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Abstract—The encoding of both texture and depth maps of mul-
tiview images, captured by a set of spatially correlated cameras,
is important for any 3-D visual communication system based on
depth-image-based rendering (DIBR). In this paper, we address
the problem of efficient bit allocation among texture and depth
maps of multiview images. More specifically, suppose we are given
a coding tool to encode texture and depth maps at the encoder
and a view-synthesis tool to construct intermediate views at the
decoder using neighboring encoded texture and depth maps. Our
goal is to determine how to best select captured views for encoding
and distribute available bits among texture and depth maps of se-
lected coded views, such that the visual distortion of desired con-
structed views is minimized. First, in order to obtain at the encoder
a low complexity estimate of the visual quality of a large number
of desired synthesized views, we derive a cubic distortion model
based on basic DIBR properties, whose parameters are obtained
using only a small number of viewpoint samples. Then, we demon-
strate that the optimal selection of coded views and quantization
levels for corresponding texture and depth maps is equivalent to
the shortest path in a specially constructed 3-D trellis. Finally, we
show that, using the assumptions of monotonicity in the predictor’s
quantization level and distance, suboptimal solutions can be ef-
ficiently pruned from the feasible space during solution search.
Experiments show that our proposed efficient selection of coded
views and quantization levels for corresponding texture and depth
maps outperforms an alternative scheme using constant quanti-
zation levels for all maps (commonly used in video standard im-
plementations) by up to 1.5 dB. Moreover, the complexity of our
scheme can be reduced by at least 80% over the full solution search.

Index Terms— Bit allocation, depth-image-based rendering, 3-D
image coding.

I. INTRODUCTION

R ECENT development of imaging technology has led to
research in higher dimensional visual information pro-

cessing beyond traditional 2-D images and single-view video,
aiming at improving the user’s visual experience and offering
new media navigation functionalities to consumers. One notable
example is the multiview video [1], where a scene of interest is
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captured by a large 2-D array of densely spaced time-synchro-
nized cameras from different viewpoints [2]. Thus, the resulting
captured data have a much larger number of dimensions com-
pared with traditional media, i.e., pixel location at time
from camera location . In this paper, we focus on the more
constrained scenario where the scene of interest is static, and the
capturing cameras are placed in a 1-D horizontal array. Hence,
we can drop the temporal dimension and the vertical camera
shift and focus on a set of still images instead of video se-
quences. The media interaction promised for users is the ability
to interactively choose viewpoint images for observation any-
where along the horizontal -axis. We refer to this more con-
strained scenario simply as multiview imaging in the sequel.1

In a typical multiview imaging scenario, a sender creates
and transmits a multiview representation, which is composed
of viewpoint images taken by the aforementioned spatially
correlated cameras, of a physical 3-D scene so that a receiver
can construct images of the scene from viewpoints of his
own choice for display. To efficiently encode the multiview
image sequence for a given bit budget, the sender can employ
disparity compensation coding tools such as those used in mul-
tiview-video coding (MVC) [3] to exploit inter-view correlation
among the captured views. The receiver can subsequently
decode images (texture maps) in the encoded sequence for
display. See Fig. 1 for an overview of the multiview imaging
communication system. The available viewpoint images for the
receiver are the same encoded set of images at the sender,
plus possibly intermediate images between coded images
interpolated using methods2 such as the motion-compensated
frame interpolation (MCFI) [4], [5]. Because typical MCFI
schemes, with no available geometric information about the
scene, assume simple block-based translational motion that,
in general, is not true for multiview images, the interpolated
quality tends to be poor.

One method for the receiver to improve the quality of in-
terpolated intermediate viewpoint images that are not explic-
itly coded at the sender is to use depth-image-based rendering
(DIBR) [6]. The idea is for the sender to encode depth infor-
mation (distance between the camera and the physical object in
the scene corresponding to each captured pixel) for some view-
points. The depth can be estimated [7] or recorded by special

1The analysis and the bit allocation algorithm presented in this paper for mul-
tiview images serve as a foundation for the more complex multiview-video case.
For example, for low-motion video, the bit allocation algorithm proposed here
can be used to select quantization levels for the first temporal frames of different
views, which are then reused across time for the duration of the group of pic-
tures in the video.

2Although multiview images have disparity instead of motion, in theory, inter-
polation methods based on motion compensation can be also used for multiview
images.

1057-7149/$26.00 © 2011 IEEE
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Fig. 1. Overview of a multiview imaging communication system. � cameras
in a 1-D array capture images of a scene from different viewpoints. The sender
selects a multiview representation, compresses it, and transmits it to the receiver.
The receiver decodes the compressed images and, if depth maps are available,
synthesizes intermediate views via DIBR that are distance� apart.

hardware [8]. A receiver can then synthesize additional interme-
diate views from received neighboring texture and depth maps
using DIBR techniques such as 3-D warping [9], [10]. Con-
veying both texture and depth maps, which is called the texture

depth representation, for a large multiview image sequence
to the receiver, however, means that a large amount of data must
be transmitted. A natural resource allocation question hence
arises, i.e., given a disparity-compensation-based encoder at the
sender and a DIBR view-synthesis tool at the receiver, what is
the “best” multiview representation of a scene for a given trans-
mission bit budget?

More specifically, we address the following bit allocation
problem for DIBR in this paper. Suppose the receiver desires
to “construct” multiview images (either decode images from
the coded bitstream or interpolate images from neighboring
decoded images) from viewing locations that are integer multi-
ples of a given view spacing . How should the sender select
captured views for encoding and select quantization levels
of corresponding texture and depth maps of chosen captured
views to minimize the distortion of all -spaced constructed
views (decoded or interpolated) at the receiver for a given
coding bit budget? We focus on the scenario where the desired
constructed views at the receiver are very dense (small ), thus
offering the receiver maximum flexibility to virtually choose
any viewpoints for his/her observation of the scene. From a
coding perspective, dense constructed views also means that
an alternative multiview representation3 that synthesizes all
required intermediate views at the sender and encodes all the
generated texture maps will require very large bit expenditure,
even at coarse quantization. Hence, given a small synthesized
view spacing , a practical multiview representation with
reasonable bit budget must only encode (possibly a subset of)
captured views and rely on DIBR at the receiver to synthesize
many desired intermediate views between two coded frames.

To address this bit allocation problem, the first practical diffi-
culty is how to estimate, at the sender, the total visual distortion
of -spaced intermediate views that would be synthesized at
the receiver using neighboring encoded texture and depth maps.
One obvious method to estimate synthesized distortion between

3When the required view spacing and/or the available bit budget are very
large, a feasible multiview representation can indeed synthesize all intermediate
views at the sender and encode them as regular frames. See [11] for this related
bit allocation problem when the optimal representation can be a mixture of syn-
thesized views interpolated and coded at the sender and views synthesized at the
receiver via DIBR.

two coded views at the encoder is to actually synthesize the en-
tire set of intermediate views with spacing and calculate their
distortions. For small spacing , however, this can be exceed-
ingly computationally expensive.

