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Abstract

In many practical distributed source coding (DSC) applications, correlation information has to be estimated

at the encoder in order to determine the encoding rate. Coding efficiency depends strongly on the accuracy of

this correlation estimation. While error in estimation is inevitable, the impact of estimation error on compression

efficiency has not been sufficiently studied for the DSC problem. In this paper, we study correlation estimation

subject to rate and complexity constraints, and its impact on coding efficiency in a DSC framework for practical

distributed image and video applications. We focus on, in particular, applications where binary correlation models are

exploited for Slepian-Wolf coding and sampling techniques are used to estimate the correlation, while extensions to

other correlation models would also be briefly discussed. In the first part of this paper we investigate the compression

of binary data. We first propose a model to characterize the relationship between the number of samples used in

estimation and the coding rate penalty, in the case of encoding of a single binary source. The model is then extended

to scenarios where multiple binary sources are compressed, and based on the model we propose an algorithm to

determine the number of samples allocated to different sources so that the overall rate penalty can be minimized,

subject to a constraint on the total number of samples. The second part of this paper studies compression of

continuous-valued data. We propose a model-based estimation for the particular but important situations where

binary bit-planes are extracted from a continuous-valued input source, and each bit-plane is compressed using DSC.

The proposed model-based method first estimates the source and correlation noise models using continuous-valued

samples, and then uses the models to derive the bit-plane statistics analytically. We also extend the model-based

estimation to the cases when bit-planes are extracted based on the significance of the data, similar to those commonly

used in wavelet-based applications. Experimental results, including some based on hyperspectral image compression,

demonstrate the effectiveness of the proposed algorithms.
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Sampling-based Correlation Estimation for

Distributed Source Coding Under Rate and

Complexity Constraints

I. INTRODUCTION

A. Motivation

Distributed source coding (DSC) [3], [4] studies independent encoding and joint decoding of correlated

sources, for which a correlation model is known at the encoder. The Slepian-Wolf theorem states that

two correlated sources can be optimally encoded (compressed at a rate approaching their joint entropy)

even if the encoders only have access to the two sources separately, as long as both encoded streams

are available at the decoder. Recently, DSC has attracted much attention because of its potential for a

number of emerging applications including sensor networks and wireless video [5]–[7].

Central to DSC is the information about existing correlation between the source and the side-information

(SI) available at the decoder. Specifically, correlation information refers to the joint p.d.f. between the

source and the SI. This correlation information plays several important roles in practical distributed source

coding applications. First, many applications require correlation information at the encoder to determine

the encoding rate. Essentially, the encoders use the correlation information to determine the number of

cosets for partitioning the input space, so that error-free decoding can be achieved [8], [9]. Second,

for many practical Slepian-Wolf coding schemes that employ channel coding and iterative decoding,

correlation information is required to initialize the decoding algorithms by providing likelihood estimates

for the source bits [10]. Third, correlation information could be used at the decoder to determine the

optimal reconstruction given the output of the Slepian-Wolf decoder and side information [8]. In this

paper we focus on estimating the correlation for the purpose of determining the encoding rate. The

results may, however, be useful for the other two cases as well.

B. Correlation Information Models in Practical DSC Applications

At the heart of practical DSC applications is a lossless Slepian-Wolf (SW) codec, which plays a role

similar to that of entropy codecs in conventional image/video compression. More precisely, the Slepian-

Wolf encoder compresses a discrete i.i.d. source, which could be losslessly recovered at the decoder with
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the aid of the correlated side-information (SI) provided that enough compressed bits have been sent.

Details on SW coding can be found in [6]–[8]. The problem to be investigated in this paper is that of

determining the amount of information communicated to the decoder, i.e., the encoding rate. From [3],

an ideal rate to achieve a vanishing probability of decoding error is the conditional entropy of the input

source given the SI 1. The conditional entropy, in turn, depends on the correlation information between

the source and SI. Thus rate allocation in DSC can be performed by solving the associated correlation

estimation problem. Various types of correlation models (e.g., binary valued p.m.f. or continuous valued

p.d.f.) may be exploited to compress the data depending on the specific SW coding algorithms and

applications. We illustrate some of them below.

