camera
array setup, i.e., . Since temporal play-
back is not interrupted, at time one of the previous frames

’s of time (for at most three different views ) will
be available at the decoder. Thus, one possible way to support
switching would be the following: for each possible decoded
frame , differentially encode one P-frame to represent
original picture at time and view using as a pre-
dictor—we call this approach redundant P-frames. An example
is shown in Fig. 1(a)(i) where three P-frames representing the
same picture are constructed, each using a different pre-
dictor. Doing so for every view will increase the number of
decoding paths (frame representations) at each switching instant
by a factor of three, resulting in a tree structure of size
when there are switching instants in between two I-frame in-
sertion points. So while performing this redundant P-frame en-
coding for every view at every switching instant would lead to a
structure with minimum transmission cost (only bandwidth-ef-
ficient P-frames are used), the size of the resulting structure is
impractically large.

At the other extreme, one can construct a single quantized
representation of original picture ( in Fig. 1(a)(ii)) for
all possible decoder states; i.e., a frame (we call merge frame
or M-frame) that can be correctly and identically decoded
no matter from which the user is switching (frame

or in Fig. 1(a)(ii)). Doing so will keep
the number of frame representations (and hence decoding
paths) at a switching instant to a minimum for total
views. Obviously, an independently coded I-frame would fit
the M-frame reconstruction constraint, but more generally, one
can conceive other implementations of M-frame that employ
differential coding, using only one predictor from the previous
frame set ’s (whichever one is available at the decoder)
and produces the exact same reconstruction regardless of which
predictor was used. Example implementations of M-frames
include SP-frames in H.264 [9] and different distributed source

coding (DSC) techniques [10], [11].1 Different implementa-
tions of M-frames typically result in different tradeoffs between
storage and transmission costs, as shown in Fig. 1(b).2 Note,
however, that all implementations of M-frame must have
larger transmission rate than a P-frame, since by definition, an
M-frame must merge multiple (more than one) decoding paths
each with a different predictor—a more stringent reconstruction
requirement than a P-frame which has only one decoding path
with one known predictor. If we encode an M-frame using the
most storage-efficient implementation available—the left-most
point on the convex hull3—for every view at every switching
point, this leads to the most storage-efficient frame structure.
However, as shown in Fig. 1(b), this structure has high trans-
mission rate, since the size of an M-frame is in general much
larger than a P-frame.

Note that the underlying assumption of the two approaches
above is that coding drift is not desirable and must be avoided,
either by preserving decoding paths via redundant P-frames, or
by perfectly merging decoding paths via a single M-frame that
reconstructs to the exact same frame representation no matter
which decoded frame is available at the decoder for prediction.
A simple experiment can show that coding drift is indeed non-
negligible. Suppose we first encode a closed loop prediction rep-
resentation for frames within the same view, then add cross-view
P-frames to facilitate view switches, as shown in Fig. 2(a). For
example, to switch from view 2 to view 1 at instant 2, we send
the bold outlined frames in Fig. 2(a), even though is pre-
dictively coded using a different version of as predictor in-
stead of the transmitted , resulting in coding drift in
onwards. (Due to quantization, the reconstructed image from
decoding path ending with cross-view P-frame will be different
from image from path ending with same-view P-frame of same
view and instant.) Using H.263+ for source coding, we see in
Fig. 2(b) and (c) that due to drift, a single view switch resulted
in 1.2 dB loss in visual quality (PSNR), while two consecutive
switches resulted in well over 2 dB loss for bothballroom and
akko&kayo sequences. Given view switches are a likely event
in an IMVS scenario, our discussed approaches of redundant

1In the context of DSC, “predictor” frames are used as side information for
decoding.

2Though in Fig. 1(b) DSC1 has higher transmission rate and storage than re-
dundant P-frames at one switching point, due to its ability to merge all decoding
paths into one frame, DSC1 does not lead to exponential number of decoding
paths and storage in the entire structure.

3We discuss a storage-efficient implementation of an M-frame using
DSC—DSC0 in Fig. 1(b)—in Section III.
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Fig. 2. Experiments showing effects of coding drift on visual quality during view switches. (a) Frame structure where pictures in the same view are encoded using
I- and subsequent P-frames, then additional cross-view P-frames (dotted edges) are added to faciliate view switches. Bold-edge frames are transmitted to provide
view switch from view 2 to 1 at instant 2. Drift begins at � due to predictor mismatch. (a) Structure with drift, (b) ballroom, (c) akko&kayo.

P-frames and M-frames to circumvent coding drift are reason-
able if one chooses to preserve quality across view switches.4

From the above discussion, it is clear that more practical
multiview representations lie between the two extremes,
containing the optimal combination of I-frames (for random
access), P-frames (for low transmission rate) and M-frames
(for storage efficiency), that optimally trade off transmission
and storage costs. In this paper, we develop heuristics and op-
timization algorithms that construct good frame structures for
IMVS using available I-, P, and implementations of M-frames
as building blocks. In our experiments with several multiview
video datasets, we show that our algorithm can offer a range of
tradeoff points between transmission and storage costs, and that
the generated frame structures outperform the simple I-frame
insertion approach. In particular, we show that in some cases
our algorithm generates frame structures reducing expected
transmission rate by up to 45% compared to I-frame insertion
approach, at twice the storage costs.

The outline of the paper is as follows. We first review re-
lated work in Section II. We then overview our IMVS system
and models and describe three example implementations of
M-frames in Section III. We formulate the problem of optimally
generating redundant frame structures for IMVS in Section IV.
For intuition, we first discuss two classes of heuristic structures
for the extreme cases when the likelihood of switching view
is very high or very small, and then based on the intuition
developed, we discuss a greedy optimization that performs
reasonably well for all values of view switching probabilities
in Section V. To further improve performance, we extend the
greedy optimization into a provably optimal recursive one
(under some simplifying conditions) in Section VI at the cost
of increased complexity. Finally, we discuss our experiments
and conclude in Sections VII and VIII, respectively.

II. RELATED WORK

A. Interactive Media Streaming

The communication paradigm for our IMVS work is one
where the server continuously and reactively sends appropriate

4A generalization is to use an imperfect M-frame to merge multiple decoding
paths, such that the resulting reconstructed frame depends on the predictor avail-
able at the decoder, but any two reconstructed frames (using two different pre-
dictors) differ by no more than a chosen threshold �� to bound coding drift in
the system. Theoretically, the same optimization presented in this paper can be
used to find optimal combinations of redundant P-frames and such an imperfect
M-frame. Implementation of an imperfect M-frame, however, is left for future
work.

media data in response to a client’s periodic requests for data
subsets; we call this paradigm interactive media streaming.
This is in sharp contrast to non-interactive media streaming
scenarios like terrestrial digital TV broadcast [8], where the
entire media set is delivered server-to-client before a client
interacts with the received data set (e.g., switching TV channel,
etc). Interactive media streaming has the advantage of reduced
bandwidth utilization since only the requested media subset is
transmitted and is used for a wide range of media modalities.
One example is interactive browsing of JPEG2000 images [12],
[13], where a small spatial area, selected by a user, of a possibly
very large image encoded using discrete wavelet transform,
is transmitted successively via incremental quality layers. Yet
another example is video playback with flexible decoding [14],
where a video frame is DSC encoded using both past and future
frames as predictors (side information), so that frames can be
sent either forward or backward in time per client’s request,
and the client can simply decode and play back the video in the
transmission order with no excess buffering.

