
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 11, NOVEMBER 2007 1519

New Coding Tools for Illumination and Focus
Mismatch Compensation in Multiview Video Coding

Jae Hoon Kim, Student Member, IEEE, PoLin Lai, Student Member, IEEE, Joaquin Lopez,
Antonio Ortega, Fellow, IEEE, Yeping Su, Peng Yin, and Cristina Gomila

(Invited Paper)

Abstract—We propose new tools for multiview video coding
(MVC) that aim to compensate for mismatches between video
frames corresponding to different views. Such mismatches
could be caused by different shooting positions of the cameras
and/or heterogeneous camera settings. In particular, we consider
illumination and focus mismatches across views, i.e., such
that different portions of a video frame can undergo different
illumination and blurriness/sharpness changes with respect to
the corresponding areas in frames from the other views. Models
for illumination and focus mismatches are proposed and new
coding tools are developed from the models. We propose a
block-based illumination compensation (IC) technique and a
depth-dependent adaptive reference filtering (ARF) approach for
cross-view prediction in multiview video coding. In IC, disparity
field and illumination changes are jointly computed as part of
the disparity estimation search. IC can be adaptively applied by
taking into account the rate-distortion characteristics of each
block. For ARF, the disparity fields are used to estimate scene
depth, such that video frames are first divided into regions with
different scene-depth levels. A 2-D filter is then selected for each
scene-depth level. These filters are chosen to minimize residual
energy, with the goal of compensating for focus mismatches.
The resulting filters are applied to the reference frames to
generate better matches for cross-view prediction. Furthermore,
we propose a coding system that combines IC and ARF.
Adjustments are made so as to maximize the gains achieved
by using both coding tools, while reducing the complexity of
the final integrated system. We analyze the complexity of all
proposed methods and present simulation results of IC, ARF
and combined system for different multiview sequences based
on the H.264/AVC reference codec. When applying the proposed
tool to cross-view coding we observe gains of up 1.3 dB as
compared to directly using an H.264/AVC codec to perform
predictive coding across views.

Index Terms—Adaptive filtering, cross-view prediction, H.264/
AVC, illumination compensation (IC), multiview video coding
(MVC).
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Fig. 1. Multiview video structure : simulcast and cross-view coding.

I. INTRODUCTION

MULTIVIEW video systems are used for simultaneously
capturing scenes or objects with multiple cameras from

different viewpoints. From the video sequences corresponding
to each view it is possible to extract 3-D information, e.g.,
the scene depth can be estimated using the correspondence of
objects from different views. Multiview video coding systems
are being proposed for new multimedia services, e.g., 3-D
cinema/TV, free viewpoint video and immersive virtual reality.

The amount of data generated by these systems increases in
proportion to the number of views, and can be very large as
compared to monoscopic video. Widespread use of multiview
video thus requires the design of efficient compression tech-
niques. Multiview video coding (MVC) has recently become
an active research area [1], [2], focused on compression for
efficient storage and transmission of multiview video data. A
straightforward compression approach would be to employ
standard video coding techniques and apply them to each of the
views independently. This type of “simulcast” coding would
allow temporal redundancy to be exploited using standard
block-based motion compensation techniques. Since adjacent
cameras in a multiview system capture overlapping areas
in a scene, additional cross-view redundancy could also be
exploited. A block matching procedure can be employed to
find block correspondence from view to view, leading to a
disparity estimation and compensation process, analogous to
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1520 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 11, NOVEMBER 2007

Fig. 2. Camera arrangement that causes local focus mismatches.

motion estimation and compensation as used in monoscopic
video. Exploiting both temporal and cross-view redundancies
achieves higher coding efficiency as compared to simulcast [3].

Fig. 1 depicts an example of a prediction structure that uses
both motion and disparity compensation. To facilitate random
access, video frames will be periodically encoded using only
cross-view prediction, i.e., no temporal prediction will be used.
We denote such frames “anchor frames,” as illustrated in Fig. 1.
Similar to I-frames in monoscopic video, these anchor frames
serve as random access points for multiview video. While most
of the experimental results presented in this paper evaluate the
coding efficiency achieved in compressing anchor frames, our
proposed techniques can also be applied to frames where both
temporal and cross-view prediction are used (e.g., the non-an-
chor frames in Fig. 1) and to more general prediction structures.

In temporal predictive coding of monoscopic video, block
matching techniques tend to be efficient in compensating rela-
tively simple translational motion. Likewise, in cross-view pre-
dictive coding, block matching will be most efficient when ob-
jects appear in multiple views with only slight changes from
view to view, e.g., with only a shift dependent on their depth
within the scene. However, in the multiview case, simple dis-
placements do not always provide a sufficiently good prediction,
due to a series of other sources of mismatch.

Firstly, the multiview video capturing system might not be per-
fectly calibrated. Camera parameters may be inconsistent, so that
the exposure and/or focus may be different for different views.
These heterogeneous cameras can cause global (framewise) mis-
matches, e.g., frames in one view may appear brighter as com-
pared to frames in another view; or localized mismatches, as
objects may not always be in sharp focus across different views.

Secondly, even if all cameras are perfectly calibrated, camera
positions and orientations lead to differences in how certain
objects appear in different views. As an example, consider the
camera arrangement in Fig. 2, where object appears at a
greater depth in view 1 than in view 3 . Assume all
cameras are set with the same focus at depth , then object

may appear in focus in view 1 while it will likely be out
of focus (blurred) in view 3. On the other hand, object will
appear sharper in view 3 as compared to view 1. This illustrates
a scene-depth dependent focus mismatch across views. Further-
more, an object also possesses different projection directions,
therefore different illumination effects will manifest themselves
in views 1 and 3. Such illumination changes can be even more
localized, in the sense that different parts within the same object
can reflect light differently due to shape and texture. Under

the camera setting shown in this example, different portions of
a video frame can undergo different illumination and blurri-
ness/sharpness changes with respect to the corresponding areas
in frames from other views (localized illumination and focus
mismatches). These factors lead to discrepancies among video
sequences in different views.

The efficiency of cross-view prediction can deteriorate in the
presence of mismatches such as those described above. For tem-
poral prediction in monoscopic video coding, illumination and
focus mismatches could also present. However, in general, they
are far less significant as compared to what can be perceived
in cross-view direction in MVC. They are typically caused by
the displacement of certain objects, rather than by the change
of shooting perspective of the whole scene as in multiview sys-
tems. Furthermore, temporal changes in illumination and focus
tend to be relatively small between consecutive frames in mono-
scopic video, while more significant changes can be observed
between corresponding frames in neighboring views.

Systems for efficient illumination and focus mismatch com-
pensation in cross-view prediction should be designed with the
following requirements in mind. First, local compensation is
useful in addressing scene-depth dependent focus mismatch and
localized illumination changes. Furthermore, as scenes change
over time, cross-view mismatch characteristics will also change,
so that the compensation process should be adaptive. The best
predictive performance will in general be achieved when dis-
parity estimation and mismatch parameter estimation are per-
formed jointly, i.e., where the best match is identified as pro-
viding lowest residual energy after mismatch compensation. Fi-
nally, decisions on whether or not to use mismatch compensa-
tion should be based on rate-distortion (R-D) criteria in order
to optimize overall coding efficiency.