• SW coding with binary correlation model. These are cases where some form of binary valued

joint p.m.f. is used to relate the source and SI (which are not necessarily binary) for SW coding.

As an example, Figure 1(a) depicts SW coding with a binary correlation structure similar to that

used in [11], [12], etc. The continuous valued i.i.d. source X is mapped via scalar-quantization (or

rounding) to a discrete source X̃ . Then X̃ is mapped to a bit-plane representation, and each extracted

bit-plane bX̃(l), l = 0 . . . L − 1, is compressed independently by the SW encoder. Here bX̃(0)

denotes the least significant bit-plane (LSB). The SW decoder recovers bX̃(l) with bit-plane bỸ (l)

extracted from the quantized version of the correlated source Y as side information. By exploiting

the joint binary p.m.f. p(bX̃(l), bỸ (l)), each extracted bit-plane can be compressed to a rate as

low as H(bX̃(l)|bỸ (l)). To determine this encoding rate, one can estimate the joint binary p.m.f.

p(bX̃(l), bỸ (l)), and derive the conditional entropy from the estimated p.m.f. Note that independent

compression of each bit-plane facilitates efficient rate scalability, which is highly desirable in some

imagery applications. For some applications it is also sufficient to achieve satisfactory coding

performance by exploiting the correlation between corresponding bit-planes.

• SW coding with continuous correlation model. These are cases where a continuous valued joint

p.d.f. is exploited for SW coding. Figure 1(b) illustrates an example similar to that proposed in [9].

The continuous i.i.d. source X is first scalar-quantized, and the quantized input X̃ is directly

compressed by the SW encoder. The decoder uses Y to recover X̃ . By exploiting the joint p.d.f.

p(X, Y ), the SW encoder can compress X̃ to a rate as low as H(X̃|Y ). The encoder may determine

this encoding rate from p(X, Y ).

1Practical SW coders would add a small margin to this ideal rate to account for using finite-length input blocks in SW coding.
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Fig. 1. (a) An example of Slepian-Wolf coding exploiting binary correlation. Boxes “Q” and “Q−1” denote quantization and inverse

quantization respectively. Boxes “B” and “B−1” denote binarization and the inverse respectively. (b) An example of Slepian-Wolf coding

exploiting continuous correlation. (c) Apply sampling to distributed video coding: when encoding the current frame, we randomly sample n

macroblocks of the current frame to undergo motion estimation, with n being much smaller than the total number of macroblocks. By doing

so, we would obtain n pairs of samples (X, Y ), where X is the current macroblock and Y is the corresponding motion-compensated predictor.

From these n sample pairs the encoding rate can be estimated. Note that here the sampling cost associated with each data sample is not primarily

due to data exchange but the computation in motion search.

C. Correlation Estimation in Distributed Source Coding

While both the underlying theory and the recently proposed code construction algorithms [8], [10], [13]

assume correlation information to be available exactly at the encoder, in many practical DSC applications,

the correlation information may not be available beforehand, and one would need to estimate it during the

encoding process [9] 2. The accuracy of this correlation estimation has a direct impact on the performance

of DSC-based systems. While under-estimating the correlation may result in a penalty in coding efficiency,

over-estimation can cause decoding error: in this case candidate decoded values within a given coset would

be too close to each other, so that it is no longer possible to guarantee that they can be disambiguated

without error by using the SI, leading to degradation in reconstruction quality.