B. Interactive Light Field Streaming

In the case of light fields [15], where a subset of a densely
sampled 2-D array of images is used to interpolate a desired
view using image-based rendering (IBR) [16], the notion of
interactive media streaming has been investigated extensively
[17]–[22]. These works are motivated by the very large size
of the original image set—on the order of tens of Gigabytes
[23]—so that sending the entire set before view navigation will
create intolerably large delay to the user. To exploit inter-view
spatial correlation among nearby views for coding gain, many
works employed disparity compensation while providing some
level of random access. Two representative works are [17] and
[19], which used DSC and SP-frame-like lossless coding re-
spectively to accommodate different decoding paths. We first
note that both proposals in [17] and in [19] are captured in our
M-frame abstraction of “single frame reconstruction using one
of multiple predictors”. Hence, these are viewed as implemen-
tations of an M-frame in our formulation, using which our pro-
posed optimization can generate structures containing the op-
timal combinations. We also note that [17], [19] do not consider
multiple decoding paths resulting from the use of redundant
P-frames to represent an original picture, hence [17], [19] pro-
vide no mechanism to systematically further lower transmission
cost by making use of extra storage capacity, if available.
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[21], [22] first assumed that each coding block of an image
is encoded as INTRA, INTER or SKIP as done in H.263 [24].
Then, for a requested INTER coding block to be correctly de-
coded, all blocks in its dependency chain5 that are not already
in the client cache must be transmitted, creating a cost both in
transmission rate and decoding complexity. The notion of trans-
mitting and decoding multiple blocks before displaying a single
one is called rerouting in our previous work [25]. Our findings
in [25] showed that rerouting provides marginal performance
gain in the IMVS scenario when view switching period is
reasonably large and when redundant P-frames are already used
(multiple-frame representation of a single picture is not consid-
ered in [21], [22]). Hence, we will assume rerouting is not used
during formulation in Section IV.

In summary, though we focus on the IMVS scenario in
developing our optimization framework in this paper, we can
theoretically retarget our optimization for interactive light field
streaming: previous switching techniques like [17], [19] can
be abstracted into different implementations of M-frames,
and rerouting [21], [22] can be easily incorporated into the
optimization as done in our earlier work [25]. Unlike these
previous work on light fields, our optimization can in addition
systematically trade off transmission rate with storage by
controlling the number of decoding paths created by redundant
P-frames. An in-depth investigation specifically for light field
streaming using our optimization is left for future work.

C. Interactive Multiview Video Streaming

Most of the previous research in multiview video has focused
on efficient compression of all frames of all views exploiting
temporal (across time) and spatial (across view) correlation
[4]–[6]. This approach makes obvious sense when the ap-
plication is compact storage of the entire multiview content,
or non-interactive media streaming applications as described
earlier.

For interactive streaming of stored multiview video, the
two-layer approach proposed in [26], [27] can be one solu-
tion, where coarse and fine quality layers of several views are
grouped and pre-encoded. During actual streaming, a subset of
views of low quality plus two views of high quality, carefully
selected based on user’s behavioral prediction, would then be
sent to the client. All transmitted views were subsequently
decoded, and the highest quality views that matched the user’s
at-the-moment desired views were displayed. While the in-
tended IMVS application is the same, our approach is different
in that we focus on the optimal tradeoff between transmission
rate and storage using combinations of redundant P-frames and
M-frames in our frame structure.

The most similar work to our proposal is [28], which de-
veloped three separate frame structures to support three types
of interactivity: view switching, frozen moment and view
sweeping. While the authors recognized the importance of a
“proper tradeoff among flexibility (interactivity), latency and
bandwidth cost”, no explicit optimization was performed to

5By dependency chain we mean all the blocks that need to be decoded before
the requested block can be decoded, i.e., an INTRA block followed by a suc-
cession of disparity compensated INTER blocks.

explore the best possible tradeoffs among these quantities in
one structure given an interaction model.

In our previous work, we formally posed the IMVS problem
as a combinatorial optimization in [2], proved its NP-hardness,
and provided two heuristics-based algorithms to find good frame
structures while allowing unlimited rerouting for IMVS. [25] is
a more thorough and analytical treatment of the same problem
with limited rerouting, using only I- and P-frames in the struc-
ture. We have also developed two novel DSC implementations
to serve as M-frames for IMVS in [11]. Preliminary results of
using I-, P-, and DSC frames in an IMVS optimized structure
is presented in [29]; this paper is a generalization of [29] where
the optimization is posed as a search for the best combination
of I-, P-, and generalized M-frames.

D. Distributed Source Coding

DSC [30] has been studied extensively in the past few years
for low-complexity video encoding, e.g., [31], [32]. In addi-
tion, DSC has been investigated for a variety of applications,
ranging from scalable coding [33], [34], error resilience video
transmission [35], [36], distributed compression of multiview
image/video [37], [38], to hyperspectral image compression
[39] (see [40] for a recent survey). In this paper, we extend our
previous work [10], [11] to apply DSC to facilitate interactive
view switching, and this is significantly different from other
DSC applications. Relevant information theoretic results for
this setup were developed in [41], [42].

III. SYSTEM MODEL, INTERACTION MODEL & M-FRAME

IMPLEMENTATIONS

To transition to later sections describing our core contribution
on frame structure optimization for IMVS, as introduction mate-
rial we first overview the IMVS system model, the assumed in-
teraction model between an observer and the multiview content,
and describe three different implementations for merge frames
(M-frames).

A. System Model

The system model we consider for our IMVS problem is
shown in Fig. 3. A Multiview Video Source simultaneously
captures multiple pictures of different views at regular
intervals. An example of a multiview sequence of two views
across four time instants is shown in Fig. 5(a). A Video Server
sequentially grabs the captured uncompressed pictures from
Multiview Video Source and encodes them offline, using an
optimized frame structure of I-, P-, and different implementa-
tions of M-frames for each picture batch of all views across

capturing intervals. The Video Server stores the structured
representation of the sequence locally, using which the server
serves multiple streaming clients subsequently. An alternative
approach of real-time encoding a path traversal tailor-made
for each streaming client’s interactivity is computationally
prohibitive if the number of clients is large.