Instead, in this paper, we derive a cubic distortion model
based on basic properties of DIBR in order to calculate, at low
computation cost, the distortions of all synthesized intermediate
images between two coded views. Specifically, given the model,
we can either deduce model parameters using several sample
synthesized views to estimate the distortion of all required in-
termediate views between two coded frames, or estimate the av-
erage distortion of all required intermediate views using a single
image sample at the midpoint between the two coded frames.
We note that, to the best of our knowledge, we are the first
to estimate the DIBR-synthesized view distortion of a set of
densely spaced viewpoints between two coded views using a
small number of image samples.

Armed with our cubic distortion model, the second practical
difficulty is to select an appropriate subset of captured views for
encoding for a given desired rate-distortion (RD) tradeoff. This
is difficult because, depending on the efficiency of the chosen
coding and view-synthesis tools and the complexity of the cap-
tured scene, different optimal selections are possible. For ex-
ample, if the captured scene is complex and requires detailed
depth maps for good view interpolation, then encoding texture
and depth maps of all captured views may be a good selection.
On the other hand, if it is relatively easy to interpolate inter-
mediate views for the captured scene at high fidelity, then syn-
thesizing even some captured views instead of coding them can
offer better RD tradeoff. Hence, the issue of coded view selec-
tion is a critical one in multiview bit allocation and must be op-
timized for good RD performance.

In this paper, we propose a bit allocation algorithm that finds
the optimal subset of captured views for encoding and assigns
quantization levels for texture and depth maps of the selected
coded views. We first establish that the optimal selection of
coded views and associated quantization levels is equivalent to
the shortest path (SP) in a specially designed 3-D trellis. Given
that the state space of the trellis is enormous, we then show that,
using lemmas derived from monotonicity assumptions in the
predictor’s quantization level and distance, suboptimal states and
edges in the trellis can be pruned from consideration during the
SP calculation without loss of optimality. Experiments show that
our proposed selection of coded views and quantization levels for
corresponding texture and depth maps can outperform an alterna-
tive scheme using constant quantization levels for all texture and
depth maps (commonly used in video standard implementations)
by up to 1.5 dB. Moreover, our search strategy reduces at least
80% of the computations compared with the full solution search
that examines every state and edge in the 3-D trellis.

This paper is organized as follows. After discussing related
work in Section II, we derive the cubic distortion model used
to estimate the distortion of densely spaced synthesized views
in Section III. We then formulate our bit allocation problem
in Section IV. We introduce the monotonicity assumptions and
propose an efficient bit allocation algorithm in Section V. We
present our experimental results in Section VI. Finally, we con-
clude in Section VII.
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II. RELATED WORK

We divide the discussion of related work into four parts. We
first motivate the value of “texture depth” representation of
a 3-D static scene studied in this paper. Having established that
“texture depth” is an important representation, we discuss
recent advances in coding tools for texture and depth maps for
multiview images and video, and new view-synthesis tools using
DIBR. Then, we discuss recent analysis and models for distor-
tion of images synthesized via DIBR. Finally, we discuss related
work on bit allocation for image/video coding in general.

A. Representations of 3-D Static Scenes

In general, one can construct many different viable represen-
tations of a static scene for image-based rendering of any view-
point at the receiver, including layered depth images [12], light
field [13], lumigraph [14], and view-dependent texture map-
ping (VDTM) [15]. See [9] and [16] for excellent surveys of
representations proposed in the literature. For a chosen repre-
sentation, coding optimization can be then performed to trade
off the reconstructed view distortion with the encoding rate. As
a concrete example, Magnor et al. [17] considered two repre-
sentations, i.e., VDTM and model-aided predictive coding. For
VDTM, Magnor et al. [17] first constructed a -voxel model,
using 257 captured images around a single object of interest
(e.g., a stuffed toy animal). Given the model information, the
receiver can first render the shape of the single object and then
stitch texture patches on the model surface for image recon-
struction. The tradeoff between the synthesized view distortion
and the coding rate can be achieved by varying the number of
bits used to encode the voxel model and the texture patches.
For model-aided predictive coding, an image is first predicted
by warping multiple reference images given a geometry model
[18]. Prediction residuals are subsequently coded using conven-
tional transform coding techniques. The coding rate can be re-
duced via coarser quantization during residual coding.

In contrast, the “texture depth” format [6], which is the
focus of this paper, has one texture and depth map at each cap-
tured viewpoint, where each depth map is a 2-D representation
of the 3-D surface in the scene of interest. The image or video
sequence encoded in the “texture depth” format can enable
the decoder to synthesize novel intermediate views via DIBR
techniques such as 3-D warping [19].

The “texture depth” format has several desirable proper-
ties. First, unlike the mesh-based geometrical model in [15],
which can take hours to compute [17], depth maps can be either
simply estimated using stereo-matching algorithms [20] or di-
rectly captured using time-of-flight cameras [8]. Second, depth
maps can better handle a complicated scenery with multiple ob-
jects, whereas a mesh-based model often requires dense image
sampling around the single object of interest for good construc-
tion quality. Finally, the “texture depth” format is more adapt-
able to a dynamic scene where objects change positions and
shapes over time. For these and other reasons, “texture depth”
is currently the chosen format for 3-D scene representation in
the free-viewpoint video working group in the Motion Pictures
Expert Group.

Given that the “texture depth” format is an important rep-
resentation for the multiview image/video, in this paper, we pro-

pose a bit allocation strategy to select captured texture and depth
maps for encoding at the appropriate quantization levels, so that
the synthesized distortion at intermediate views of small spacing

is minimized. We believe that we are the first in the literature
to address this important problem formally; the natures of pre-
vious geometry representations (e.g., [17]) are sufficiently dif-
ferent from the “texture depth” format that previous empirical
and theoretical optimizations do not carry over.

B. Motion/Disparity Compensation Coding Tools and DIBR
View Synthesis Tools

For the efficient representation of multiview images and
video, novel coding tools and frame structures for texture map
encoding [21]–[23] have been proposed in order to exploit
inter-view correlation for coding gain. Similarly, new coding
algorithms specifically tailored for depth maps [24], [25] have
been proposed, leveraging on their unique smooth-surface and
sharp-edge properties. While new coding tools are important in
their own right, the associated bit allocation problem for DIBR,
i.e., how bits should be optimally distributed among texture and
depth maps for the chosen coding tools for maximum fidelity
of reconstructed views, is not addressed in these works. We
provide this missing piece in our paper by solving the following
key problems: 1) how to estimate distortions of a large number
of synthesized intermediate views between two coded frames at
the encoder at low complexity; and 2) how to optimally select a
subset of captured views for coding using the optimal amount
of bits for texture and depth maps. We emphasize the generality
of our proposal, i.e., our bit allocation strategy can be executed
no matter which of the aforementioned tools are chosen for
texture and depth maps encoding.