Various approaches have been proposed for monoscopic video
coding to address illumination and focus changes in temporal
prediction (although, to the best of our knowledge, these two
types of mismatches have not been treated jointly). In [4], illu-
mination correction to improve motion estimation is proposed
based on a block-wise additive term. Deciding whether illumi-
nation correction should be applied to a given block is based
on two simple thresholds and does not take into consideration
overall R-D cost. In [5], illumination is compensated in two steps.
First, illumination mismatch is compensated globally using a
decimated image (that contains the DC coefficients of all blocks).
Then blockwise compensation is applied. In both steps, multi-
plicative and additive terms are used. This two step compensation
is applied only to frames classified as having large illumination
mismatches, which does not occur as frequently in monoscopic
temporal prediction, as compared to cross-view prediction in
MVC. Note also that local compensation is not fully integrated
into the search step and that an efficient coding for mismatch
parameters is not provided. In [6], an illumination component
and a reflectance component are both compensated using scale
factors that are quantized and Huffman coded. This illumination
model is useful for contrast adjustment but cannot model severe
mismatch in MVC properly. In [7], illumination mismatches are
modeled by multiplicative and additive terms. These two param-
eters are used globally for whole frames. To reduce the impact
of local brightness variation, a set of parameters is collected and
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a pair is chosen based on the relative frequency of all parameter
pairs. Illumination compensation is deactivated for those blocks
for which the selected parameters are not efficient. These global
approach cannot adapt to some large luminance variations in
MVC, which are dependent on relative positions of camera and
objects. In [8], both scale and offset parameters are proposed
as an illumination model and jointly estimated along with the
motion field using optical flow equations (OFE). These global
illumination parameters can then be used to produce a pixelwise
spatially varying model. The authors suggest that more localized
illumination mismatches can be compensated for by applying
their technique to “patches” within each frame, and introducing
some connectivity constraints at the boundaries between patches.
Motion and illumination parameter estimation via OFE is ac-
complished under the assumption of small and smoothly varying
displacements in temporal prediction. In contrast, our proposed
methods are designed for block-based cross-view prediction.
When illumination compensation is to be performed on relatively
small blocks we observe that a single parameter model is suffi-
cient (i.e., using more parameters increases overhead without
producing sufficient reductions in residual energy). Moreover,
when small blocks are used, pixel-wise adjustments in illumi-
nation compensation (as enabled by [8]) become less attractive,
since variations within such blocks tend to be relatively modest
(thus, reductions in residual energy tend to be small as compared
to using a single parameter for the whole block.) Finally, it is
worth mentioning that motion vector information tends to exhibit
more smoothness than disparity vector information (a smooth
disparity would essentially mean that most objects in the scene
are at a similar depth). Thus the smoothness assumptions that
underpin the approach of [8] may not be a good fit to typical
disparity fields, so that overall gains may be lower than for stan-
dard temporal prediction. Recently [9], a similar approach to our
previous work [10] was proposed. Illumination mismatches
are compensated using scale and offset parameters. Mismatch
parameters are computed as part of the motion search and are
differentially coded and selectively activated. However, this
approach mainly targets the illumination compensation in video
sequences where luminance changes progressively or due to
abrupt changes in lighting, e.g., a flash.

Weighted prediction (WP) methods have also been proposed
and adopted in H.264/AVC [11]. For global brightness changes
that are uniform across an entire picture, such as fades, a single
weighting factor and offset are sufficient to efficiently code all
macroblocks that are predicted from the same reference picture.
For nonuniform, locally-varying brightness variations, the stan-
dard allows more than one reference picture index to be associ-
ated with a particular reference picture store by using reference
picture reordering or reference picture marking. Each reference
can then be associated with a different set of weighting param-
eters, which enables different macroblocks in the same picture
to use different weighting parameters even when predicted from
the same reference picture. Although multiple weights provide
expanded compensation capabilities, WP in H.264 is limited
by the number of reference pictures and our proposed method
can be R-D optimized locally since parameter selection and sig-
nalling decisions are made blockwise. In [12], local weights are
calculated based on neighboring pixel values but such compen-

sation is turned on and off at the slice level rather than at the
block level, as in our system.

For focus changes and/or camera panning, Budagavi proposed
blur compensation [13], where a fixed set of blurring (low-pass)
filters are used to generate blurred reference frames. This tech-
nique has two shortcomings for the scenarios we consider. First,
the filter selection is made only at the frame-level, i.e., applying
different filters to different parts of a frame was not considered.
Second, this method relies on a predefined filter set. Sharpening
filters (high-frequency enhancement), for example, which can be
useful for focus mismatch in cross-view prediction, were not in-
cluded. Instead, our work adaptively generates multiple filters
based on the mismatches between the reference frame and the
current frame. In the final disparity search, each block selects the
filter that gives the lowest R-D cost. In [14]–[16], adaptive fil-
tering methods have been proposed in generating subpixel refer-
ences for motion compensation. Vatis et al. [16], calculate adap-
tive filters for different relative subpixel positions to interpolate
subpel reference.1 In the final motion compensation, the encoder
chooses the best match by testing different subpixel positions on
the same reference frame. This design approach, which we will
refer to as adaptive interpolation filtering (AIF), addresses the
aliasing problem and motion estimation error when generating
subpel references. Instead, in our work we design filters using
scene depth information in order to address the depth-dependent
focus mismatches. On each of these filtered reference frames,
subpel interpolation can also be applied leading to additional
coding gains for disparity compensation.

In the paper, we propose novel coding tools for cross-view
disparity compensation in MVC. Firstly, block-based illumina-
tion compensation (IC) techniques are presented in Section II.
We start by defining an illumination model, and derive a coding
scheme that efficiently compensates for illumination changes
across views. To compensate local illumination mismatches
efficiently, block-wise disparity and illumination parameters are
jointly estimated. We integrate this approach with H.264/AVC
coding tools. For efficient transmission of IC parameters, we
propose differential coding for IC parameters using CABAC in
H.264/AVC. Simulation results show that IC leads to up to 0.8 dB
gains over standard H.264/AVC in cross-view prediction. Sec-
ondly, in Section III, a scene-depth dependent adaptive reference
filtering method (ARF) is proposed. Extending our recent work
[17], in this paper, we model cross-view prediction with focus
mismatch using point spread functions and provide a derivation
of how the proposed approach is designed. The main contribu-
tion is that we adaptively design multiple filters to compensate
for depth-dependent focus mismatches across views. To provide
better coding efficiency, we generate multiple filtered reference
frames and allow each block to be predicted from the filtered ref-
erence providing lowest R-D cost. Simulation results show that
when encoding across views with severe blur mismatches, ARF
provides up to 0.8 dB gain over cross-view coding using standard
H.264/AVC tools with a single reference. Most importantly, in
Section IV, we extend the above work by proposing a new coding
scheme that compensates for both focus and illumination mis-

1For example, (1 ; 23 ) and (45 ; 6 ) will be assigned to the same adap-
tive filter.
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matches in cross-view prediction. It combines ARF and IC such
that the focus changes are first treated with filtered references,
and the remaining mismatches are compensated by IC. We intro-
duce a new filter calculation based on covariance information,
which generates ARF with higher AC compensation capability
and is more efficient when integrated with IC techniques. The
initial disparity search for ARF is replaced by a mean-removed
search to maximize the joint benefits from ARF and IC (this
also leads to reduced complexity with practically no impact on
coding efficiency.) The combined coding system provides up
to 1.3-dB gain over cross-view coding using H.264/AVC with
a single reference. The complexity analyses of IC, ARF and
combined system are given in Section V. Finally conclusions
are drawn in Section VI.