In the sequel, we will use the term frame to denote a spe-
cific coded version of a picture and the term picture for the
corresponding original captured image. A frame can be an
intra-coded I-frame, a differentially coded P-frame with a
single predictor, or a conceptual merge frame (M-frame) that
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Fig. 3. Interactive multiview video streaming system.

uses a known set of predictors at encoding time. I-frame is
used for random access. For view switching, P-frame offers
the lowest possible transmission rate but increases the storage
required as the number of decoding paths multiplies over time.
M-frame offers the merging of multiple decoding paths into
one single representation but at a higher transmission cost than
P-frame.

Available M-frame implementations include SP frames in
H.264 [9] or DSC [10], [11]. Each implementation itself can be
composed of one or more encoded components, each encoded
using a different coding technique. Each implementation of
M-frame must satisfy the M-frame reconstruction condition:
the exact same decoded version must be reconstructed at the
decoder no matter which one of a known set of predictors is
available at the decoder buffer. Three example implementations
of M-frames using DSC are described in detail in Section III.C.
Our system will have representation redundancy, in the sense
that there may be more than one coded version (frame) to
represent a given picture.

B. View Interaction Model

We assume a view interaction model where, upon watching
any decoded version of the picture , corresponding to time
instant and view , an interactive client will request a coded
version of picture of view and next time instant ,
where view is between and ,6 with view transi-
tion probability ; we call this interactivity forward view
switching.7 Another possible interactivity for multiview video is
to freeze video in time and switch view (static view switching);
this interactivity can be efficiently supported by novel usage of
DSC [11]. Incorporation of static view switching into our opti-
mization framework is left for future work.

Note that a significant difference between our setting and that
of general light field streaming [17]–[22] is that in the latter
case the user is free to explore a static scene in all directions,
while here we play forward in time with only limited switching
possibilities (i.e., among neighboring views). The implication is
that only a limited number of previous frames ’s of dif-
ferent views ’s (three views in our setting) could have been
decoded when a current frame is requested, and so redun-
dant P-frame representation of a picture is more practical in
IMVS than general light field streaming. (However, redundant
P-frames can be practical for light field streaming if a more re-

6One can of course easily generalize our 2-neighbor view switching to
closest-� -neighbor view switching.

7All video streaming systems today offer forward playback of video, hence
forward view switching is a natural extension.

stricted interaction model—only vertical and horizontal view
switches are permitted, for example—is adopted.)

Though our interactive model presumes a client’s desire to
switch views at single-frame level , our model encom-
passes the more general case of a view switching period .
In the more general case, a “frame” in our model can repre-
sent consecutive actual frames of view (a carefully chosen
I-, P- or M-frame determined by our optimization followed by

consecutive P-frames of the same view).

C. Implementations of M-Frames

We discuss three novel implementations of M-frames using
DSC [11]. Each implementation represents a different tradeoff
between transmission and storage cost as illustrated in Fig. 1(b).

1) DSC Implementation 0 of M-Frame: The first DSC im-
plementation (DSC0) of M-frame is straightforward: construct
a single DSC component for all possible transitions into
view of instant from frames ’s of previous instant
using algorithm in [10]. In other words, given side information
of previous frames ’s, encode a DSC image for target

using codec in [10], such that the same image can be re-
constructed no matter which one of previous frames ’s is
present at the decoder buffer. The size of implementation DSC0
(lone DSC component ) is modeled as , where is
the maximum view index difference between DSC component

and a predictor. Size of a DSC image in general is inversely
proportional to the amount of correlation between the target and
the weakest correlated predictor [10]. An example of DSC0 is
shown in Fig. 4(b).

The transmission cost of DSC0 is simply . In other
words, the transmission cost of DSC0 is the size of the lone DSC
component itself.
DSC0 represents the most storage-efficient one of three im-

plementations of M-frames using DSC discussed here; because
this approach exploits correlation between successive frames
(using a previous frame as side information), both the transmis-
sion and storage costs are smaller than a corresponding I-frame
as shown in Fig. 4(a).

2) DSC Implementation 1 of M-Frame: The second DSC
implementation (DSC1) of M-frame is the following: first
construct multiple closed-loop differentially coded components

’s corresponding to all possible transitions from frames
’s of previous instant, then construct a DSC component

of the same view and same instant from the constructed
’s. Closed-loop differentially coded components ’s are

essentially P-frames encoded using motion/disparity compen-
sation, while the DSC component is encoded using DSC codec
described in [10]. See Fig. 4(c) for an example of DSC1.

The storage cost of DSC1 , given predictor set , is
the size of all differentially coded components ’s plus the
size of the DSC component :

(1)

where is the size of the differentially coded component
given predictor , and is the size of the DSC com-

ponent using predictors of the same time and view. The trans-
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Fig. 4. Examples of DSC implementations of M-Frame for two views. I-, P-, and M-frames are denoted as solid circles, solid squares and solid diamonds, respec-
tively. Differentially coded components and DSC components are denoted as dotted squares and dotted diamonds, respectively. (a) I- and P-frames only, (b) I-, P-
frames and DSC0, (c) I-, P- frames and DSC1, (d) I-, P- frames and DSC0+1.

mission cost given predictor can be written simi-
larly: . With the additional closed-loop differen-
tially coded components ’s, storage cost of DSC1 is almost
surely larger than DSC0. However, given the DSC component
and its predictors are of the same instant and view, a large corre-
lation exists between the target and the weakest predictor. This
results in a much smaller than . For predictor with
strong correlation to target (e.g., same view as ), only
a small differential component plus a small DSC compo-
nent is required, resulting in smaller transmission cost, i.e.,

. This is in contrast toDSC0, where a large
coding penalty (size corresponding to the least correlated
predictor in ) must be paid for all predictors ’s.

3) DSC Implementation 0+1 of M-Frame: We can combine
the two discussed DSC constructs into a hybrid one (DSC0+1):
construct multiple closed-loop differentially coded components

’s and subsequent DSC component as done in DSC1,
then replace a subset of differentially coded components ’s
that correspond to unlikely view switches with a single DSC
component . See Fig. 4(d) for an example where three dif-
ferentially coded components ’s in Fig. 4(c) are replaced by
a DSC component . The size of a DSC component
with multiple predictors is larger than a differentially coded
component , hence the transmission cost of each replaced
decoding path is larger. On the other hand, the combined storage

cost of the multiple replaced differentially coded components
’s is likely larger than a single DSC component , hence

DSC0+1 offers a tradeoff of transmission and storage that is in
between DSC0 and DSC1.

IV. PROBLEM FORMULATION

We now formulate our IMVS problem as a combinatorial
optimization problem. We first present necessary definitions in
Section IV.A. We then define IMVS formally in Section IV.B.
We present an alternative expression for the Lagrangian formu-
lation, useful during algorithm development, in Section IV.C.