Withthepopularityof thetexture depthrepresentationforthe
multiview images/video [6], enabling the DIBR-based view syn-
thesis at the decoder using received texture and depth maps, new
3-D warping algorithms [9], [10] have been recently proposed in
theliterature.Virtualviewinterpolationhasalsobeenauseful tool
for 3-D video systems [26]; several interpolation methods based
on disparity techniques have been studied in [27]. Instead of de-
veloping new view-synthesis tools, our goal is to find the RD-
optimal bit allocation, given the chosen coding tool at the en-
coder and the DIBR-based view-synthesis tool at the decoder.

C. Synthesized Distortion Model and Analysis

There has been work [28]–[30] studying the relationship be-
tween synthesized view distortion and lossy compression of the
depth map. Because the distortion of depth maps creates geo-
metric errors that ultimately affect synthesized view construc-
tions, Kim et al. [29], [30] proposed new metrics based on the
synthesized view distortion (instead of the depth-map distor-
tion) for the mode selection at a block level during H.264 en-
coding of depth maps. Our paper is different in which we find
the optimal quantization parameters for texture and depth maps
at the frame level. Moreover, we find the optimal subset of cap-
tured views for encoding for a given desired RD tradeoff.

For a two-view-only video sequence, Liu et al. [28] con-
structed a theoretical view-synthesis distortion model and de-
rived two quantization parameters, i.e., one for all texture maps
and one for all depth maps, which minimize the theoretical dis-
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tortion. In contrast, our proposed bit allocation scheme selects
quantization parameters for individual texture and depth maps
in a multiview image sequence. Selecting one quantization pa-
rameter for every frame (rather than one for a large group of
frames as done in [28]) means that we can take dependent quan-
tization into consideration, where a coarsely quantized predictor
frame would lead to worse prediction, resulting in higher dis-
tortion and/or rate for the predicted view. In terms of modeling,
unlike the complex model in [28], which requires the deriva-
tion of a large number of parameters, we first derive a simple
cubic distortion model (to be discussed in Section III) to model
the synthesized distortion between two coded views. Then, for
every pair of coded views, we construct a finite number of syn-
thesized images as samples to deduce the four cubic polynomial
coefficients specifically for this pair of coded views during the
solution search. While our operational approach avoids a priori
modeling errors (beyond our cubic distortion model), the task of
data collection can be overwhelming. Hence, our focus is on the
complexity reduction so that only a minimal data set is required
to find the optimal solution.

D. Bit Allocation for Image/Video Coding

Operational approaches for optimal bit allocation among in-
dependent [31] and dependent [32] quantizers have been studied
for single-view video coding. More recently, Kim et al. [33]
have extended the trellis-based optimization technique in [32]
to MVC, where texture maps of different frames can be coded
using different quantization parameters. Kim et al. [33] did not
consider the view synthesis when allocating bits to texture maps,
whereas our paper considers the bit allocation for two types of
resource, i.e., texture and depth maps, for the chosen subset of
captured views for encoding, such that the resulting distortion of
both encoded and synthesized views at the decoder is minimized.

The most similar prior research to our paper is the work on
the bit allocation for the single-view video with frame skip
[34]–[36], which studies the problem of selecting a subset of
captured frames in a video to code at an optimal amount of
allocated bits. The frames skipped at the encoder are interpo-
lated at the decoder using the optical flow analysis. The key
differences between the two problems are the following. First,
for our multiview problem, both texture and depth maps for a
coded view need to be coded, possibly at different quantiza-
tion levels, leading to a more complicated resource allocation
problem (and naturally leading to a 3-D trellis, to be discussed
in Section IV). Second, the depth-map encoding is an auxiliary
bit expenditure that does not improve the reconstruction of
the coded view itself but improves the construction quality of
intermediate views synthesized at the decoder using the coded
view’s texture and depth maps. There is no such “auxiliary” bit
expenditure in the problem addressed in [34]–[36].4

This paper extends our previous work [11], [37] on bit al-
location among texture and depth maps for DIBR as follows.
In [37], to evaluate the distortion of synthesized intermediate

4It is theoretically possible to have auxiliary bit spending that improves the
interpolation quality of skipped frames in a single-view video, e.g., bits that
improve the optical flow prediction in the skipped frames. This was not studied
in the cited previous works. If such expenditure does exist, our proposed search
strategy can be used to solve this bit allocation problem for single-view video
coding with frame skip as well.

views, a small number of evenly spaced samples are chosen a
priori, and the encoder synthesizes intermediate frames at all
these sample locations for evaluation. In this paper, assuming
the viewer desires dense viewpoint images of small spacing ,
we derive a cubic distortion model so that only a few interme-
diate view samples are constructed to estimate the distortions
of all -spaced synthesized intermediate views between two
coded frames. Furthermore, we validate our monotonicity as-
sumption on the predictor’s quantization level and distance em-
pirically. In [11], we studied the bit allocation problem where
the required reconstructed view spacing is large, so that syn-
thesizing texture maps of intermediate views at the encoder and
coding them are a viable multiview representation. The opti-
mization proposed in [11] has high complexity, however. In this
paper, we instead focus on the case when is small, so that
synthesizing all required intermediate views at the encoder and
encoding them require too many bits and hence is not a viable
option. By excluding this possibility, the search strategy pre-
sented here is much simpler than that in [11].

III. VIEWPOINT SAMPLING FOR MODELING OF SYNTHESIZED

VIEW DISTORTION

The goal of a DIBR-based multiview imaging communica-
tion system is to construct high-quality images of a static scene
observed from densely spaced viewpoints at the receiver. We
optimize the quality of all constructed views at the receiver by
selecting captured views for coding and allocating bits among
texture and depth maps of the selected coded views at the sender.
We search for the optimal selection of coded views and bit allo-
cation among selected views in an operational manner, meaning
that we iteratively try different allocations and evaluate their
quality (in a computationally efficient manner) until we con-
verge to an optimal operating point and terminate the solution
search.

To evaluate the merit of different bit allocations across tex-
ture and depth maps of coded views for this purpose, the sender
needs to assess the quality of intermediate views synthesized
using the encoded texture and depth maps of two neighboring
coded views and . Denote by the sum of distortions
of all desired intermediate views between coded views and

. Then, can be written as a sum of individual synthe-
sized view distortions at intermediate viewpoints ,

, i.e.,

(1)

(2)

where , as discussed in Section I, is the desired viewpoint
spacing of constructed views at the receiver. is the
number of desired intermediate views between viewpoints
and (excluding and ). In practice, each can
be computed as the mean square error (MSE) between the
DIBR-synthesized images at viewpoint using uncompressed
texture and depth maps at and and using compressed texture
and depth maps at the same and . Since is assumed to be
small, the summation in (1) has many terms, and the computation
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of at the sender requires the DIBR view synthesis of many
images at many values. Furthermore, differs for different
quantization levels chosen for the texture and depth maps of
and ; coarsely quantized texture and depth maps for and
will naturally lead to poorer synthesized view quality. Requiring
the sender to compute (1) for multiple times for different
combinations of quantization levels during its solution search
for the optimal bit allocation is clearly too computationally
expensive.