II. ILLUMINATION COMPENSATION (IC)

Blockwise disparity search aims to find the block in the ref-
erence frame that best matches a block in the current frame,
leading to minimum residual error after prediction. Under se-
vere illumination mismatch conditions, coding efficiency will
suffer because: 1) residual energy for the best match candidate
will generally be higher and 2) “true” disparity is less likely to
be found, leading to a more irregular disparity field and likely
increases to the rate needed for disparity field encoding.

As described previously, illumination mismatches can be
local in nature. Thus, we adopt a local IC model to compensate
both global and local luminance variation in a frame. The IC
parameters are estimated as part of the disparity vector search
and these parameters are differentially encoded for transmis-
sion to the decoder, in order to exploit the spatial correlation in
illumination mismatch. Finally, a decision is made to activate
IC on block per block basis using a rate distortion criterion.

A. Multiview One-Step Affine Illumination Compensation
(MOSAIC)

When considering pixels corresponding to a given object
but captured by different cameras, observed illumination mis-
matches need not be the same for all pixels, and will depend
in general on the continuous plenoptic and radiance functions
[18]. However, since our goal is to transmit explicit illumination
mismatch information to the decoder, we adopt blockwise IC
models, with the optimal block size decided based on R-D cost.
As an initial step we evaluate a simple block-wise affine model,
with an additive offset term and a multiplicative scale factor,

, leading to a mismatch model as proposed in [7].
The th candidate reference block for matching the cur-

rent block can be decomposed into the sum of its mean and
a zero mean signal, , where

is the pixel location within the block. Then the illumi-
nation compensated reference block signal with IC
model is

(1)

This formulation allows us to separate the effect of each pa-
rameter, so that dc and ac mismatches are compensated, respec-
tively. Furthermore, by applying a multiplicative compensation
to the mean removed signal in (1) we avoid the propagation of
quantization error from scale to offset [19].

Fig. 3. Modified search loop for the current block.

As shown in Fig. 3, for the given current block, we look for
the best matching block within the search range in the reference
frame using a modified matching metric that incorporates an IC
model between reference and current block. This new metric,
sum of absolute differences after compensation (SADAC), es-
sentially computes the SAD between the current and the refer-
ence block to which IC has been applied. Thus, for each candi-
date block, optimal IC parameters have to be computed. While
SADAC is used in search with IC similarly to H.264/AVC, a
quadratic metric, namely, sum of squared differences after com-
pensation (SSDAC) is used to find IC parameters. For the cur-
rent block and illumination compensated th reference block

, this is defined as

(2)

Replacing using (1) and separating the mean from , we
have

(3)

Then the optimal IC parameter
can be obtained by set-

ting to zero the gradient of (3)

(4)

(5)

where

(6)

with and is the number of pixels in the block.
This solution shows that the additive parameter directly

removes the offset mismatch and the multiplicative parameter
compensates zero-mean variations according to block statis-
tics. If the mean removed current and reference block are not
cross-correlated, this scale factor will be small and thus only
additive offset compensation will affect the reference block.

Among all candidates within search range, the reference
block minimizing SADAC with IC parameters is selected
as the best match and the minimum SSDAC is given as follows:

(7)
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TABLE I
UNARY BINARIZATION AND ASSIGNED PROBABILITY FOR INDEX OF QUANTIZED

DIFFERENTIAL OFFSET

where is the correlation coefficient between and . As
can be seen from (7), the proposed technique finds the best refer-
ence block in the sense of maximum correlation with the current
block so that the patterns of the two blocks are well-matched,
and adjusts parameters to minimize the residual energy.

B. Illumination Mismatch Parameter Coding

Using both scale and offset parameters leads to more flexi-
bility in compensating for illumination mismatches but may not
be efficient for coding, given the overhead required to repre-
sent both IC parameters. In our observation the scale parameter
is also sensitive to quantization noise because it is multiplica-
tive, so that even small quantization errors can lead to fairly
large differences in the compensated reference block. Taking
this into account, as well as the complexity involved in calcu-
lating this parameter within the disparity search step, in the rest
of the paper we use only the offset parameter for IC.

To encode the offset parameter we exploit the correlations
between the illumination mismatch in neighboring blocks. As a
predictor of the IC parameter of a block, we use the IC parameter
of the block to its left; this allows prediction to be performed in
a causal manner. If the left block was not encoded using IC, the
block above is used instead as a predictor. If IC is disabled for
both of these blocks then no prediction is used to encode the IC
parameter for the current block (equivalently, the predictor is set
to zero).

The prediction residue is quantized and then encoded. We
use a simple uniform quantizer, which offers good performance
and low complexity. A more complex two-dimensional uniform
vector quantizer design was proposed in [19]. This quantized
differential offset is encoded using a binary arithmetic coder
(BAC). We first separate the absolute value (val) and the sign
of these quantized differential offsets. Then, the absolute values
of quantized offsets are binarized by selecting a unary repre-
sentation as in Table I. The differential offset parameters are
prediction residues which tend to be small and exhibit a sym-
metric distribution around zero, with very limited spatial cor-
relation. Different probability models are used for different bi-
nary symbol positions of val as shown in Table I. While under
certain assumptions (e.g., Laplacian distribution) fewer sepa-
rate models may be needed, we choose this configuration to

allow for more flexibility in our modeling. The number of dif-
ferent probability models for binary symbols in val is chosen
to be four and initialized experimentally. Bits corresponding to
val greater than 3 use the same probability model. Binary sym-
bols are binary arithmetic encoded, with adaptive probability
models. Arithmetic coding is also used for the sign, with a prob-
ability model initialized with equal symbol probability. Note
that online adaptation of the various probability models is ap-
plied along BAC.