A. Definitions

1) Redundant Frame Structure: Suppose we are given a mul-
tiview sequence of views and time switching instants,8

and corresponding view transition probabilities ’s as dis-
cussed in Section III.B. For simplicity of discussion we assume
for now that video starts with a single view . Fig. 5(a) shows
an example multiview sequence where , and

.
Given a multiview sequence, one can construct a redundant

frame structure , comprised of I-, P-, and different imple-
mentations of M-frames, denoted as ’s, ’s and ’s

8Given random access and view switching intervals � and � , respectively,
where � � � , we have � � ��� ���� �� � �.
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Fig. 5. Example of redundant frame structure. I-, P-, and M-frames are drawn as circles, rectangles and diamonds, respectively. A single edge from � to
� in (b) means a P-frame � is differentially coded using reference frame � . A set of edges from � to a set of frames � ’s means an M-frame
� is predictively coded using reference frames � ’s. (a) Multiview video sequence. (b) Redundant frame structure.

TABLE I
SUMMARY OF NOTATIONS FOR IMVS PROBLEM FORMULATION

(M-frame of implementation ), respectively, to represent the
sequence and enable IMVS. Note first that we do not specify
whether the predictions for P-frames are motion- and/or dis-
parity-compensated; our abstraction only aims to capture the de-
pendencies among frames and not the particular encoding tool
used. Note also that we specify only a storage and transmis-
sion cost here for each of implementations of an M-frame

. Our abstraction and subsequent optimization apply gen-
erally to all implementation of M-frames, including the three
discussed in Section III.C. Without loss of generality, however,
we do assume that the first construct is the most storage-ef-
ficient among all implementations—i.e., it corresponds to the
left-most tradeoff point on the convex hull of transmission rate
versus storage, as illustrated by DSC0 in Fig. 1(b). A struc-
ture representing the example multiview sequence in Fig. 5(a)
is shown in Fig. 5(b).

A frame structure forms a directed acyclic graph (DAG)
with I-frames as start nodes (nodes without ancestors). In
Fig. 5(b), I-frame is the lone start node of structure .
is redundant in that an original picture can be represented
by multiple frames ’s. In Fig. 5(b), is represented by

two P-frames and . From frame to a feasible
view switch , without loss of generality,
we assume structure contains one target frame such
that . This ensures structure is feasible; i.e.,
a server can schedule transmission of when viewer
requests view after observing .

Given view transition probabilities (which are in-
trinsic to the problem) and a frame structure , we will next
formally define storage cost and transmission cost .
See Table I for a summary of notations.

2) Frame Display Probabilities: For ease of discussion, we
first define frame display probabilities ’s—the probabil-
ities that frames ’s are sent by server to be displayed at the
viewer upon requests. We can compute ’s from front of
the structure , , to the back as follows using view transi-
tion probabilities, :

(2)
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In words, starting with initial I-frame of display proba-
bility one, the display probability of frame
is the sum of display probabilities of previous frames ’s
that can switch view to , scaled by transition probabili-
ties .

3) Storage Cost: For a given frame structure , we can de-
fine the corresponding storage cost, , by simply adding the
storage required by all encoded frames in :

(3)

where denotes the storage required by frame . For an
I-frame , rate only depends on the frame itself, and so we de-
note . In contrast, the rate for a P-frame depends
also on the frame used for prediction. Assuming is differ-
entially encoded using predictor , the corresponding rate
will be ; i.e., we assume that depends only
on the view of predictor . For example, we expect that a
more accurate prediction can be obtained if , and so in
general , for .

As discussed in Section III.C, the size of an M-frame
depends on implementation . Further, for a given implementa-
tion , size of an M-frame also depends on the set of frames
from which observer can view-switch to . We hence write
the size of an M-frame as —a function
of both the implementation and the set of predictors
that precedes M-frame in structure . We will assume in
general that size M-frame is smaller if the predictor set
is smaller:

(4)

As previous discussed, we will also assume that the first of
implementations is the most storage-efficient, i.e.,

(5)

We will discuss how ’s, ’s and ’s
were generated in our experiments in Section VII.

4) Transmission Cost: Similar to storage cost, given a struc-
ture we can define a corresponding transmission cost
for as the sum of individual transmission costs ’s:

(6)

Transmission cost of frame depends on the
frame type: if is I- or P-frame, it is just the frame size

itself scaled by frame display probability . If
is an M-frame, then depending on which previous frame

a view transition has arrived from, the transmission
cost would be different. See (7) at the
bottom of the page.

For example, from Fig. 5(b) the transmission cost is

the sum of costs and

for the two possible

transitions from and , respectively.

B. Optimization Problem Defined

We can now formally define the search for the optimal redun-
dant frame structure for IMVS as a combinatorial optimization
problem: find a structure , using a combination of I-, P-, and

implementations of M-frames, in feasible space9 that pos-
sesses the smallest possible expected transmission cost
while a storage constraint is observed. We denote this opti-
mization problem as :

(8)

Though (8) differs from the definition in [2], a similar proof
can be easily constructed to show that is NP-hard. Given
the computational difficulty of (8), we focus next on solving
the corresponding Lagrangian optimization for given Lagrange
multiplier instead10:

(9)

C. Alternative Expression for Lagrangian Cost

It turns out that one of the complexities of the
problem—optimal selection of implementation given avail-
able ones for a given chosen M-frame—can be solved separably
without loss of optimality when the optimal frame structure is
sought in (9). More precisely, when evaluating the Lagrangian
objective of (9), given previous frame set as pre-
dictors and target view frame , one can find the optimal

9The feasible space is the set of structures that enable an observer, upon
viewing displayed frame � , to switch to a displayed frame � of de-
sired view �, where transitions have been constrained depending on desirable
application characteristics, e.g., � and � may be constrained to be neighboring
views.

10Technically, the corresponding Lagrangian should be������������ ���.
When � and �� are fixed, however, it is equivalent to (8).

(7)
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Fig. 6. Examples of frame structures generated using path-based heuristic. (a) Minimum storage frame structure. (b) Minimum storage structure plus added
sub-path. Additional path in (b) is shown in thick-line rectangles.

implementation among that minimizes the Lagrangian
cost of M-frame as follows:

(10)

Equation (10) says that for a given M-frame with the same
previous frame set and target frame , one can find
the optimal implementation for M-frame in Lagrangian
sense, independent of other parts of the overall structure .
Hence, the selection of the optimal implementation for M-frame
can be solved simply as a sub-routine using (10) when the La-
grangian cost of the M-frame is needed during frame structure
search in (9).

Given the derivation for Lagrangian cost of an M-frame in
(10), we can now write the Lagrangian cost of structure simply
as a sum of Lagrangian costs, ’s, of individual frames

’s:

(11)

(12)

We will focus on minimizing the Lagrangian cost of structure
in form (12) in later sections.