Hence, there is a need for a low-complexity methodology so
that the sender can estimate synthesized view distortions of many
viewpoints between two coded frames, without first explicitly
synthesizing all required intermediate views and then calculating
their distortions. In addition, the methodology must maintain
generality so that its synthesized distortion estimate is reason-
ably accurate for a generic class of DIBR-based view-synthesis
tools. We discuss how we derive such a methodology next.

A. Derivation for Cubic Synthesized Distortion Model

The key to the derivation is to identify what constitutes rea-
sonable assumptions about synthesized distortions of interme-
diate viewpoints between two coded frames using a DIBR-based
view-synthesis tool. Suppose we want to synthesize an interme-
diate view between the left coded view and the right coded
view . For simplicity of derivation, we assume that and

. In general, a pixel in view can be mapped to a cor-
responding texture image pixel in view 0 using the depth map
of view 0, assuming known intrinsic and extrinsic camera pa-
rameters [38]. For simplicity, assume further that the capturing
cameras are physically located in purely horizontally shifted lo-
cations, so that a pixel at a certain coordinate in view

corresponds to a horizontally shifted pixel coordinate
in the left texture map. Denote by the geometric error of
pixel at view due to the depth-map distortion at view 0.
In other words, is the offset in the number of (horizontal)
pixels away from the true corresponding pixel coordinate
in the left texture map, due to the left depth-map distortion, re-
sulting in the erroneous pixel coordinate instead.
In [29], it is shown that linearly grows with the view lo-
cation , i.e., , .

Now, suppose we model a row of pixels in the texture
map of view 0 as a Gauss–Markov process, i.e.,

(3)

where is a zero-mean Gaussian variable with variance
. One can argue that the Gauss–Markov process is a good

first-order model for pixels of the same physical object in a scene
of interest.

Due to geometric error , an erroneous pixel at
location in the texture map of view 0 is used for DIBR
instead of the true corresponding pixel for the view syn-
thesis. The expectation of the resulting squared error is

where is autocorrelation
of process evaluated at . The inequality holds

for . Given that is linear with respect to ,
we now see that the expected squared error at view
due to the left depth-map distortion is also linear, i.e.,

. Similarly, we can write the
expected squared error due to the right depth-map distortion as

.
In a typical DIBR view synthesis, pixel in the synthe-

sized view , , is a weighted sum of two corre-
sponding pixels and from the left and right an-
chor views, where weights and linearly depend
on the distances to the two anchor views, i.e.,

. Due to the left and right depth-map dis-
tortions, a pixel in the synthesized view becomes

. Thus, the squared
error in the synthesized pixel due to
the distortion in the left and right depth maps can be derived as
follows:

(4)

where we assume pixels in the left and right texture maps
and are independent processes, and ’s are the cubic
polynomial coefficients. We now see that is, in general,
a cubic function with respect to the intermediate view location

.
Notice that, if the left and right Markov–Gauss processes are

of the same object, then , and . The cubic term
is equal to zero, and we have the following quadratic function:

(5)

Taking the derivative of with respect to and setting it
equal to 0, we see that the maximum distortion occurs at mid-
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Fig. 2. Synthesized distortion is plotted against viewpoint location for different quantization levels for the ������ sequence [41]. (Blue) Cubic distortion model,
(black) midpoint, and actual synthesized distortion at 0.05 view spacing are shown. Synthesized MSE versus viewpoint for (a) �� � ��. and (b) �� � ��.

point . We can hence conclude the following: if distor-
tions in the left and right depth maps are not severe, then DIBR
will be performed using the corresponding pixels in the left and
right texture maps of the same object for the majority of pixels
in the synthesized view, and the resulting distortion is quadratic.
This is what was experimentally observed in [39] as well. If dis-
tortions in the left and right depth maps are severe enough that
DIBR erroneously uses pixels of different objects for interpola-
tion for the majority of pixels in the synthesized view, then the
distortion becomes cubic.

Note that, in addition to (4), there are secondary nonlinear
effects on the synthesized distortion due to the fol-
lowing: 1) occlusion of different spatial regions with respect to
viewpoint determined by complex scene geometry; 2) pixel
coordinate rounding operations used in the view synthesis (i.e.,
a 3-D-warped point is usually displayed at the nearest integer
pixel location in the synthesized view); and 3) statistical discrep-
ancies in texture maps, as previously discussed. We consider
these effects secondary and instead focus on the major trend out-
lined by the cubic distortion model. For the sake of simplicity,
we model the sum of these effects as a small noise term5 .

B. Sampling for the Cubic Distortion Model

Although we have concluded that the appropriate distortion
model as a function of the intermediate view is a cubic func-
tion, we still need to find coefficients ’s that characterize the
cubic polynomial function
for given coded texture and depth maps at anchor views and

. Our approach is sampling, i.e., synthesize a small number
of images at intermediate views between and and cal-
culate corresponding distortions , so that, using sam-
ples , we can compute coefficients ’s in some optimal
fashion. We present two sampling methods below.

In the first method, we use even-spaced samples ’s
between and to derive “optimal” coefficients ’s in the
cubic polynomial. For each data point , we can express

5The size of the noise will be larger if the quality of the obtained depth maps
are poor and/or if the captured images are not perfectly rectified. Nonetheless,
we stress that, even in those cases, the derived cubic distortion model is still
accurate up to a first-order approximation, particularly when the capturing cam-
eras are physically very close to each other.

distortion as a cubic function plus
error , i.e., in matrix form, we write

...
...

...
...

...
...

(6)

By optimal, we mean coefficients that lead to the smallest
squared errors possible. Using linear regression [40], optimal

values can be simply calculated as

(7)

where is the Moore–Penrose pseudoinverse of .
The constructed cubic distortion model will be used to calcu-

late the sum of synthesized distortions between the two coded
views and , i.e., , as follows:

(8)

Clearly, in (8) is an approximation to the true syn-
thesized distortion in (1) at a much reduced computa-
tion complexity. As an example, we see that, in Fig. 2, using
the cubic distortion model, we constructed curves (blue) using
eight samples each. We see that, in both cases, the cubic model
captures the general trend of the actual distortions (red) quite
well. In addition, we see that, for fine quantization levels of
depth maps in Fig. 2(a), the curve does behave more like a
quadratic function, as predicted by our model. Extensive em-
pirical evidence showing the accuracy of the model is provided
in Section VI.

Notice that, in the first sampling method, we need sam-
ples to find the four coefficients in the cubic distortion
model. It is recommended [40] that the number of samples re-
quired should be at least multiples of the number of parameters;
in our experiments, we use eight samples. This still translates to
a non-negligible computation overhead. To further reduce the
computation, in the second sampling method, we only sample



CHEUNG et al.: ON DEPENDENT BIT ALLOCATION FOR MULTIVIEW IMAGE CODING WITH DIBR 3185

at the midpoint between two coded views and scale
it by the number of desired intermediate views to ob-
tain an estimate , i.e.,

(9)

As previously discussed, if distortions in the left and right
depth maps are small, then we expect a quadratic function with
the peak at the midpoint, and this midpoint sampling method
captures the maximum distortion. If distortions in the left and
right depth maps are very large, then this midpoint sampling
method is no longer guaranteed to be accurate. However, the
distortions in such extreme cases are very large anyway, and
they will not be selected as operational parameters in general
for optimal bit allocation.