Clearly, different blocks suffer from different levels of illu-
mination mismatch, so that potential R-D benefits of using IC
differ from block to block. Thus, we allow the encoder to decide
whether or not the IC parameters are used on a block by block
basis. This is achieved by computing the R-D values associated
to coding each block with and without IC, and then letting the
Lagrangian optimization tools in the H.264/AVC codec make an
R-D optimal decision. There is an added overhead needed to in-
dicate for each block whether IC is used but this is more efficient
overall than sending IC parameters for all blocks. This IC acti-
vation bit is entropy-encoded using the context adaptive binary
arithmetic coder (CABAC) [20], which consists of: 1) binariza-
tion; 2) context modeling; and 3) binary arithmetic coding. The
context is defined based on the activation choices made for the
left and upper blocks. If IC is enabled or disabled in both these
blocks, it is highly probable that the same choice will be made
for the current block. However if only one of these two neigh-
boring blocks uses IC, the probability of the current block using
IC should be close to 1/2. Based on this observation, three con-
texts are assigned and initialized for activation switch; this is
similar to the context setup for the SKIP flag or the transform
size in H.264/AVC.

C. Simulation Results

Three sequences, Ballroom, Race1 and Rena, which have dif-
ferent characteristics are selected for simulation [1]. All test se-
quences are 640(w) 480(h) with eight views as shown in Fig. 4.
Ballroom has the most complicated background and fast moving
objects. Objects are located at multiple depths and the distance
from the camera to the front objects is small so the disparity of
front objects is large. In Race1, a mounted and fixed camera array
is used to followracing carts so that there is global motion. Signif-
icant luminance and focus changes between views are observed
due to imperfect camera calibration and illumination changes are
also observed in time because of global motion by camera. In
Rena, a gymnastmoves fast in front of curtains. Distance between
cameras is smaller than in the other sequences and luminance
and focus changes between views are observed clearly.

Our proposed IC technique is combined with standard
H.264/AVC [21] coding tools. IC is enabled only for 16 16,
16 8, 8 16, and 8 8 blocks. While the encoder could be
given the option to select whether to use IC on smaller blocks,
we observed that this choice was rarely made and thus, for
complexity reasons, we choose 8 8 to be the smallest block
size. Also, IC can be applied in skip/direct mode so that model
parameters are predicted from neighboring blocks using spatial
correlation.

Using the reference codec JM-10.2 [22] as a starting point,
we encode frames in cross-view direction only, i.e., we take a
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Fig. 4. MVC sequences : 1D/parallel. (a) Ballroom: 8 cameras with 20-cm spacing, (b) Race1: 8 cameras with 20-cm spacing, (c) Rena: 8 cameras with 5-cm
spacing.

Fig. 5. Cross-view with IC, at time stamps 0. 10. 20. 30. 40.

sequence of frames captured at the same time from different
cameras and feed this to the encoder as if it were a temporal
sequence. Intra period is set equal to the number of views. An-
chor frames at time stamps 0, 10, 20, 30, 40 are encoded with
cross-view prediction. We performed simulations (H.264/AVC
high profile) with full search, range equal to 64 pixels, quarter-
pixel precision, 1 reference frame, and tested four different QP
values (24, 28, 32, 36) to obtain different rate points in Fig. 5. It
can be seen that for Race1 and Rena there is significant improve-
ment by using IC (0.8 dB) because of severe illumination mis-
match across views. Instead, Ballroom showed small improve-
ment (0.2 dB). Ballroom is the most difficult sequence to encode
because of complicated background and irregular disparity field
due to the large variance of object depth and illumination mis-
match is not significant compared to the other sequences. Also,
it can be seen that the weighted prediction (WP) does not pro-
vide significant coding gains because it cannot compensate se-
vere local mismatches in cross-view prediction. From Table II,
we can see that the number of blocks in Inter and Skip mode
increases with IC, which means that the disparity search finds
correct match after compensation. Also the reduction in residual
energy provided by IC leads to the coding gains. Note that IC
gains can be observed even at low bit rates because the selection
of IC in each block is optimized based on R-D criteria.

Although our proposed IC techniques primarily aimed at
compensating illumination mismatches in cross-view pre-

TABLE II
PERCENTAGE OF NON-INTRA-SELECTION IN CROSS-VIEW PREDICTION

(% IN H.264! % IN H.264 + IC). NOTE THAT MORE SIGNIFICANT

PSNR INCREASES CAN BE OBSERVED FOR THOSE SEQUENCES WHERE

THE INCREASE IN NUMBER OF INTER CODE BLOCKS IS GREATER

diction, they can easily be used to compensate illumination
mismatches in temporal prediction, which happens in moving
objects and abrupt scene changes. In general MVC structures,
references from different time stamps and views are avail-
able [23]. For example, if the current frame is at view 3 and
time stamp 1 (v3t1), four references are available for current
B-slice—(v3t0),(v3t2),(v2t1) and (v4t1). Fig. 6 demostrates
coding results with IBPBPBPP for cross-view prediction and
hierarchical B for temporal prediction [23]. For Ballroom,
Race1 and Rena, IC achieves 0.1–0.5-dB gains. Overall gains
from using IC (as compared to using the same temporal/cross
view prediction but no IC) are lower relative to the case where
only cross-view prediction is used (Fig. 5) because illumination
mismatches between frames in time are not as severe as across
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Fig. 6. MVC with IBPBPBPP cross-view, hierarchical B temporal [23].

views and most static background can be efficiently encoded by
skip/direct mode in temporal prediction. Complete simulation
results of our proposed IC in MVC for various multiview test
sequences can be found in [24]–[27]. Comparisons with WP
were provided in [28], where it was shown that IC achieves
higher coding efficiency as compared to WP. In particular for
Race1, IC achieves a 0.5-dB gain over WP.

III. ARF FOR CROSS-VIEW PREDICTION

In the previous section, we introduced block-wise offset
and scale parameters to compensate for localized illumina-
tion mismatches. Now we consider more general filtering
approaches to address depth-dependent focus change across
different views in MVC. While the basic coding algorithm was
presented in our previous work [17], in this paper we provide
more rigorous derivation of the design approach and perform
further analysis.

A. Examples of Cross-View Blurriness Discrepancies and
Adaptive Filtering Model

Among the multiview video test sequences provided in MVC
Call for Proposals document [1], the sequence Race1 exhibits
the most clearly perceivable blurriness discrepancy among dif-
ferent views. We denote its eight views as View View 7. The
frames in View 3 are blurred as compared to the frames in View
2; similarly, the frames in View 5 are blurred as compared to
the frames in View 6. Fig. 7 shows portions of the frames from
different views in Race1.

It can be seen from Fig. 7 that, besides displacement of
the scene, frames from different views also exhibit blurriness
mismatches. In the literature [29], [30], a blurred (smoothed)
or sharpened image produced from its original version
can be modeled as , where denotes the 2-D
convolution and is the point spread function. We propose
to model cross-view prediction with blurriness/sharpness mis-
matches as

For each pixel (8)

Fig. 7. Portions of frame 15 from different views.

where is the current frame to be encoded, is the reference
frame, the subscript denotes the pixel position within a
frame, and is its corresponding disparity-
displaced pixel in the reference frame.