Estimating the correlation information at the encoder is a non-trivial problem due to the computational

and communication constraints imposed by the target applications, i.e., often, correlation estimation in

DSC has to be performed under rate and complexity constraints. For example, when DSC is applied to

compress wireless sensor measurements, it is important to limit the amount of data exchanged between

2Note that in some cases, lack of an accurate correlation model is acceptable if there exists feedback from decoders to encoders [13], but

this leads to an increase in overall delay.
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nodes during correlation estimation, in order to minimize the communication cost. Similarly, in applica-

tions such as video coding, source data needed to estimate the correlation is present at the encoder, but

it is desirable to limit the computation resources devoted to this estimation [9], [14].

D. Our Contributions and Related Work

In this work we study correlation estimation strategies subject to rate and complexity constraints,

and their impact on coding efficiency in a DSC framework. Our proposed algorithms are based on the

observation that for many DSC applications side information is actually available at the encoder, but

the encoder may not make use of this side information because of the associated communication or

computational cost. As an example, in low complexity distributed video coding (DVC) [9], [13], past

frames that will be used as side information are available at the encoder, but the computation cost involved

in performing motion estimation may be significant. Other examples can be found in distributed multiview

image/video compression (e.g., [15]), wireless sensor data compression (e.g., [5], [6]), etc. Focusing

on these applications, we propose sampling-based algorithms to estimate the correlation information.

Sampling is a well-established concept in statistics to infer the properties of a population from a small

amount of individual observations [16]. To see how sampling applies to DSC consider these two examples:

• When compressing distributed sensors measurements, X , a node can request samples, Y , from the

neighboring node in order to estimate the correlation p(X, Y ). The number of samples exchanged

should be small, however, to keep the communications overhead low.

• In some DVC applications, the encoding rate depends on the joint p.d.f. between blocks in current

frame (X) and the corresponding motion-compensated predictor blocks (Y ) from reference frame [9],

[14]. The encoder can employ a sampling-based algorithm, where only a small portion of current

frame’s blocks would undergo motion estimation, so that the joint p.d.f. can be estimated from sample

pairs (X, Y ), formed with a given current block and the corresponding predictor (Figure 1(c)). Since

motion search is required to acquire a sample pair (X,Y ) each sampling operation would require

some computational cost. Therefore, the proportion of blocks undergoing motion estimation should

be small.

Sampling, however, leads to estimation errors and will have an impact on coding efficiency. Analyzing

this impact is a key focus of our work. Since DSC applications may exploit various types of correlation

models, it is difficult to address all of them. Therefore, we focus on one particular model in this paper

and briefly discuss how to analyze other models. Specifically, focusing on situations where a binary
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correlation is estimated for SW coding (as discussed in Section I-B) and correlation is estimated via

sampling, this paper makes the following contributions:

• Rate penalty analysis in compression of a single binary source. We analyze how estimation

error in sampling impacts the coding performance of a DSC system when encoding a single binary

source. We derive an expression to quantify how the number of samples relates to the increase in the

encoding rate due to estimation error, taking into account that over-estimation can lead to significant

increases in distortion in DSC applications (due to decoding error).

• Rate penalty analysis and sample allocation in compression of multiple binary sources. We

then extend the rate penalty analysis to systems with multiple binary input sources, where each of

them is compressed independently using SW coding with its corresponding side-information. Based

on the analysis, we propose an algorithm to determine sampling rates to assign to each binary source

so that the overall penalty in coding performance (due to estimation error) can be minimized, subject

to a constraint on the total number of samples.

• Model-based estimation in compression of a continuous source. We consider scenarios where

bit-planes are extracted from a continuous input source and each bit-plane is compressed via SW

coding, e.g., as in [11], [14]. We propose a model-based method where the continuous-valued joint

p.d.f. of the source and SI is first estimated via sampling of continuous valued inputs, and then

the bit-plane level (binary) correlation is derived from the estimated model. This is in contrast to a

direct approach where the bit-plane correlation is estimated through exchanging binary samples from

the extracted bit-planes. We demonstrate that the model-based method can achieve better estimation

accuracy than the direct approach provided that the continuous-valued model is sufficiently accurate.

In addition, we illustrate how the same estimation framework can be applied to various scenarios

when previous decoded bit-planes and continuous SI are used in joint decoding.