V. HEURISTIC APPROACHES

In a nutshell, good frame structures should contain the “right”
mixture of redundant P-frames (for bandwidth efficiency) and
M-frames (for storage efficiency) for a given Lagrangian
multiplier . To gain intuition as to what frame structures are
good, we first consider two heuristics, path-based heuristic
and tree-based heuristic, to construct mixtures of redundant
P-frames and M-frames, without performing any explicit La-
grangian optimization. We show that these heuristics, though

simple, perform well when the view transition probabilities
’s are very small and very large, respectively. The re-

sulting intuition will guide us to a greedy structure optimization
in Section V.C. For the sake of keeping the heuristics simple, we
first assume the most storage-efficient implementation
is always used when an M-frame is selected. The recursive
algorithm in Section VI will consider the more general case
when implementations of an M-frame are available.

A. Path-Based Heuristic Structures

We first consider the case when the view transition probabili-
ties ’s are very small; i.e., an observer will very likely re-
main in the same view throughout all potential view switches.
To construct a good redundant frame structure for this case,
we start with the minimum storage frame structure, as discussed
in Section I, one where an M-frame is used at each switching
point. Fig. 6 shows an example of this structure for and

. Note that this structure has no redundant representa-
tion; each picture is represented by only one decoded frame.
Note also that this structure is optimal regardless of transition
probabilities when is sufficiently large.

This minimum storage frame structure comes with high
transmission cost. To reduce transmission cost by incremen-
tally increasing redundancy in the structure (thereby increasing
storage), one can do the following. Because an observer is very
likely to stay in a path of the same view throughout, a simple
heuristic is to locate the most likely transition
from frame to a view in the structure, and add a sub-path
of P-frames for this transition till the end of the structure. In
Fig. 6(b), a sub-path is added to the transition
from to same view 1. Note that in this case, the original
M-frame is subsequently replaced by a P-frame, because
the sub-path addition has caused ’s set of previous frame
predictors to reduce to a single predictor.

We compare the performance of structures generated using
the path-based heuristic to structures generated by a full opti-
mization procedure to be described in Section VI. The perfor-
mance of each structure is shown as a data point in Fig. 7(a),
representing the tradeoff between the expected transmission rate
and storage required to store the structure. We see that when the
transition probabilities are low, the path-based heuristic indeed
produced structures (path-lo) that closely approximates per-
formance of the optimal (opt-lo), demonstrating that the use
of the path abstraction indeed is appropriate. When the tran-
sition probabilities are high, however, the performance of the
path-based heuristic (path-hi) and the optimal (opt-hi) are
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Fig. 7. Comparison of transmission rate/storage tradeoff between path-based heuristic and full optimization, and between tree-based heuristic and full optimiza-
tion, respectively. (a) Rate/storage tradeoff for path-based heuristic. (b) Rate/storage tradeoff for tree-based heuristic.

Fig. 8. Examples of frame structures generated using path-based heuristic. (a) Minimum transmission frame structure. (b) Minimum transmission structure of
limited depth.

quite far apart. This motivates us to derive a different heuristic
when the transition probabilities are high.

B. Tree-Based Heuristic Structure

When the view transition probabilities ’s are very
large, e.g., when it is just as likely for an observer to stay in the
same view as to switch to the neighboring view(s), we use a
different heuristic. We now start from the minimum transmis-
sion frame structure as described in Section I, one where only
P-frames are used at every switching point. This is essentially
a full-tree of depth with the lone I-frame as the root of
the tree; Fig. 8(a) shows such a full-tree of depth . The
tree has exponential number of frames—3 is the size
of the set of neighboring views an observer can switch to at a
switching point—which is not practical for large . However,
this redundant structure is optimal in Lagrangian cost when
is sufficiently small.

As similarly done before for the minimum storage structure,
to lower the storage cost by incrementally reducing the redun-
dancy in the minimum transmission structure, we do the fol-
lowing. Because each transition is equally likely, the probability
of arriving at a certain P-frame of a given tree depth is exactly
the same as arriving at any other P-frame of the same depth.
That means the Lagrangian costs of individual P-frames at the
same tree depth are roughly the same (assuming all P-frames
are of roughly the same size). On the other hand, as P-frames
of one tree depth transition to P-frames of the next tree depth,
the total transmission cost of P-frames of the next tree depth

remains the same (still one P-frame per transition), while the
storage has increased by factor 3. That means Lagrangian cost of
the P-frame set at deeper tree depth are strictly more expensive
than cost of the P-frame set at shallower tree depth. A reason-
able heuristic then is to eliminate P-frames of tree depth by
replacing P-frames at tree depth with M-frames. More specifi-
cally, starting with the minimum transmission structure, one can
replace P-frames at depth with M-frames for one struc-
ture—cutting the tree into halves—resulting in smaller storage
but higher transmission cost. For more tradeoff between storage
and transmission, one can replace P-frame at depth and

with M-frames for another structure—cutting the tree
into thirds, etc. Fig. 8(b) shows a structure where P-frames at
depth of the full free in Fig. 8(a) are replaced by
M-frames.

We now compare the performance of structures generated
using the tree-based heuristic to that of the full optimization
procedure, shown in Fig. 7(b). We see that when the transition
probabilities are high, the tree-based heuristic produced struc-
tures (tree-hi) approximate that of the optimal (opt-hi),
proving empirically that the use of the tree abstraction is indeed
appropriate. On the other hand, when the switching probabilities
are low, the performance of the tree-based heuristic (tree-lo)
compared to the optimal (opt-lo) is inferior. This suggests
that an optimal structure must use a combination of paths and
trees corresponding to different transition probabilities to opti-
mize the rate/storage tradeoff. We discuss such an optimization
next.
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C. Greedy Structure Optimization

In this section, we derive a greedy structure optimization
based on our observations of Sections V.A and V.B. While in
Sections V.A and V.B we started with a complete structure
(minimum storage or minimum transmission, respectively) and
then incrementally made heuristic modifications to the structure
to lower transmission or storage cost, here we iteratively build a
structure from front to back, i.e., starting with an initial I-frame

, we construct frames ’s at view switching instant 1,
then frames ’s at switching instant 2 and so on. At each
switching instant , the key question we need to answer is:
given frames ’s constructed at previous switching instant

, how do we optimally construct frames ’s to minimize
(12) for given Lagrange multiplier ?

Suppose that given constructed frames ’s at switching
instant , we identify the most likely view switches from

’s, and construct a P-frame to fulfill each of the view
switches. We then construct M-frames for total views and
assign the remaining view switches from ’s to them. Let

be the sum of probabilities of these most likely view
switches. If a P-frame at instant has average size , and an
M-frame has average transmission and storage cost of and

respectively, then we can find the optimal that minimizes
the Lagrangian cost at instant as follows:

(13)

We can now grow a structure from front to back greedily
starting from the initial I-frame using (13) at every
switching instant. Note that the algorithm is greedy in that at
each instant , the locally optimal th “slice” of the structure is
chosen with no lookahead into future switching instants .