In our approach, the reference frame is first filtered by an
estimator of the point spread function chosen to minimize
the error with respect to the current frame. Minimum mean-
squared error (MMSE) estimation can be derived by optimizing
the following:

(9)

The filter will be an estimator of the point spread function .
To jointly estimate and , the solution space of has
to be defined and at each position of disparity search, the whole

solution space has to be tested. Such an encoding system
will require excessive computation. Instead, we adopted a pro-
cedure similar to that proposed in adaptive interpolation filtering
[14]–[16], i.e., such that the disparity field is estimated first and
then the filter coefficients of are determined. In this paradigm,
the filter will be designed based on the disparity-compensated
difference between the reference frame and the current frame.
To understand the effect of adaptive filtering in the presence of
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Fig. 8. Frequency responses of calculated MMSE filters.

blurriness/sharpness focus mismatches, we performed a simple
experiment that can be summarized as follows.2

1) Initial disparity estimation needed to obtain disparity field
of the current frame.

2) With the obtained , calculate MMSE filter
such that

(10)

3) Estimated adaptive filter is applied to the reference
frame to generate a better matched reference . The
final disparity compensation is performed with this filtered
reference.

We use H.264/AVC to encode frames at time stamps 0, 10,
20, 30, 40, with cross-view prediction only. In this experiment,
we define the solution space of to be that of fixed-size 5 5
filters, symmetrical with respect to - and -axis. Fig. 8 pro-
vides the frequency responses of the calculated MMSE filters
when we perform disparity compensation from View 2 to View
3 and from View 5 to View 6. For the former case, in which the
current frame is blurred, it can be seen that the framewise filters
have a low-pass characteristic. On the other hand, when the ref-
erence frame is a blurred version of the current frame (View 5
to View 6), the filters emphasize higher frequency ranges so that
the reference can be sharpened to create a better match. Another
feature worth noting is that, for different time stamps (frames 10
and 20 as in Fig. 8), the filters for a given view have quite sim-
ilar frequency responses. This result suggests that the blur effect
was likely to be introduced by camera mismatches.

Fig. 9 provides the corresponding rate-distortion results for
View 3 and View 6 at QP equal to 24, 28, 32, and 36. Note that
in this experiment, to focus specifically on the effect of the fil-
tering, only the filtered reference frame will remain in the ref-
erence buffer; the original reference frame is discarded. Higher
coding efficiency can be achieved if both filtered and original
reference frames are available for disparity estimation [31]. As
can be seen in our experiments, for QP around 28 and 32, the

2Note that for demonstration purposes, in this experiment we constrained the
design to one adaptive filter per frame, as the blur effect appears to be global.

Fig. 9. Encoding results of the frame-wise filtering: Race1 sequence.

framewise filtering provides 0.7–0.8-dB gain for frames in View
3 and around 0.3 dB for frames in View 6.

B. Proposed Adaptive Filtering Approach for Cross-View
Disparity Compensation

To extend the adaptive filtering approach to situations in
which different objects may suffer from different types of blur-
riness/sharpness changes, locally adaptive compensation has to
be enabled by considering depth information of the scene. In this
paper, disparity information is used to estimate scenedepth. After
an initial disparity search, blocks with similar disparity vectors
are grouped into classes. Each class represents a scene-depth
level and will be associated with one adaptive filter to be
designed in the next step. We call this process “filter association.”
For each class (scene-depth level), a filter is optimized to mini-
mize the residual energy for all blocks in the class, as described
by (10). This approach will allow multiple filters to be estimated
basedondifferentportionsofavideo frame thatundergodifferent
blurriness/sharpness changes with respect to the corresponding
areas in frames from the other views. These filters will be applied
to the reference frame to provide better matches. Then the final
disparity compensation is performed using both original and
filtered frames as references. At this stage each block is allowed
to select the reference that provides the lowest R-D cost, regard-
less of what the initial classification of the block was. In the
following subsections, we describe each step in detail.

1) Filter Association: The first step is to identify different
typesof blurriness/sharpnesschanges in different parts of the cur-
rent frame. An exhaustive approach could be to assign adaptively
to each block a filter that minimizes the matching error. This ap-
proach is optimal in the sense that for every block the residue en-
ergy is minimized. However, it will significantly increase the bi-
trate since we have to transmit filter coefficients for every single
block. In multiview systems, localized focus mismatches are ex-
pected to be associated with depth information. Thus, we con-
sider procedures to identify image regions with different depths.
When multiple cameras are employed, disparity information has
been widely used as an estimation of scene depth [32]. Given that
object depth and its disparity across two views are reciprocals,
video frames can be partitioned into different depth levels by
exploiting the disparity information [33]–[35].

We consider procedures to classify blocks into depth levels
based on their corresponding disparity vectors. When cameras
are arranged on the same horizontal line, classification can be
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Fig. 10. Disparity vectors from View 6 to View 7 at the first frame in Ballroom: Histogram and GMM.

Fig. 11. Corresponding EM classification result of Fig. 10.

achieved by considering only the x component of the disparity
vectors. For a 2-D camera arrangement as can be found in a
camera array, the classification could be extended by taking
both x and y components as input features. We propose to use
classification algorithms based on the Gaussian mixture model
(GMM) to separate blocks into depth-level classes. We adopted
expectation-maximization (EM) algorithm based on the GMM
[36] to classify the disparity vectors and their corresponding
blocks [37]–[39]. In this paper, an unsupervised EM classifi-
cation tool developed by Bouman [40] is employed. To auto-
matically estimate the number of Gaussian components in the
mixture (thus making the approach unsupervised), the software
tool performs an order estimation based on minimum descrip-
tion length (MDL) criteria. The only required parameter to be
specified is the maximum number of Gaussian components
allowed in the GMM. It will test hypotheses with the number of
Gaussian components from to with MDL criteria.

We refer to [40]–[42] for details about such techniques. Param-
eters of Gaussian components are estimated using an iterative
EM algorithm. Each Gaussian component is used to construct
a Gaussian probability density function (pdf) that models one
class for classification. Likelihood functions can be calculated
based on these Gaussian pdfs. Disparity vectors are classified
into different groups by comparing their corresponding likeli-
hood value in each Gaussian component. Blocks are classified
accordingly based on the class label of their corresponding dis-
parity vectors. Refining processes can also be considered, such
as eliminating a class to which a very small number of blocks
has been assigned. In the classification result, each class repre-
sents a depth level within the current frame, and blocks clas-
sified into a certain level will be associated with one adaptive
filter. To demonstrate this filter association based on the classi-
fication of disparity vectors, we provide a segmentation result
in Figs. 10 and 11.
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In Fig. 10, the histogram of the x component of disparity vec-
tors, obtained from the initial disparity estimation, is provided.
A corresponding GMM is constructed with a number of com-
ponents estimated to be 3 ( was set to 4). In Fig. 11, the corre-
sponding blocks within each class are shown. It can be observed
that after EM classification, depth class 1 corresponds to the far
background; class 2 captures two dancing couples and some au-
dience in midrange, along with their reflection on the floor; and
class 3 includes the couple in the front. Note that intra-coded
blocks in the initial disparity estimation are not involved in the
filter association process. In this example, the classification tool
successfully separates objects with different depths in the cur-
rent frame.