In the sequel, we will assume that, whenever the synthesized
distortion between two coded views and needs to be
computed in our solution search, we will invoke either (8) for

or (9) for as a low-complexity estimate. We will
investigate in Section VI the accuracy of both sampling methods
experimentally.

IV. FORMULATION

We now formulate our bit allocation problem formally as
follows. A set of camera-captured views
in a 1-D-camera-array arrangement and a desired constructed
view spacing are specified a priori as input to the optimiza-
tion. For mathematical simplicity, we will assume that each
captured view can be expressed as a positive integer mul-
tiple of , i.e., , . Captured views are
divided into coded views, , and
uncoded views, . Coded views are captured views
that are selected for encoding by the sender. Uncoded views
are synthesized at the receiver, along with intermediate views
(views that the user desires viewing but are not explicitly
captured by cameras at the sender). The first and last cap-
tured views in must be selected as coded views, i.e., ,

. Texture and depth maps of a coded view are
encoded using the quantization level and , respectively.

and take on discrete values from the quantization level
set and , respectively,
where we assume the convention that a larger or im-
plies a coarser quantization.

Uncoded views and intermediate views are synthesized at
the receiver, each using texture and depth maps of the closest
left and right coded views. We assume that inter-view differ-
ential coding is used for coded views as done in [22]. That
means there exists dependence between an uncoded view and
two neighboring coded views, between an intermediate view
and two neighboring coded views, and between two neighboring
coded views (due to differential coding). Fig. 3 shows an ex-
ample. The first view is always coded as an I-frame. Each sub-
sequent coded view , i.e., frames 3 and 4 in Fig. 3, is coded
as a P-frame using the previous coded view as predictor
for disparity compensation. Each uncoded or intermediate view
depends on two neighboring coded views.

Fig. 3. Example of multiview image sequence. (Solid arrows) Coding depen-
dences among (gray) coded views. (Dotted arrows) View-synthesis dependences
between (patterned) an intermediate view and (gray) two neighboring coded
views and between (white) an uncoded view and (gray) two neighboring coded
views. Coded and uncoded views are � � ��� �� �� and � � ���, respec-
tively. Note that each patterned ellipsoid represents many desired intermediate
views at spacing � between two neighboring captured views.

A. Signal Distortion

Given the coded view dependences, we can now write dis-
tortion of the coded views as a function of the texture-map
quantization levels , i.e.,

(10)

which states that distortion of the starting viewpoint
(coded as an I-frame) depends only on its own texture quantiza-
tion level , whereas the distortion of a P-frame depends
on both its own texture quantization level and its predictor

’s quantization level . A more general model [32] is to
have P-frame depend on its own and all previous quanti-
zation levels . We assume here that truncating the
dependences to only is a good first-order approximation,
as done in previous works such as in [42].

Similarly, we now write the distortion of the synthesized
views (including uncoded views and intermediate
views) as a function of and depth quantization levels

, i.e.,

(11)

where is the sum of synthesized view distortions
between coded views and , as described in (1), given
the texture- and depth-map quantization levels and

for coded views and . In other words, the
distortion of the synthesized views depends on both the texture-
and depth-map quantization levels of the two spatially closest
coded views.

B. Encoding Rate

As done for distortion, we can write the rate of texture and
depth maps of coded views, i.e., and , respectively, as
follows:

(12)

(13)

Equation (12) states that the encoding rate for the texture map of
a coded view, i.e., , depends on its texture-map quantization
level and its predictor’s level . In contrast, (13) states
that the encoding rate for depth map, i.e., , depends on both
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the texture- and depth-map quantization levels and ,
respectively, and its predictor’s texture- and depth-map levels

and , respectively. Note that, although we encode
depth maps independently from texture maps in the experiments
in Section VI, there does exist correlation between texture and
depth maps, and one can devise joint texture-/depth-map coding
schemes that exploit this correlation for coding gain [43]. Our
formulation is sufficiently general to include the case when depth
maps are differentially coded using texture maps as predictors.

C. RD Optimization

Given the aforementioned formulation, the optimization we
are interested in is to find the coded-view indexes
and the associated texture and depth quantization vectors and

, respectively, such that the Lagrangian objective is mini-
mized for a given Lagrangian multiplier , i.e.,

(14)

For clarity of later presentation, we will, in addition, define
the local Lagrangian cost for a differentially coded view as
follows. Let be the Lagrangian
term for the coded view , given quantization levels of view

and its predictor view , i.e., the sum of distortion
and penalties and

for texture- and depth-map
encoding. will be used to mathematically describe the
two key monotonicity assumptions in the next section.

V. BIT ALLOCATION OPTIMIZATION

We first demonstrate how an optimal solution to (14) corre-
sponds to the SP in a specially constructed 3-D trellis. Neverthe-
less, the complexity of constructing the full trellis is large, and
hence, we will discuss methods to reduce the complexity using
monotonicity assumptions of the predictor’s quantization level
and distance. Using the assumptions, only a small subset of the
trellis needs to be constructed and traversed as the modified SP
search algorithm is executed.

A. Full Trellis and Viterbi Algorithms

We first show that the optimal solution to (14) can be com-
puted by first constructing a 3-D trellis and then finding the SP
from the left end of the trellis to the right end using the famed
Viterbi Algorithm (VA).

We can construct a trellis, e.g., the one corresponding to
the earlier example is shown in Fig. 4, for the selection of
coded-view indexes and texture and depth quantization
levels and as follows. Each captured view is
represented by a plane of states, where each state represents a
pair of quantization levels for texture and depth
maps. States in the first plane corresponding to the first view

will be populated with Lagrangian costs for
different level pairs . Each directed edge from state

in the first plane to a state in the second plane
of the neighboring captured view will

carry a Lagrangian cost and synthe-
sized view distortions . Selecting such
edge would mean captured views and are both selected as

Fig. 4. Optimization of 3-D Trellis.

coded views in . Each directed edge from state
in the first plane to state in a further-away plane
of the captured view will carry similar Lagrangian
cost and synthesized view distortions

. Selecting such edge would mean that
the captured views and are both selected as coded views
in with no coded views in between.

We state without proof that the SP from any state in the left-
most plane to any state in the rightmost plane, found using VA,
corresponds to the optimal solution to (14). However, the number
of states and edges in the trellis alone are prohibitively large, i.e.,

and , respectively. Hence, the crux
of any complexity reduction method is to find the SP by visiting
only a small subset of states and edges. Toward that goal, we
first discuss monotonicity assumptions next.