• Model-based estimation for structured bit-planes. We also describe how model-based estimation

can be extended to the cases where bit-planes are extracted from continuous input data using more

sophisticated methods. For example, in wavelet-based applications, bit-planes are separated into

different “sub-bit-planes” depending on the magnitude (significance) of the transform coefficients.

A concrete example of this, which we consider in this paper, is that of bit-planes generated by

set-partitioning as in SPIHT [17]. This type of bit-plane generation improves coding efficiency, but

complicates the model-based correlation estimation process, as will be shown. Using a practical

system as an example, we demonstrate that model-based estimation can lead to an additional
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advantage of efficient implementation in these types of DSC applications.

While this paper mainly focuses on situations when each bit-plane is encoded by exploring its corre-

lation with the corresponding bit-plane of the same significance, we also briefly discuss how some of the

proposed ideas may be extended to situations when several more significant bit-planes are taken as SI.

Several methods have been proposed for correlation estimation problems in DSC. In DVC, low-

complexity schemes to classify macroblocks into different correlation classes have been proposed [9],

while other methods use a feedback channel to convey correlation information to the encoder [18]. For

robust video transmission, recursive algorithms have been proposed to estimate the correlation between

the noise-free and noise-corrupted reconstructions [19]. In our prior work, correlation estimation was

performed by direct bit-plane comparisons between the source and an approximation of the decoder

side-information [20]. This paper proposes, however, several novel sampling-based correlation estimation

algorithms applicable to a range of DSC applications, and presents a performance analysis.

A general approach for model-based estimation for DSC was first proposed in our work in [1]. The work

focused on the simple cases where bit-planes are generated directly from the the binary representation

of the sources. A recent work [21] has proposed a similar idea to show the advantage of Gray code

representations, but does not discuss the exact algorithm to estimate the correlation.

This paper is organized as follows. In Section II we present the rate penalty analysis. In Section III we

propose the sample allocation algorithm to minimize the overall rate penalty. In Section IV we propose

the model-based estimation, and in Section V we extend the model-based estimation to cases where

bit-planes are extracted based on the significance of the data. Section VI presents experiments with real

image compression applications. Finally, Section VII concludes the work.

II. SINGLE BINARY SOURCE: RATE PENALTY ANALYSIS

In this section we analyze how estimation error in sampling affects the compression performance of a

DSC system in the case of a single binary source. Specifically, given that n samples are used to estimate

the correlation, we derive the corresponding increase in coding rate due to estimation error. We focus on

the cases where a binary correlation is exploited in SW coding. Consider compressing a binary source

bX with another binary SI bY available at the decoder. We assume {bX , bY } i.i.d. ∼ p(bX , bY ). To

simplify the analysis, we assume (i) bX is equiprobable, i.e., Pr[bX = 0] = 0.5, and (ii) the correlation

is symmetric, i.e., Pr[bY = 1|bX = 0] = Pr[bY = 0|bX = 1] = p, where 0 ≤ p ≤ 0.5 is the crossover

probability for the sources. With these assumptions, the lower bound in the lossless encoding rate of bX

May 16, 2008 DRAFT



7

with bY available at the decoder is [3]

H(bX |bY ) = H(p). (1)

Therefore, encoder can estimate the lossless compression rate of bX by estimating p through n random

samples pairs {bX , bY }. Define the estimation error (4p)(n) = p̂(n)− p, where p̂(n) is some estimation

of p 3. When 4p is negative, this could lead to a decoding error. This is because the crossover probability

is under-estimated and so the number of cosets chosen for encoding may be too small. Instead, when

4p ≥ 0, correct decoding and lossless recovery of bX can be guaranteed theoretically, but there will

be a penalty in compression efficiency. This difference in behavior (decoding error vs. coding penalty)

will lead us to propose a biased estimator such that 4p ≥ 0 with high probability (discussed in the next

section). On average, the coding penalty, in bits/sample, is given by (assuming no decoding error):

(4H)(n) = H(p̂(n))−H(p). (2)

As will be discussed, 4H is indeed a random variable, since we randomly choose samples of bX and

bY for estimating H(p̂). Our focus is to derive the probability density of (4H)(n).