2) Depth-Adaptive Filter Selection: We now discuss how to
select a filter for all blocks belonging to a given depth level class

. We replace the convolution notation in (10) by explicitly
expressing the filter operation as

(11)

The size and shape of 2-D filters can be specified by changing
and . In adaptive interpolation filtering (AIF) approaches,

even-length (6 6) filters are proposed in order to interpolate
subpixels. In our proposed approach, we apply adaptive filters
directly to the reference frame to generate better matches. Odd-
length filters (e.g., 5 5) centered at the pixel to be filtered are
employed in this paper.

The filter coefficients that satisfy (11) can be determined
by taking derivative with respect to each coefficient, i.e.,
where

(12)

These Wiener-Hopf equations will lead to optimal linear
Wiener filters. The number of equations will be equal to the
number coefficients of . To reduce the number of unknowns
in this adaptive filter estimation, constraints such as symmetry
can be imposed. Filters with more unknowns can be more ef-
ficient to compensate for residue energy. However, this comes
at the expense of having to transmit more filter coefficients.
(For example, a circular symmetric 3 3 filter contains only 3
coefficients, while a full 3 3 matrix has 9 coefficients). In this
paper, filters are designed to compensate for focus mismatches,
which are generally assumed to be isotropic [43], [30], [29].

Thus we use as an example 5 5 filters , with the
coefficients selected as

(13)

This can be viewed as a compromise between a full matrix
and a circular symmetric one. Note that the circular symmetric
filter is a degenerated case of (13) where we have chosen

, and so on. For each depth level, a filter in the above
form will be obtained as a solution to (12).

3) Disparity Compensation With Local Adaptive Filtering:
The obtained adaptive filters will be applied to the reference
frame to provide better matches for cross-view prediction. In
the reference picture list, the original unfiltered reference as
well as multiple filtered references are stored. If subpixel dis-
parity estimation is employed, all these references will be in-
terpolated to generate subpixel values using interpolation filters
specified by the codec (e.g., 6-tap interpolation filters in H.264/
AVC). During the final encoding process, original and filtered
references can be regarded as the input for predictive coding
with multiple references, such as specified in H.264/AVC [21].
This provides two advantages: Firstly and most importantly,
each block can select a block in any filtered or original refer-
ence frame, based on R-D optimization. This ensures highest
coding efficiency. Secondly, the filter selection of each block
can easily be handled by signaling the reference frame index in
the bitstream.

To correctly decode the video sequence, the filter coefficients
also have to be transmitted. In this paper, we directly extend the
method proposed in [44] and [45], in which the filter coefficients
are quantized and encoded as frame level overhead.

C. Comparisons With Adaptive Interpolation Filtering and
H.264/AVC Multiple Reference Approaches

To justify the efficiency of the proposed ARF approach, we
performed simulations based on JM 10.2 High Profile to en-
code multiview video in cross view direction. Again the search
range is set to 64 pixels and the compensation is performed
with quarter-pixel precision. The proposed ARF is compared
with AIF and current H.264/AVC video coding. Motion com-
pensation with multiple references as specified in H.264/AVC
[21] also aims to improve coding efficiency by providing better
matches. Our proposed ARF utilizes multiple filtered versions
from a single reference frame. In these simulations, the max-
imum number of classes allowed was set to 4. Thus, we
also compare our method to H.264/AVC with the number of
reference frames set to 5. We encode the anchor frames at dif-
ferent time stamps to evaluate different cross-view prediction
schemes. The rate-distortion results are provided in Fig. 12.

It can be seen that the proposed ARF method provides higher
coding efficiency than other approaches we tested. Moreover,
the coding gain is higher for sequences with stronger focus mis-
matches. For Race1 we observe gains of 0.3, 0.6, and 0.8 dB
over AIF, H.264/AVC with five references, and H.264/AVC with
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Fig. 12. Cross-view coding results at time stamps 0, 10, 20, 30, 40.

one reference, respectively. Simulations based on JMVM 3.0 for
cross-view coding [46] also shows very similar results.

IV. COMBINATION OF IC AND ARF TECHNIQUES

In previous sections, we demonstrated two separate com-
pensation techniques for illumination and focus mismatches.
In multiview systems, these two types of mismatch can occur
simultaneously. To efficiently compensate for both illumination
and focus changes across different views, we propose to apply
the two techniques together for cross-view prediction.

We note that ARF generates new predictors by applying
frame-level filtering. The encoder then selects blocks within
these filtered frames. Instead, IC is applied to each block
independently so that a block-specific illumination mismatch
parameter is computed and no other blocks are needed to
generate the new predictor. Note also that in effect IC searches
matching mean-removed block patterns and separately conveys
the difference in average values for corresponding blocks.
Since ARF and IC operate on frames and blocks, respectively,
a straightforward approach to integrate ARF and IC is to apply
ARF first so that multiple reference frames can be created,
then perform IC-based disparity compensation with all the
references. The directly merged encoding process can be sum-
marized as follows.

Algorithm 1:
i) Initial disparity search to obtain disparity field between

current and reference frame. [first search]
ii) Using the disparity field obtained from Step , blocks

are classified into different depth-level classes. For each
class, adaptive filter coefficients are calculated based on
(10).

iii) Multiple filtered references are generated by applying
adaptive filters obtained in Step ii.

iv) For original and filtered references, disparity compensa-
tion is performed with IC. [second search]

In this encoding system, all possible predictors provided by
ARF and IC are enabled (original reference, filtered reference,
original reference plus IC, filtered reference plus IC). However,
this leads to some inefficiencies. First, note that in the design of
ARF, the constraint of is not imposed. Thus the

resulting filters could also have some DC gain [15]. As a result,
DC compensation would be performed by both ARF and IC.
This is inefficient considering that IC will perform a more accu-
rate, blockwise DC compensation in the final disparity search.
This also introduces a potential drawback that, when IC is ap-
plied to blocks that select different references generated by ARF,
as the efficiency of differential coding of these IC offsets could
be reduced.

Second, the complexity of the combined system is fairly high.
In the final disparity compensation (Step iv), multiple references
have to be searched with IC-based coding on each of them. This
leads to a second search having complexity that is the product
of the complexity of ARF and IC, as compared to H.264/AVC
search scheme with one reference and no IC. To maintain the
best compensation capability provided by IC and ARF while
reducing the coding complexity, we now propose modifications
to Algorithm 1.

A. Mean-Removed Search for Initial Disparity Search

To address the potential duplication of DC compensation by
ARF and IC, the first adjustment we propose is to modify the ini-
tial disparity search (Step i) to also utilize mean-removed search
(MRS) as described in IC, such that the potential DC effect pro-
duced by ARF can be minimized. In determining filter coeffi-
cients for adaptive filters, MRS produces block correspondence
with best matched patterns after mean removal. Therefore in
the final disparity compensation, the coding efficiency of IC can
still be well preserved even with different references generated
by ARF. Moreover, in the presence of various cross-view mis-
matches, MRS provides higher accuracy for disparity estimation
[10]. Thus, the classification result based on disparity vectors
will also be improved. Due to these two factors, higher coding
efficiency can be achieved by utilizing MRS in the initial dis-
parity estimation.