B. Monotonicity in the Predictor’s Quantization Level

Motivated by a similar empirical observation in [32], we show
here the monotonicity in the predictor’s quantization level for
both Lagrangian of the coded view and the syn-
thesized view distortion of intermediate views between
coded views and . The assumption is formally stated as
follows:

The Lagrangian term
for the coded view and the synthesized view distortion

are monotonically nondecreasing functions of the
predictor’s quantization levels, i.e.,

(15)

(16)
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where (or ) implies a larger (coarser) quantization
level than (or ).

In other words, (15) states that, if the predictor view
uses a coarser quantization level in the texture or depth map, it
will lead to a worse prediction for view , resulting in a larger
distortion and/or coding rate and, hence, a larger Lagrangian
cost for . Similarly, (16) makes a statement for
the monotonicity of the synthesized view distortion .
A coarser texture quantization (larger or ) results in a
higher synthesized distortion ; since a synthesized pixel
is a linear combination of two corresponding pixels in the left
and right coded texture map (as discussed in Section III-A), a
larger quantization error in the left or right texture pixel will
translate to a larger error in the synthesized pixel as well. A
coarser depth quantization (larger or ) leads to a larger
geometric error and results in a larger synthesized distortion

(also discussed in Section III-A). We will provide em-
pirical evidence of this monotonicity assumption in Section VI.

C. Monotonicity in the Predictor’s Distance

We can also express the monotonicity of the Lagrangian cost
of the coded view , given the predictor view , ,

and the synthesized view distortion at the intermediate
view between coded views, i.e., , with respect
to the predictor’s distance to a coded view used for differential
coding or synthesis. For , we first assume that the further-
away predictor view for the coded view , , has
the same quantization levels as view . Similarly, for ,
we assume that the further-away predictor views and ,

and , have the same quantization levels for the
synthesized view as respective levels of views and . We can
then formalize the following monotonicity assumption:

The Lagrangian term for the coded
view , given the predictor view , and the synthesized
view distortion for the intermediate
view , given closest left and right coded views and ,
respectively, are monotonically nondecreasing functions of
the predictor’s distance, i.e.,

(17)

(18)

where implies and implies .

In other words, (17) states that a further-away predictor, with
the same quantization levels as the original predictor, provides
a worse prediction for differential coding, hence a larger La-
grangian term . Equation (18) states that, for
the synthesized view distortion , a further-
away predictor means a larger distance between the
predictor frame at view and the predictee frame at view .
That means a larger geometric error , as discussed in
Section III-A, which again leads to a larger synthesized distor-
tion. This assumption has been also shown valid in [44] using
the Markov-random-field prior model, and we will verify it em-
pirically in Section VI. We note that, while the monotonicity
in the predictor’s quantization level has been extensively used

[32], [33], [36], we are the first in the literature to exploit mono-
tonicity in the predictor’s distance for bit allocation.

D. Reducing Complexity

Given the described monotonicity assumptions, we now de-
rive lemmas that will be used to construct a fast SP search algo-
rithm. Let be the shortest subpath (minimum La-
grangian cost subpath) from any states of the first view to state

of the captured view . The first lemma eliminates
suboptimal states , given computed
values, using the monotonicity in the predictor’s quantization
level.

Lemma 1: For a given texture-map quantization level ,
if, at the state plane of the captured view ,

, , then subpaths up to states
, , cannot belong to an end-to-end SP.

In other words, Lemma 1 states that if the subpath cost to
state with a coarse texture quantization level is
already larger than the subpath cost to state with a fine
texture quantization level , then state is globally
suboptimal. A simple proof is provided in the Appendix.

Lemma 1 also holds true for the depth quantization level ;
given , if , , then
states , , are globally suboptimal and
can be pruned.

The next lemma eliminates suboptimal edges stemming from
state of the captured view to a state in the fur-
ther-away coded view , , using the monotonicity in the
predictor’s distance.

Lemma 2: Given a start state of the captured
view , the end state of the captured view and the
in-between captured view , , if the cost
of the traversing state of view ,

, is smaller than a lower bound cost of the skipping view

, , then edge
cannot belong to an end-to-end SP.

In other words, Lemma 2 states that, if, from state
of the captured view , the traversing state

of the captured view with same quan-
tization levels is cheap in Lagrangian cost compared with a
lower bound cost of the skipping captured view , en route
to destination state , then the skipping captured view

using edge is suboptimal. A
simple proof is provided in the Appendix.

The corollary of Lemma 2 is that, if the said condition holds,
then edges , , ,
where means all indexes larger than , cannot also belong to
the SP. The reason is that the synthesized distortion of
the intermediate view using the coded views and as pre-
dictors is surely no larger than using the coded view

and the further-away coded view with same or coarser
quantization levels. Hence, the said condition must also hold
for , and the same argument as proof 2 follows to
rule out edge . As an example,
in Fig. 4, if the cost of traversing state , , is

smaller than , then edges from to
all states on the shaded region, including of view 3, can
be eliminated.
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E. Bit Allocation Algorithm

We now describe a bit allocation algorithm, shown in Algo-
rithm 1, exploiting the lemmas derived in the previous section
to reduce complexity from the full trellis. The basic idea is to
construct a subset of the trellis on the fly as the algorithm is ex-
ecuted and to try to rule out as many states and edges in the con-
structed trellis subset as early as possible. Starting from the left
side of the trellis, for each captured view , using computed
subpaths to states with subpath Lagrangian costs6

, we first eliminate states with larger Lagrangian
costs and coarser texture quantization levels than a min-
imum state , given . The same procedure is applied
for the depth quantization levels , given a fixed . These
suboptimal states are eliminated due to Lemma 1.

Algorithm 1 Bit Allocation Algorithm

1: . , for all states
of the first captured view .

2: , for each of view .
Eliminate states , .

3: , for each of view .
Eliminate states , .

4: For each survived state of view , evaluate
forward subpaths to states of the
neighboring captured view .

5: For each survived state of view , using
state of the neighboring captured view ,
evaluate subpaths forward, i.e.,

6: the neighboring captured view of , where
. Length vector .

7: for each state , s.t. , do

8: if
then

9: Evaluate possible path to state with edge
.

10: else

11: , .

12: end if

13: end for

14: If and is a nonzero vector, increment to the
next neighboring captured view, and go to step 7.

15: If , increment , and repeat steps 2 to 14.

In step 4, for each survived state of view ,
we evaluate all forward subpaths to states

6Lagrangian costs � �� � � � of the first coded view � are simply
� �� � � � values.

of the next captured view . By “evaluate,” we mean com-
paring the sum of and to
the cost of the best subpath to to date, i.e.,

, for each state . If the
former is smaller, will be accordingly up-
dated.

In step 5, for each survived state , we next
evaluate feasible edges to states of the captured
views , . Feasible edges are the ones that satisfy

. We stop
when there are no more forward feasible edges. We can identify
the shortest end-to-end path by finding the minimum cost state

of view and tracing it back to view .