A. Correlation Estimation

For encoding bX we need to estimate p̂ by acquiring n random samples of bY . In different DSC

applications, encoder may obtain the samples in different ways. For example, in a sensor application, the

encoder of bX may request samples of bY from a spatially-separated sensor node. In distributed video

coding, the encoder may perform motion estimation to generate samples of bY . Common to most of

the applications is that communication/computational costs will be incurred in acquiring the samples.

Therefore, it is desirable to keep n small.

By inspecting the n pairs {bX , bY } now available at the encoder, an estimate of p can be computed to

determine the encoding rate for bX . A naive estimate for p is S(n)
n , where S(n) is the number of inspected

samples such that bX 6= bY . Since S is essentially the summation of n i.i.d. Bernoulli random variables

with success probability p, S is a binomially distributed r.v. with mean np and variance np(1 − p).

Therefore, for sufficiently large n,

S(n)
n

∼ N(p, σ2) , σ =
√

p(1− p)/n. (3)

3Note the dependency of p̂ (and other quantities) on n. Precisely, the p.d.f. of p̂ is a function of n, as will be discussed.
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As a consequence, if we use S
n as the estimator there is 50% probability of under-estimation of p.

Therefore, we opt to use a biased estimator given by

p̂(n) =
S(n)

n
+ zω/2σ. (4)

That is, we bias S
n by a factor proportional to σ. By choosing the constant zω/2 we can control precisely

the probability of under-estimation of p, e.g., if zω/2 = 1.64, Pr[p̂ < p] = ω/2 = 0.05. We choose this

biased estimator to minimize the risk of decoding failure, at the expense of some encoding rate penalty.

B. Rate Penalty Analysis

Using (4) as the estimator, we analyze how n relates to the p.d.f. of 4H . From (4),

(4p)(n) = p̂(n)− p

=
S(n)

n
+ zω/2σ − p ∼ N(zω/2σ, σ2). (5)

Expanding H(.) at p by a Taylor series and using the definition of 4H in (2),

(4H)(n) = H ′(p)4p +
H ′′(p)(4p)2

2!
+ ...

≈ H ′(p)(4p)(n). (6)

The approximation holds when 4p is sufficiently small. The p.d.f. of 4H can then be derived as:

(4H)(n) ∼ N(H ′(p)zω/2σ, (H ′(p))2σ2), (7)

where H ′(p) = ln(1
p − 1) and σ is given by (3). (7) relates n to the density of 4H . Using (7), one can

readily compute some statistics for 4H , e.g., E[(4H)(n)]. Note that these statistics are functions of n.

In practice, since p is unknown, σ is unknown when computing the estimator (4). A good rule of

thumb is to approximate the estimator using [16]

p̂(n) ≈ S

n
+ zω/2

√
S

n
(1− S

n
)/n, (8)

i.e., S
n is used to approximate p in computing the estimator. The approximation would be valid when

n · S
n ≥ 4 and n(1− S

n ) ≥ 4, as a rule of thumb [16].

The analysis can also be extended to other correlation models following the same methodology. An

example could be when the inputs are non-equiprobable. In this case, assuming Pr[bX = 0] = θ, it can

be shown that the lower bound in the lossless encoding rate of bX is a function of p and θ

H(bX |bY ) = g(p, θ) = πH(
(1− p)θ

π
) + (1− π)H(

pθ

1− π
), (9)
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where π = Pr[bY = 0] = θ + p− 2θp. Note that only a subset of bY ’s are available when encoding bX

and thus p cannot be found exactly. On the other hand, since all bX ’s are available at the encoder there

is no estimation error for θ. Therefore, the rate penalty can be approximated by:

(4H)(n) ≈ ∂g(p, θ)
∂p

(4p)(n) ∼ N(
∂g(p, θ)

∂p
zω/2σ, (

∂g(p, θ)
∂p

)2σ2), (10)

where

∂g(p, θ)
∂p

= (1− 2θ)(H(
(1− p)θ

π
)−H(

pθ

1− π
)) +

θ(θ − 1)
π

ln(
p(1− θ)
(1− p)θ

) +
θ(1− θ)
1− π

ln(
(1− p)(1− θ)

pθ
). (11)

Note that (10) can then be used to derive the penalty model for multiple non-equiprobable binary sources

and to determine the corresponding optimum bit allocation to be discussed in Section III.

C. Experiment

In this section we assess the accuracy of the rate penalty model proposed in (7). Specifically, we

perform sampling experiments and measure 4H , and compare the empirical distribution of 4H with

(7). Video data is used for the experiments. As the binary input source (bX ), we use the raw bit-planes

extracted from all (quantized) DCT coefficients of a given frequency in the current frame, while as SI

(bY ) we use the raw bit-planes of same significance extracted from the corresponding (quantized) DCT

coefficients of the motion-compensated predictors in the reference frame4. Therefore, the dimension of

the source, M , is equal to the number of DCT blocks in a frame. We then sample n (< M) pairs of

{bX , bY } randomly, and an estimation p̂ is then computed according to (8) from the chosen pairs. With

p̂, a single 4H can then be obtained using (2). The sampling experiment is repeated NE times, each

time with different pairs of {bX , bY } sampled and a different 4H obtained. We compare the empirical

p.d.f. of 4H (with NE data) with the model in (7) using Kolmogorov-Smirnov (K-S) tests [16]. Table I

shows the resulting K-S statistics at different sampling rates for some bit-planes extracted from the DC

coefficients quantized at QP = 24 (H.263 quantization) in the 2nd frame of Mobile (720× 576, 30 fps),

with zω/2 = 1.64 and NE = 100. In particular, for the range of n and p where n · p ≥ 4, K-S tests

approve the hypothesis that the empirical 4H follows the model in (7). This results indicate that our

proposed model can adequately characterize the distribution of the rate penalty for practical problems

4Note that it is common for DVC systems to exploit correlation between the DCT coefficients in the current frame and the corresponding

coefficients in the motion-compensated predictors in the reference frame, e.g., [14].
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TABLE I

KOLMOGOROV-SMIRNOV (K-S) TESTS STATISTICS FOR 4H : MOBILE DC, QP=24. NUMBERS IN PARENTHESIS INDICATE CASES THAT

K-S STATISTICS ARE LARGER THAN THE 1% SIGNIFICANCE CUTOFF VALUE, 0.1608, AND THEREFORE DO NOT PASS K-S TESTS. THOSE

ARE CASES WHEN n · p ≥ 4 DOES NOT HOLD. NOTE THAT BIT POSITION 6 CORRESPONDS TO A MORE SIGNIFICANT BIT-PLANE.

Bit Position 6 5 4 3

p = 0.0228 p = 0.0529 p = 0.0961 p = 0.2002

H(p) = 0.1571 H(p) = 0.2987 H(p) = 0.4566 H(p) = 0.7222

n = 96 (0.1912) 0.1470 0.1310 0.1510

n = 128 0.1580 0.1401 0.1266 0.1358

n = 256 0.1458 0.1343 0.1073 0.1080

n = 512 0.1459 0.1219 0.0943 0.0957

with sufficiently large n · p, e.g., n · p ≥ 4. Note that a sampling size of 128 corresponds to about 2% of

data for a 720× 576 video. Additional results using different data lead to similar conclusions.

III. MULTIPLE BINARY SOURCES: RATE PENALTY ANALYSIS AND SAMPLE ALLOCATION

In this section we study compression of multiple binary input sources. The multiple sources scenario can

arise in different applications. One example is the compression of multiple streams of sensor measurements

captured in different nodes. Another important example is the compression of a continuous input source,

where the source is first mapped to a bit-plane representation and then each bit-plane is compressed using

DSC, so that the problem becomes one of compression of multiple binary sources.