We now compare the performance of structures generated
using the greedy optimization to that of the full optimization
procedure, shown in Fig. 9. We see that the greedy optimiza-
tion produced structures (heu-hi, heu-mid, heu-lo)
approximate that of the optimal (opt-hi, opt-mid,
opt-lo) on most data points whether the view transition
probabilities are high, medium or low. There are, however,
points that are far from the optimal due to the greedy nature
of (13). We next investigate an optimal algorithm, extending
on the greedy optimization here to take into account future
switching instants as well via recursion, generating the best
structures possible in a Lagrangian sense.

VI. RECURSIVE OPTIMIZATION

We now extend the previous greedy structure optimization in
Section V.C to a recursive algorithm to generate best possible
structures for . We first derive an optimal algorithm for

with exponential running time in Section V.C. We then
discuss methods to reduce its complexity for practical use in
Sections VI.B and VI.C.

A. Optimal Algorithm

We first provide an overview of the algorithm to develop intu-
ition. Similar to the greedy algorithm in Section V.C, we build a
frame structure from front to back one “slice” at a time, starting

Fig. 9. Comparison of transmission rate/storage tradeoff between greedy opti-
mization and full optimization.

with an initial I-frame . We define as a partial struc-
ture constructed from up till switching instant is
simply . For given partial structure , each frame

in has a display probability computable
front-to-back using (2). Each frame will switch to view

with probability either via a P-frame
predicted from , or via an M-frame , each with dif-
ferent local Lagrangian costs at instant . An optimal structure

at switching instant given has the smallest sum of:
i) local Lagrangian costs at instant , and ii) future (recursive)
minimum Lagrangian costs stemming from .

We first define as the local structure at instant for view
; each receives view transitions from frames ’s in

to frames ’s of view . can be a set of M-frames
’s, a set of P-frames ’s each coded with different refer-

ence frames ’s in , or a combination of both. Partial
structure at the next instant is simply a concatenation of pre-
vious partial structure and chosen local structures ’s for
all view ’s with appropriate coding dependencies attached.

We now define the minimum Lagrangian cost
from switching instant till last switching instant , given
partial structure , as the sum of local Lagrangian cost

of all view ’s at instant , and recursive cost
, where structure is a concatenation of and

’s as discussed:

(14)

Note that all feasible local structures ’s must be searched
exhaustively to find the global minimum in (14).

Local Lagrangian cost for view can be di-
vided into costs of M-frames and of P-frames in local
structure , where , to receive transitions to
view from previous frames ’s:

(15)
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The local Lagrangian cost is simply the sum of
individual Lagrangian cost of each M-frame in using
(10):

(16)

As discussed in Section IV.C, the optimal of implementa-
tions of an M-frame given predictor set and encoding
target is found locally using (10) without loss of global op-
timality.

The local Lagrangian cost for P-frames

’s, on the other hand, is the sum of each transition proba-

bility into a unique plus times the size of :

(17)

Display probability for M-frame is the sum of display
probabilities of previous predictor frames ’s scaled by
transition probabilities ’s:

(18)

We claim that a call , using (14) solves
the Lagrangian (9) optimally. We state this result formally as a
theorem below and then provide a simple proof.

Theorem 1: Using initial argument , optimiza-
tion (14) returns an optimal solution to .

Proof: We prove this by induction. For the base case of
recursion depth , it is clear that starting from any initial
structure slice at instant 0, (14) finds the optimal solution by
exhaustively searching all feasible local structures ’s with no
recursive term . For the inductive case, suppose (14) is
optimal for recursive depth ; i.e., yields the optimal
structure of depth given . For recursive depth of ,
we can do the following. Given initial slice , exhaustively
search all feasible set of ’s, and for each set, evaluate its local
Lagrangian cost plus recursive cost , where is simply
a combination of and set of ’s. By assumption,
returns optimal structure of depth given . Given ’s are
exhaustively searched, this procedure gives the optimal solution
for depth . Note that this is exactly how (14) performs its
optimization for depth . Hence, the inductive case is also
proven, and (14) is globally optimal.

Though optimal, (14) is nevertheless exponential in running
time; each of the potential transitions into instant and view
, can be mapped to either a P- or an M-frame, hence there are at

least local structures ’s for view alone. For general
, exhaustive search is simply not tractable, and we will hence

discuss strategies to reduce the overall complexity next.

B. Complexity Reduction 1: Simplify Local Structure Selection

To reduce complexity in (14), in this section we derive a
methodology to systematically reduce the number of local

structures ’s that are searched at each function invocation
in (14) to reduce complexity. Towards that goal, we

first state the following result:
Lemma 1: If local Lagrangian cost of switching from

frames ’s in partial structure to a single M-frame
in local structure at instant and view is no larger

than corresponding local Lagrangian costs of switching to
constructed P-frames ’s, , then resulting
global Lagrangian cost of switching to is also no larger
than resulting global Lagrangian costs11 of switching to ’s.

In other words, if the local cost of merging transitions to an
M-frame is no larger than the cost of corresponding P-frames,
then surely the merging decision of using M-frame is also glob-
ally optimal. The proof for Lemma 1 is stated as follows.

Proof of Lemma 1: We show that for any set of subtrees
of P-frames stemming from constructed ’s in , one can
construct a corresponding subtree of P-frames stemming from

in such that the resulting global Lagrangian cost is
no larger. For given set of subtrees ’s below ’s, we
construct corresponding subtree for by taking the union
of ’s; i.e., for each P-frame in , we add a corre-
sponding of the same size to if does not already have

constructed. (See Fig. 10 for an example.) First, we know
since union of sets is no larger then

sum of sets. Further, transmission cost from to any frame
in is exactly the same from to its corresponding
in , hence the transmission cost of using over ’s

can be no worse. Since by assumption alone induces no
larger local Lagrangian cost than ’s, we conclude and

also induce no larger global cost than ’s and ’s.
To make good use of Lemma 1, we construct the following

greedy heuristic to simplify the selection of local structure
for view given invocation . First, we create an

M-frame to which all viable switches to view from
frames ’s in would transition. Then we identify
the frame in , whose corresponding local La-
grangian cost associated with transition to M-frame ,

, would decrease the most if transitions
to a P-frame , instead. We create ,
reassign to transition to , and compute global La-
grangian cost using (14) to test global optimality. The process
repeats to find the most locally beneficial in and
add corresponding P-frame to until no cost-reducing

remains.
From the description of the greedy heuristic, it is clear that

at most local structures ’s, where is the number of
viable transitions to view from frames ’s in , are
recursively computed for global optimality using (14). The stop-
ping condition—that no more P-frame can be constructed to
lower local Lagrangian cost—is guaranteed to be optimal within
the set of local structures given Lemma 1. (The corollary
of Lemma 1 is that local Lagrangian cost cannot be further de-
creased by constructing more P-frames means that global La-
grangian cost also cannot be further decreased by constructing
more P-frames.) Further, it turns out that restricting testing of

11This lemma assumes that each P-frame � encoded using predictor
� is of size � ��� as described in Section IV.A.
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Fig. 10. Example of union construction of M-frame subtree. (a) Multiple P-frames and subtrees. (b) M-frame and subtree.