Besides the above benefit, MRS in the first search also allows
us to reduce overall complexity. Since the different filtered ref-
erences created by ARF come from the same original reference
frame, the disparity fields obtained from the first and second
search (Step i and Step iv) should not be very different. In Algo-
rithm 1, the two searching steps use different matching criteria:
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TABLE III
MEAN OF ABSOLUTE DIFFERENCE BETWEEN DISPARITY VECTORS

FROM STEPS I AND IV

The former performs regular block matching while the latter ap-
plies IC based mean-removed block matching. With the modi-
fication of also using MRS in Step i, the two searches will be
consistent. Complexity reduction can be achieved by taking the
disparity field obtained from the first search as predictor for the
second search with multiple filtered references and IC. To an-
alyze the effect of different searching schemes, we conducted
experiments with full search range set to 64 pixels, and com-
pared the disparity fields from the first and second search. In
Table III, two sets of mean absolute difference (MAD) between
disparity vectors from the two searching steps are provided: For
the initial search, one set is obtained based on normal block
matching and the other utilizes MRS. It can be seen from the
table that, by changing the first search to MRS, the difference
between two disparity fields from the first and second search
is reduced significantly. Based on these statistics, for the final
disparity compensation in the combined coding system, a much
reduced search range can be applied using disparity vectors ob-
tained from the first search as predictors.

B. Depth-Dependent Mean-Removed
Adaptive Filter Calculation

In ARF, filter coefficients for different depth-level class are
optimized by solving the Wiener–Hopf equations, (12). Further
analysis can be performed by writing them in terms of correla-
tions, i.e., where :

(14)

where is the expectation operator, is correlation func-
tion, and denotes the disparity
shifted reference frame . Both and Cor op-
erate over all the blocks that are classified into the depth-level

. It can be seen that the linear MMSE Wiener filter is opti-
mized based on the autocorrelation of the disparity shifted ref-
erence frame ; and the cross-correlation between the current
frame and . Considering that IC has to compensate DC differ-
ences after ARF is applied to the reference frame, we modify

Fig. 13. Combined encoding process for cross-view prediction.

the calculation of filter coefficients such that, the mean of pixels
in each class is subtracted. Let us define the mean of each depth-
level class as

From the Wiener–Hopf equations point of view, the mean-re-
moved filter calculation becomes

(15)

From (14) and (15), it can be seem that the new filter calcula-
tion substitutes correlation information with covariance infor-
mation. Filters obtained in this manner will not spend their effort
on compensating the depth-classwise DC differences. Within
their solution space, e.g., , symmetric as in (13),
filters will accommodate all compensation capability for focus
mismatch, leaving the average DC unchanged. The remaining
DC error can be further compensated efficiently by IC offset.

C. Fast Search With ARF References and IC

As described in Section IV-A, disparity vectors obtained from
the initial mean-removed search can be used as predictors for the
final search to reduce complexity. This can be achieved by cre-
ating extra memory to hold the initial disparity vectors. When
searching over multiple references generated by ARF and com-
bining with IC tools, each block will use its corresponding ini-
tial vector as search center to perform disparity compensation
with much smaller searching range. To evaluate the performance
of the reduced search, we perform simulations by changing the
final search range from to 4 with the initial vectors as pre-
dictors. The R-D degradation observed is negligible, while the
total encoding time is reduced to about . In the remaining of
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Fig. 14. Cross-view coding results at time stamps 0, 10, 20, 30, 40.

this paper, the combined coding system will be presented with
reduced complexity.

The merged encoding procedure with proposed modifications
is summarized as follows.

Algorithm 2:

i) Mean removed Search (MRS) is performed to obtain ini-
tial disparity field. [first search]

ii) Using disparity field from Step , blocks are classified
into different depth-level classes. For each class, adaptive
filter coefficients are calculated with mean-removed class
values as (15).

iii) Multiple filtered references are generated by adaptive fil-
ters obtained in Step ii.

iv) For original filtered references, disparity compensation is
performed with IC using reduced search range. [second
search]

Fig. 13 illustrates the block diagram of the new encoding
system.

D. Simulation Result

We perform simulations for the combined coding system
based on H.264/AVC (JM 10.2). Same setup as described
in previous experiments is applied to encode frames across
different views. We observe that for all sequences tested,
Algorithm 2 achieves higher coding efficiency as compared to
Algorithm 1. Also we observe negligible RD reduction when
applying reduced search to Algorithm 2. Thus in Fig. 14, we
provide the RD results of Algorithm 2 with reduced search
range, and compare to ARF and IC by themselves. While ARF
already outperforms other approaches such as AIF and multiple
reference frame techniques, the combined method achieves
even higher coding efficiency. For Ballroom, blockwise IC
alone provides very limited gain. As a result, the combined
system also barely outperforms the ARF coding. On the other
hand, ARF and IC each achieves 0.5–0.8-dB gain for Race1
and Rena. The combined system produces an additional 0.5-dB
gain over them. The overall coding gain, as compared to using
H.264/AVC with 1 reference for cross-view coding, is about
0.5 dB for Ballroom, about 1.3 dB for Race1 and about 1 dB
for Rena.

TABLE IV
NUMBER OF ADDITION/SUBTRACTION FOR SAD AND SADAC.
N IS THE NUMBER OF PIXEL IN A MACROBLOCK AND

S IS THE NUMBER OF SEARCH POINTS

V. COMPLEXITY ANALYSIS

In this section, we provide a complexity analysis of our pro-
posed techniques. We consider first IC and ARF, and then the
combined system.

The impact of IC on encoding complexity is mostly due to
changes in the disparity estimation metric computation (other
changes to the encoder such as encoding of IC parameter and
R-D based IC activation, have a negligible effect on overall com-
plexity). Thus, in what follows, additional complexity for IC is
analyzed in terms of the number of “addition/subtraction” op-
erations in the SAD calculation. As can be seen in Table IV, in
each block mode, IC requires 4 NS calculations for SADAC,
while 2 NS are required in SAD. For SAD, the differences of
current and reference pixels are calculated first. After abso-
lute operation, absolute differences are summed up to SAD,
which requires total operations. Similarly, for SADAC a
total of 3 N operations are required after and cal-
culations. For the mean calculation, we need to sum pixels,
which requires additions. In Table IV, we assume that shift
operation for mean calculation and absolute operation are not
counted in the analysis. Assuming the center of search for dif-
ferent block modes does not deviate significantly, in small
blocks can be reused in larger blocks avoiding redundant cal-
culations. For example, the use of saved in 8 8 blocks re-
duces the complexity SADAC from 4 NS to 3 NS(Fast IC mode).