VI. EXPERIMENTATION

We start the experimentation section by providing empirical
evidence to justify our assumption of the monotonicity in the
predictor’s quantization level and distance. We then evaluate the
quality of our estimate of the intermediate synthesized view dis-
tortion using our proposed cubic distortion model. Finally, we
show the effectiveness of our proposed bit allocation strategy.

For test data sets, we used four Middlebury multiview
image sequences [41], i.e., , , ,
and , of sizes 1270 1110, 1300 1110, 1276
1110, and 1330 1110, respectively. We assumed that the
captured camera views were {1, 2, 3, 4, 5} and the desired
constructed view spacing at the decoder was 0.05. For all
our experiments, we used H.264 JM16.2 [45] video codec
to encode texture and depth maps (texture and depth maps
were independently encoded from each other). The available
quantization levels for both texture and depth maps were

. Rate controls were disabled in
JM16.2, and software modifications were made so that a par-
ticular quantization level can be specified for each individual
frame.

For the DIBR virtual view synthesis at the decoder, we used
a simple algorithm presented in [39]. A synthesized view is ob-
tained by projecting two (left and right) captured anchor views
to the chosen synthesis viewpoint such that the texture-map
pixels are warped according to the disparity information
recorded in the intensities of the depth-map pixels captured at
the same viewpoint. The pixels projected from the two anchor
views to the same coordinate at the synthesis viewpoint are
blended using a view-dependent linear weighted sum of the
two pixel intensities, where the weight factors are proportional
to the proximity to the source anchor view. At the synthesized
view pixel coordinates, when one of the two projections is
unavailable due to occlusion or out-of-frame pixel location,
the pixels are synthesized using the single available intensity.
When pixels are unavailable from both of the anchor views,
holes are filled in a postprocessing in-painting or interpolation
step.

A. Validation of Monotonicity Assumptions

We first provide empirical evidence to show that the assump-
tion of the monotonicity in the predictor’s quantization level and
distance are indeed valid. Using the sequence, we first
plotted the texture-map coding rate of captured view 2, using
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Fig. 5. Encoding rate of the texture and depth maps of coded view 2 are plotted against the quantization level of predictor view 1 for the ������� sequence.
Each curve is generated using constant quantization level for view 2. (a) Texture-map coding rate versus the predictor’s QP. (b) Depth-map coding rate versus the
predictor’s QP.

Fig. 6. Visual quality of coded view 2 and synthesized view 1.5 are plotted against the quantization levels of predictor view 1 for the ������� sequence. Each
curve is generated using constant quantization level(s) for coded view 2. (a) Coded PSNR versus predictor’s QP. (b) Synthesized PSNR versus predictor’s texture
QP. (c) Synthesized PSNR versus predictor’s depth QP.

captured view 1 as the predictor, as function of the quantization
level of view 1 (quantization level of view 2 was kept constant
for each curve). In Fig. 5(a), we see that, for all curves, the tex-
ture-map coding rate of view 2 increased as the quantization
level of view 1 became larger (coarser). In Fig. 5(b), we see the
same trend for the depth-map coding rate of view 2 as a func-
tion of the quantization level of predictor view 1. This agrees
with our intuition that a coarsely quantized predictor (view 1)
creates a poor prediction for the predictee (view 2), and hence,
to maintain the desired quality at the predictee (controlled by its
quantization level), more bits must be spent.

We also plotted the peak signal-to-noise ratio (PSNR; a
common objective measure for image quality) of coded view
2 as a function of the quantization level of predictor view 1 in
Fig. 6(a). We see that, for all curves, the PSNR either remained
roughly constant or decreased (distortion increased) as the
quantization level of view 1 became coarser. This also agrees
with our intuition that the image quality of the predictee (view
2) is mostly controlled by its quantization level; hence, we
expect no or small negative change in the predictee’s visual
quality as the quality of the prediction deteriorates. Since the
Lagrangian cost is a weighted sum of the distortion and the
coding rate, given empirical evidence showing that the distor-
tion and the coding rate increase as a function of the predictor’s

quantization level, we can conclude that our assumption of the
Lagrangian-cost monotonicity of the predictor’s quantization
level [see (15)] is shown to be valid.

We also plotted the PSNR of synthesized view 1.5 as a func-
tion of the texture-map quantization level of predictor view 1 in
Fig. 6(b) and as a function of depth-map quantization level of
predictor view 1 in Fig. 6(c). (Quantization levels of the other
map of view 1 and the texture and depth maps of view 2 were
kept constant for each curve.) For Fig. 6(b), we clearly see that,
for all curves, the PSNR decreased as the texture-map quanti-
zation level of view 1 became coarser. In Fig. 6(c), although
the curves are not strictly decreasing at all points, the similar
downward trend is undeniable. This agrees with our intuition
that a poorer predictor directly leads to a poorer synthesized
view. Hence, we can conclude that our assumption of the syn-
thesized distortion monotonicity of the predictor’s quantization
level (16) is justified.

To validate our assumption of the monotonicity of the pre-
dictor’s distance, we first plotted the texture-map coding rate of
view 5 as a function of the predictor’s view in Fig. 7(a). (Quanti-
zation levels of the texture maps of the predictor and view 5 were
kept at the same constant for each curve.) We see that, as the pre-
dictor’s view became closer, the texture-map coding rate of view
5 became smaller. Although not shown, the depth-map coding
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Fig. 7. Texture-map encoding rate and visual quality of coded view 5 are plotted against the predictor’s view for the ������� sequence. Each curve is generated
using constant quantization level(s) for all coded views. (a) Texture-map coding rate versus predictor’s view. (b) Coded view PSNR versus predictor’s view.

Fig. 8. Synthesized distortion is plotted against viewpoint location for different quantization levels for the ��	
����� sequence. (Blue) Cubic distortion model,
(black) midpoint, and actual synthesized distortion at 0.05 view spacing are shown. Synthesized MSE versus viewpoint for (a) �� � ��. and (b) �� � ��.

rate of view 5 also showed the same behavior. This agrees with
our intuition that a closer predictor provides better prediction,
leading to a smaller coding rate.

In Fig. 7(b), we plotted the PSNR of coded view 5 as a func-
tion of the predictor’s view. As discussed earlier, intuitively,
the quality of the predictee (view 5) is mostly controlled by its
quantization level; thus, we expect almost no change in the pre-
dictee’s visual quality as we move the predictor frame closer to
the target frame. The experimental data does confirm our intu-
ition. Given these evidences, we can conclude that the empirical
evidence supports our assumption of the Lagrangian cost mono-
tonicity of the predictor’s distance (17).