Fig. 11. Complexity reduction 1: Simplify selection of local structure � ’s during invocation � �� �.

Fig. 12. Complexity reduction 2: Sliding window of maximum recursion depth � during invocation � �� �.

global optimality to only these local structures remains
globally optimal if the only implementation of M-frame is an
I-frame implementation, and frame sizes of I- and P-frames do
not change across time and across view. The intuition is that
given the difference in frame sizes between M- and P-frames re-
mains the same across time, there is nothing extra to be gained
in future instants that cannot already be obtained locally at
instant . See Appendix I for a detailed proof of this special case.

More generally, one can create another M-frame instead
of P-frame when reassigning ’s in to transi-
tion to newly created frames to lower local Lagrangian cost. For
completeness, Fig. 11 describes the general complexity reduc-
tion procedure 1 to select local structures ’s during invoca-
tion .

C. Complexity Reduction 2: Sliding Window of Recursion
Depth

Though the number of next-level recursive calls from each
invocation is now linear due to procedure in Section VI.B, the
number of total calls is still exponential in the depth of the recur-
sion . Hence, we propose a sliding-window strategy of max-
imum lookahead depth as shown in Fig. 12. Essentially,
the algorithm performs optimization (14) up to maximum depth

starting with initial I-frame, , as argument, adds

the first “slice” of the optimized partial frame structure to ,
and then use updated as the new argument to solve (14) again
up to maximum depth , and so on. We will show in Section VII
that the sliding-window strategy produces good approximated
results.

VII. EXPERIMENTATION

A. Experimental Setup

To gather multiview video data for our experiments, we
used three neighboring views12 from 100-frame sequences
akko&kayo and ballroom at 320 240 resolution and 30
fps and 25 fps, respectively. The distance between neighboring
cameras for akko&kayo and ballroom were 5 cm and 20
cm respectively; using both data sets can test our algorithm with
multiview sequences of different characteristics. To generate
data for DSC0 and DSC1 implementations of M-frames, we
used the algorithm in [11], which is based on H.263 tools
(e.g., half-pel motion estimation). We selected QP such that

12We believe the general trends in the tradeoff between transmission rate and
storage will remain the same for larger number of views, due to our assumption
that an observer can only switch to a neighboring view. Hence, any intermediate
view (i.e., neither the left-most nor right-most view) will behave like the middle
view of the three views used in our experiments.
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Fig. 13. Tradeoffs between expected transmission rate and storage per picture for � � ��� � � �, comparing performance between full recursive optimization
(opt) and optimization with finite sliding window of size � (fast). (a) akko&kayo, (b) ballroom.

I-, P-, and DSC-frames were reconstructed to the same quality
(around 34 dB).

More precisely, for each sequence, we generated encoding
rates ’s, ’s, as inputs to our optimization algorithm as
follows. Each was obtained when we encoded picture as
I-frame. ’s were obtained when we encoded picture
in a single-view sequence where each was motion-compen-
sated from . For ’s, , we first generated four
zigzagged sequences as follows:

1) .
2) .
3) .
4) .
For each , we simply located the zigzagged stream

that contained the sub-sequence and assigned the
corresponding coding rate.

For transition probabilities ’s, we assume frame
remains at the same view with probability , and tran-
sitions to neighboring views and with probability

each. Frame transition to the single neighboring
view with the same probability .

B. Experimental Results

1) Approximation Using Sliding-Window Strategy: We first
examine how closely the fast sliding-window strategy (fast)
discussed in Section VI.C approximates the original algorithm
without the sliding window (opt). For random access period
of and switch period of —hence optimiza-
tion window depth of —we gen-
erated tradeoff points between expected transmission rate and
storage required per picture using opt, shown in Fig. 13 for
the two test sequences. Lagrangian multiplier was swept from
0.01 to 10.24 to induce different tradeoffs. We also generated
tradeoff points for fast when the lookahead depth was .
We see that the convex hull of fast closely resembled that of
opt, demonstrating that the sliding-window strategy performs
numerically close to the original in practice. For this case when

, we found experimentally that performance as a function
of lookahead improves noticeably up to , beyond which
the improvement is marginal. We conjecture that the reason is
that sufficient number of frame structures are already considered

for optimization when (including the “full tree” frame
structure with leaf nodes). Hence, lookahead is used
for the rest of the results section.

2) Algorithm Performance Comparison 1: Different Tran-
sition Probabilities: For algorithm comparison, using first a
random access period of frames and switching period
of frames, we plotted the tradeoff points for our algorithm
using I- and P-frames only (IP) and I-, P- and M-frames (IPM),
for the akko&kayo and ballroom sequences in Fig. 14(a)
and (b), respectively. To induce different transition probabili-
ties ’s, was set to 0.1 and 0.2 for two different trials.
We also plotted the performance of the random access approach
(RA-I) where I-frames were inserted at all switching points for
view switching.

We first see that RA-I was represented by a single point;
because the I-frame insertion algorithm was fixed, it had one
corresponding fixed transmission and storage cost, and therefore
could not take advantage of extra storage capacity if available
to lower transmission cost.

Second, we see that our algorithm found tradeoff points in
IPand IPM that were to the lower left of RA-I; i.e., our al-
gorithm generated frame structures that offered lower transmis-
sion rates than and required smaller storage than RA-I. This
is particularly noticeable when M-frames were used in addition
to I- and P-frames, where our algorithm generated frame struc-
tures with 38% and 20% smaller expected transmission rate re-
spectively for the two sequences, while requiring comparable
storage.

Third, unlike RA-I, our algorithm offered a range of tradeoff
points to take advantage of extra storage when available to
further decrease expected transmission rate. In particular, at
twice the storage of RA-I, our algorithm generated frame
structures with 45% and 32% smaller expected transmission
rate than RA-I for akko&kayo and ballroom, respectively.
The performance improvement of IPM over RA-I was more
dramatic for akko&kayo than ballroom; we conjecture that
this was due to relatively smaller sizes of P-frames compared
to I-frames in akko&kayo, as a result of the closely spaced
cameras.

Fourth, we see that using M-frames (IPM) in addition I- and
P-frames (IP) did generate better tradeoff points at all storage
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Fig. 14. Tradeoffs between expected transmission rate and storage per picture for � � ��� � � �, comparing performance among random acesss I-frame
insertion (RA-I), I- and P-frames only (IP), and I-, P-, and M-frames (IPM) for different view switching probability �. (a) akko&kayo, (b) ballroom.