Considering different block modes supported in H.264/AVC,
complexity for SAD calculation is summarized in Table V. For
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TABLE V
COMPLEXITY FOR SAD AND SADAC CALCULATION IN DIFFERENT BLOCK

MODES. N IS THE NUMBER OF PIXEL IN A MACROBLOCK AND S IS THE

NUMBER OF SEARCH POINTS

TABLE VI
COMPLEXITY WHEN SAD AND SADAC ARE CALCULATED AT THE SAME TIME.
N IS THE NUMBER OF PIXEL IN A MACROBLOCK AND S IS THE NUMBER OF

SEARCH POINTS

IC, both SAD and SADAC need to be calculated for IC acti-
vation thus, the total complexity for IC would be the sum of
14 NS 16 NS (or 13 NS for fast IC mode). Therefore total
complexity with IC is about 2.1 (or 1.9 for fast IC mode) times
to H.264/AVC without IC. However, this complexity can be re-
duced further noting that the same search range is used for SAD
and SADAC with IC. In the calculation of SADAC in Table IV,

can be used to calculate SAD, so that SAD and
SADAC are calculated at the same time for the same search
point, which requires only operations for SAD instead of .
This leads to the total complexity with IC in fast mode would
be about 1.64 times to H.264/AVC without IC, as can be seen in
Table VI.

For ARF, the additional complexity can be decomposed into
three parts: a) classification of the disparity vectors into different
depth-level classes; b) calculation of the filter coefficients; and
c) generations of filtered reference. With the maximum number
of Gaussian components set to , depth classification is based
on performing the EM algorithm, for , to

cluster the disparity vectors. The which provides the lowest
minimum description length (MDL), denoted will be selected
to create the final model. The complexity of this unsupervised
classification will be proportional to the number of vectors to be
classified and the maximum number . To speed up this process,
one can consider performing classification with sub-sampled
vectors and classifying the corresponding blocks. For the sim-
ulations provided in this paper, vectors are generated for each
4 4 block, as specified by H.264/AVC. Assume there are
pixels within a frame, the number of vectors to be classified is

. If we decimate the disparity field, e.g., select one vector
for every four 4 4 blocks, the classification input size will be
reduced by four as well. The possible degradation due to such
sub-sampling will only be significant on detailed object bound-
aries, where smaller block size as 4 4 have to be used to differ-
entiate disparity.

To analyze the complexity of filter calculation, let us denote
the number of distinct filter coefficients and the number

of pixels in depth class . As shown by (12), constructing the
Wiener–Hopf equation for one coefficient in one depth class
requires addition/multiplication operations
to calculate the sum of products. Thus, for all filters the total
number of operations will be , which
is upper bounded by , as intra
coded blocks will not be assigned to any depth class. Solving
the linear system for each filter with Wiener-Hopf equations re-
quires operations in the order of . For all filters it will be-
come , which is relatively small compared to the previous
term. As a result, the total number of operations in (b) can be ap-
proximated by . Note that this will be similar to the
complexity of applying different interpolation to generate frame
data at sub-pel positions, as specified by H.264/AVC. Finally, to
generate filtered references, the convolution operations will lead
to additions and multiplications. Again the complexity is
similar to the calculation of subpel values with interpolation fil-
ters as in H.264/AVC.

We measure the execution time by performing ARF encoding
in three steps: Initial disparity compensation, filter estimation,
and final disparity compensation. On average, without any com-
plexity reduction method, (a), (b), and (c) together lead to an in-
crease about 25% in execution time as compared to a cross-view
coding by H.264/AVC with one reference, 64 search range. If
incorporating the final disparity compensation which also use
this same range on all the references, the total encoding time of
ARF is about four times with respect to H.264/AVC with one
reference. However, as proposed in Section IV-C, significant
complexity reduction can be achieved by using a much smaller
search range in the second search, utilizing the disparity field
from the initial search as predictor.

In the combined approach in Algorithm 2, mean removed
search in Step i has the same complexity as SADAC as in
Table IV, i.e., 4 NS. Steps ii–iii have the same complexity
analyzed as (a), (b), and (c). In Step iv, IC is applied to
the filtered reference with reduced search range (e.g., from

64 to 4) thus, the number of reduced search points
. Therefore, the search complexity in Step iv would

be , where is the
complexity of ‘ ’ as in Table VI, and are
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the number of search points in the first (step and the second
(step iv) disparity search and is the number of reference
frames including the unfiltered one. If and

which is only 2% of the complexity for IC (SAD SADAC) and
less than 4% of the complexity for MRS (SADAC). Therefore,
in most cases, total complexity of combined system will be
similar to the the sum of MRS (Step i) and ARF (Step ii–iii)
complexity.

VI. CONCLUSIONS AND FUTURE WORK

To compensate localized illumination and focus mismatches
across different views in multiview systems, we proposed
block-wise illumination compensation techniques and a
depth-dependent adaptive filtering approach. Both coding
tools are developed from the corresponding mismatch models
and showed significant gains over standard H.264/AVC in
cross-view prediction. To efficiently compensate both mis-
matches, we proposed a coding system that combines IC and
ARF. Joint coding benefit and complexity of the combined
system are discussed and an improved coding algorithm is
presented. Simulation results show that, when performing
predictive coding across different views in multiview systems,
our proposed methods provide higher coding efficiency than
other advanced coding tools. While most of the simulation
results evaluated cross-view coding efficiency, our proposed
techniques can also be applied to general MVC system where
both temporal and cross-view prediction are used and to more
general prediction structures.

Although our proposed IC technique is applied only to the
luminance component, this can be easily extended to solve the
mismatches in chrominance channel, i.e., color compensation
(CC). Because the human eye is less sensitive to chrominance
than luminance, the chrominance channel is compressed and
in YUV420 format, subsampled at a factor of 2 both horizon-
tally and vertically. Furthermore, the original signal is converted
to YUV so that most information is condensed in luminance
channel, therefore color mismatches may not be considered as
critical as illumination mismatches. However, for high resolu-
tion content color mismatches could be a problem and may
need to be compensated for both objective and subjective quality
improvement. CC model parameters for chrominance can be
found using (4)–(5) based on the same disparity vectors used
for luminance.

In differential coding of IC parameter, disparity vector and
filter coefficients, correlation from multiview video structure
could be used. From multiview video structure in Fig. 1, anchor
frames are only cross-view coded. The frames following anchor
frames in time share the same background and only moving ob-
jects changes between frames in time. Thus, disparity vectors
and IC models at an anchor frame can be used for the following
frames. For example, disparity vectors and IC model parame-
ters at the anchor frames of time- can be saved for each view.
For the disparity compensation with IC at time- , disparity
vectors and IC parameters for the block can be predicted from
previous anchor frame coding of colocated block and improve
differential coding results. As for filter coefficients generated
by ARF, differential coding can also be applied to filters of a

given view with respect to different time stamps. Considering
scenes changes over time, an ordering mechanism should be
imposed to the classification results such that the classes will
be corresponding to depth levels with a consistent ascending or
descending order. All the saved information from time- can
be updated if it changes at time- and this updated infor-
mation provides more correct estimate for disparity vector and
IC parameters of the frames at time- .

It is possible to extend our ARF approach to B-frames.
However, a region to be encoded within a B-frame may suffer
from different types of focus mismatch with respect to the
corresponding regions from the two views used for prediction.
Whether to design two sets of filters for predictors from the two
neighboring views, or just to design one set of filters for the
average predictor, is a topic to be further investigated.
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