B. Accuracy of the Cubic Distortion Model

To demonstrate the accuracy of our proposed cubic synthe-
sized distortion model, in addition to Fig. 2, we plotted the syn-
thesized-view distortion interpolated using coded views 1 and 4
of the sequence as a function of the viewpoint lo-
cation in Fig. 8(a) and (b) for two different sets of quantization
levels, i.e., and in Fig. 8(a) and (b), re-
spectively. The actual computed MSE of the synthesized view,
as compared with the “clean” synthesized view when interpo-
lated using uncompressed texture and depth maps of two nearest
captured views, is shown in red. The constructed cubic distor-
tion model is shown in blue. We first observe that there was a

non-negligible noise term in the measured MSE due to sec-
ondary effects such as occlusion, rounding, etc. Second, we vi-
sually see that, for both plots, our proposed distortion model
did track this trend of synthesized distortion as a function of
the viewpoint, demonstrating the accuracy of our model. For
Fig. 8(a), when the depth-map quantization levels are relatively
fine, the distortion curve is close to parabolic in shape, as pre-
dicted in Section III.

We also plotted the synthesized distortion as function of
viewpoint location when the quantization levels of the left and
right coded views were different. In Fig. 9(a), the quantization
level for the left view was set coarser than the right, whereas
in Fig. 9(b), the quantization level for the right view was set
coarser than the left. In both cases, we see that our proposed
cubic distortion model tracked the trend of the measured MSE
accurately, showing the accuracy of our model.

C. Comparing the RD Performance of Bit Allocation Strategies

We tested the performance of our proposed bit alloca-
tion strategy using both sampling methods discussed in
Section III-B, i.e., samples to construct the cubic model

and a single midpoint sample to bound the
average synthesized distortion, for the four Middlebury image
sequences. We also tested a simple constant-QP scheme
that selects all captured views for coding, i.e., , and
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Fig. 9. Synthesized distortion is plotted against viewpoint location for different quantization levels for the ���������	 sequence. (Blue) Cubic distortion model,
(black) midpoint, and actual synthesized distortion at 0.05 view spacing are shown. (a) Synthesized MSE versus viewpoint for�� � �� and (b)�� � �� .

Fig. 10. Performance comparison between optimal and constant-QP coded view and quantization level selection schemes. (a) 
�����. (b) ���������	.

assigns a constant quantization level to all texture and depth
maps of the coded views.

In Fig. 10, we see the performance of the bit allocation
strategies for and , shown as the PSNR
versus the bitrate per captured view (including both texture
and depth maps). First, we see that both and

have better RD performance than over all bitrate
regions, i.e., by up to 0.80 and 1.51 dB for and

, respectively. This shows that the correct selec-
tion of quantization levels per frame is important. Second, as
the bitrate decreased, and selected fewer cap-
tured views for coding and instead relied on the decoder’s view
synthesis of captured views (four leftmost points in
and three leftmost points in of rep-
resented selections of uncoded views). This is also the region
where and outperformed the most;
hence, the selection of captured views for coding is also im-
portant for the best RD performance. Finally, we observe that
the RD performance differences between and

are very small. Hence, for complexity reasons, the less
complex would be more preferable than in
practice.

When generating RD curves using , we tracked
the amount of computation performed using our solution search
strategy, as compared with a full trellis search approach. Essen-
tially, we counted the number of times local Lagrangian cost

is potentially updated in both search strategies,
where, in , evaluations are avoided when nodes
and edges are pruned during search in the 3-D trellis. We found
that the computation savings ranged from 80% to 99%, with the
maximum saving occurring at the rightmost RD point.

In Fig. 11, we see the RD performance of the competing bit
allocation schemes for sequences and . We see
that the general trend is similar to the earlier two sequences, i.e.,
the performance gain of our bit allocation strategies
and over constant-QP scheme is more pronounced at
a low bitrate, when captured views are skipped. The maximum
gain in PSNR for these two sequences are 1.05 and 0.95 dB,
respectively. We see also that the two sampling methods

and produced very similar results.
To take a closer look at the solutions generated by our algo-

rithm , we constructed Fig. 12. First, Fig. 12(a) shows the
number of captured views selected by for encoding as a
function of the encoding bitrate for the image sequences
and . We observe that, at lower bitrate region, a
fewer number of views were selected for encoding. This is in-
tuitive since a fewer number of encoded views leads to smaller
bit expenditure in general. This is also the region where
outperformed the most. This shows that, when bitrate is
more of a concern than synthesized view quality, selecting the
right subset of captured frames for encoding is very important
for good RD performance.
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Fig. 11. Performance comparison between optimal and constant-QP coded view and quantization level selection schemes. (a) ������. (b) ����	.

Fig. 12. Number of captured frames selected for encoding and average QP for selected encoded frames as a function of the encoded bitrate for 
���	 and
��������	. (a) Number of encoded frames versus encoding rate. (b) Average QP versus encoding rate.

In Fig. 12(b), we plotted the average QP of the selected en-
coded views in solutions generated by as a function of the
bitrate for and . We see that, as the bitrate
decreased, the average QP became coarser for both texture and
depth maps, which is intuitive. We see also that, in general,

deemed texture maps as slightly more important than depth
maps, resulting in finer QP for texture than depth in most gener-
ated solutions. Finally, we observe that the depth-map QP curves
are not strictly monotonic, i.e., there are cases when the QP be-
came finer as the bitrate decreased. These correspond to solu-
tions where the texture map became coarser or the number of
captured views decreased. Hence, we can conclude that a strictly
monotonic search to derive one solution from a neighboring one
on the RD curve would not be RD optimal.

VII. CONCLUSION

Toward the goal of finding a compact multiview image rep-
resentation, i.e., the one that takes advantage of both the effi-
cient texture- and depth-map coding tools at the encoder and
the view-synthesis tool using DIBR at the decoder, in this paper,
we have presented an algorithm to select captured views for en-
coding and quantization levels of the corresponding texture and
depth maps in an RD optimal manner. We have first derived a
cubic distortion model that models the synthesized view distor-
tion between two coded views. We have then shown that, using

the monotonicity in the predictor’s quantization level and dis-
tance, the search complexity can be drastically reduced without
loss of optimality. Experiments have shown that our selection
scheme outperformed a heuristic scheme by up to 1.5 dB in
PSNR for the same bitrate.

APPENDIX

We provide proofs for the two lemmas in Section V-D here.
Proof of Lemma 1: We prove by contradiction. Suppose the

shortest subpath up to state , , is a part
of an end-to-end SP. That means that the captured view
is a coded view; let . If we replace the subpath to

with the subpath to , synthesized inter-
mediate views to the right of and the coded view that
depend on the texture map of view will have no larger syn-
thesized view distortion or Lagrangian cost , if

is used instead of , by the monotonicity in the predictor’s
quantization level [see (15) and (16)]. Given

, we see that replacing the subpath to
with the subpath to will yield strictly lower La-
grangian cost. A contradiction.

Proof of Lemma 2: We prove by contradiction. Suppose
an optimal end-to-end path includes edge

. If we replace it with two edges
, the cost of the traversing state
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, considering intermediate synthesized views ,
, and the captured view is smaller than

not traversing it by assumption. Moreover, the Lagrangian cost
of the coded view and the distortion of synthesized views to
the right of view that was predicted from view will not
increase, predicting view instead with same quantization
levels due to the monotonicity of the predictor’s distance [see
(17) and (18)]. Hence, a path using the two replacement edges
will yield strictly lower cost. A contradiction.
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