Fig. 15. Tradeoffs between expected transmission rate and storage per picture for � � ��� � � ���, comparing performance among random acesss I-frame
insertion (RA-I), I- and P-frames only (IP), and I-, P-, and M-frames (IPM) for different view switching period � . (a) akko&kayo, (b) ballroom.

requirements. The differences are largest at stringent storage re-
quirement, when M-frames are used more often then redundant
P-frames.

Finally, we see that as the switching probabilities increased,
the performance of our algorithm deteriorated gradually (curves
of IP and IPM shifted to the upper-right). This is expected, as
more transitions mean more inter-view predicted frames are re-
quired, resulting in higher transmission rates. The improvement
over RA-I, however, remains dramatic.

3) Algorithm Performance Comparison 2: Different View
Switching Periods: We repeated the same experiment again,
where this time we varied the view switching period from
3 to 5. The results are shown in Fig. 15(a) and (b) for the two
test sequences. We observe that larger switching period means
smaller transmission rate and storage in general; this is intuitive
since staying in the same view more often means same-view
predicted P-frames that are very bandwidth-efficient were
used more extensively between transitions. Nevertheless, our
algorithm did generate similar patterns of tradeoff points that
are superior to RA-I, and using M-frames did perform better
than optimization using I- and P-frames only.

4) Algorithm Performance Comparison 3: Frame Rate Ap-
proximation: One source of complexity in our algorithms is the
acquisition of data—specifically, frame sizes for I-, P and dif-
ferent implementations of M-frames—for input into our opti-

mization. To reduce the burden of data collection, we investi-
gated the use of estimated data as representatives for the en-
tire data set, in particular, use statistics of frames in the first
switching instant for optimization of the entire sequence. For
example, use of P-frame size of instant 1 and view
for all ’s, . Fig. 16 shows the performance compar-
ison of using approximated rates versus exact rates for both
akko&kayo and ballroom sequences. Our results show that
for both cases when M-frames was (IPM) and wasn’t used (IP)
in the optimization, using estimated data gave almost as good a
performance. Hence, in a scenario where encoding complexity
is a concern (though the proposed system is for stored-and-play-
back applications), one can choose to use estimated data for op-
timization with minor loss in performance.

VIII. CONCLUSION

In this paper, we motivated the need for an interactive mul-
tiview video streaming (IMVS) system, where an observer can
periodically send feedbacks to the server requesting desired
views out of many available. In response, the server will send
corresponding pre-encoded video data to the observer for
decoding and display without interrupting forward video play-
back. Observing that one can trade off expected transmission
rate with a modest increase in storage when designing the
pre-encoded frame structure, we formulated a combinatorial
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Fig. 16. Tradeoffs between expected transmission rate and storage per picture for � � ��� � � ���, comparing performance between I- and P-frames only (IP)
and I-, P-, and M-frames (IPM) using frame rate approximation. (a) akko&kayo, (b) ballroom.

Fig. 17. Structure constructions and corresponding Lagrangian costs for proof of optimality of greedy procedure. (a) Possible structures at instant � � �.
(b) Lagrangian cost versus transition probability.

optimization problem, where the optimal structure contains the
best mixture of I-frames (for random access), P-frames (for low
transmission rate) and merge or M-frames (for low storage),
trading off transmission rate with storage. We presented fast
heuristic-based strategies, as well as a near-optimal recursive
algorithm as potential solutions to the optimization problem.
Our results show that when compared to the simple I-frame
insertion strategy, our proposed frame optimization can reduce
expected transmission rate by up to 45% at twice the storage.

APPENDIX

We prove here that the greedy procedure described in
Section VI is optimal when the only implementation of
M-frame is an I-frame, and the sizes of P- and I-frames do
not change across time and across view. Let and be the
sizes of I- and P-frames respectively for all views and all time.
Under these assumptions, the greedy procedure will iteratively
select transitions with the largest probabilities for P-frame
constructions, until the resulting local Lagrangian cost exceeds
that of the previous iteration.

We prove the optimality of the greedy procedure by contra-
diction. Suppose at instant , an alternative procedure selects at
iteration a transition with probability that is not the tran-
sition with the th largest probability , i.e., . Sup-
pose further that this alternative procedure eventually leads to a
smaller overall Lagrangian cost compared to the greedy proce-
dure. First, due to the different transition selection for P-frame
construction at iteration , the greedy procedure has a smaller
local Lagrangian cost over the alternative one at this instant by

, as shown in Fig. 17(b). The difference in
transition selection also leads to different display probabilities
for the resulting M-frame (I-frame), and , for the greedy

and alternative procedure, respectively, where .
Note also that and .

At instant , the transition probabilities to the same view
from M-frame and the P-frame created from iteration of in-

stant are and respectively for the greedy procedure,
and and respectively for the alternative procedure. This
difference in transition probabilities at instant due to the
alternative procedure can lead to a lower local Lagrangian cost
than the greedy procedure for same view at instant , if
the optimal structure contains a P-frame for the M-frame in in-
stant and an I-frame for the P-frame constructed in iteration
in instant , as illustrated in Fig. 17(a)(i). We call this structure

. Any other structure for the alternative procedure would
lead to the same or worse local Lagrangian cost than a compa-
rable structure for the greedy procedure. In contrast, the optimal
structure for the greedy procedure at instant can be either

, or a structure where only an I-frame is constructed to
handle both transitions from M-frame and P-frame of th largest
probability in instant —we call this structure I-only (see
Fig. 17(a)(ii) for an illustration). We bound the gain in local La-
grangian cost by the alternative procedure for the two cases as
follows.

Suppose the optimal structure for the greedy procedure at in-
stant , like the alternative procedure, is also . Because
the alternative procedure leads to a larger transition probability

into the P-frame in instant , it will induce
a smaller local Lagrangian cost at instant compared to
the greedy procedure. The magnitude of the gain, however, is
bounded by .

Suppose now the optimal structure for the greedy procedure
at instant is instead I-only. First, that means that it is
more costly to create a P-frame for transition of probability
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stemming from the M-frame of instant than to merge this tran-
sition to an existing I-frame:

We can now bound the cost improvement of the structure
of the alternative procedure over the I-only structure of the
greedy procedure as follows:

Hence, the gain is also bounded by .
The same analysis will show that the gain for transition to other
views ’s, , scaled by probability , is also bounded
similarly. Hence, alternative procedure does not lead to a lower
Lagrangian cost than the greedy procedure at instant . By in-
duction, it does not lead to a lower Lagrangian cost in future in-
stants as well. Therefore, the alternative procedure does not lead
to a smaller Lagrangian cost and the optimality of the greedy
procedure is proven.
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