Consider the compression of L binary sources bX(l), l = 0 to L−1. Each binary source is independently

encoded using SW coding with its respective SI bY (l) available at the decoder. We shall follow the

assumptions in Section II, i.e., {bX(l), bY (l)} i.i.d. ∼ p(bX(l), bY (l)), with Pr[bX(l) = 0] = 0.5 and

crossover probability Pr[bX(l) 6= bY (l)] = pl. Let Kl be the number of binary values to be encoded for

source bX(l). We follow the correlation estimation procedure in Section II, where encoding bX(l) requires

observing nl (≤ Kl) random samples of bY (l) in order to compute the biased estimator p̂l(nl) according

to (4) (or (8) in practice), so that the encoding rate for bX(l) can be determined. The encoding of bX(l)

would suffer a rate penalty (4Hl)(nl) = H(p̂l(nl)) −H(pl). In particular, following the discussion in

Section II and using (7), 4Hl would be normally distributed:

(4Hl)(nl) ∼ N(H ′(pl)zω/2σl, (H ′(pl))2σl
2), (12)
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where H ′(pl) = ln( 1
pl
− 1) and σl =

√
pl(1− pl)/nl. On average, the coding penalty of the whole

system, in bits/sample, is given by:

4H =
1

KT

L−1∑

l=0

Kl4Hl. (13)

where KT =
∑L−1

l=0 Kl. Note that in this section 4H refers to the average coding penalty of the entire

system with L sources. Since the samplings are performed independently on each source, 4Hl are

independent r.v., and therefore 4H is normally distributed with expectation and variance given by:

E[4H] =
1

KT

L−1∑

l=0

KlH
′(pl)zω/2σl, (14)

V AR[4H] =
L−1∑

l=0

(
Kl

KT

)2

(H ′(pl))2σl
2. (15)

The total number of samples is limited to be nT , i.e.,
∑L−1

l=0 nl = nT , under the assumption that we

would like to have nT ¿ KT , because each sample would incur a communication/computational cost.

Our main goal is to minimize E[4H] subject to a given nT . Note that E[4H] is a function of

(i) p = {pl}, correlation of different sources, (ii) nT , total number of samples used to estimate correlation,

and (iii) n = {nl}, allocation of samples to different sources. In the following sections:

1) we derive an optimal sample allocation strategy, i.e., given p = {pl}, nT , we find the optimal

n = {nl} to minimize the rate penalty E[4H];

2) given the optimal sample allocation, we study how E[4H] changes with nT .

As will be discussed in the next section, the optimal sample allocation requires knowledge of {pl},

which obviously is not known a priori. Several strategies will therefore be described to apply our results

in practice.

A. Optimal Sample Allocation Strategy

In this section we seek to find the optimal number of samples to allocate to different sources, {n∗l },

so as to minimize E[4H]. To find {n∗l }, we solve the following constrained optimization problem:

min{nl:
PL−1

l=0 nl=nT ;nl≤Kl}E[4H], (16)

where E[4H] is given by (14). Applying the Lagrangian optimization method and Kuhn-Tucker condi-

tions to deal with the inequalities constraints, we obtain (details in Appendix I):

n∗l =





γ(Klαl)2/3, if γ < Kl
1/3

αl
2/3 ,

Kl, if γ ≥ Kl
1/3

αl
2/3 ,

(17)
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Fig. 2. (a) Encoding rate function H(.). The optimal allocation takes into account that the same 4pl would have a larger impact to the

estimated rate if the true pl is small. (b) Reduction in rate penalty (bits) using the optimal sample allocation, with L = 4, Kl = 16384,

nT = 128 or 1024 (i.e., 0.20% or 1.56% of total respectively), NE = 100, and p = 0.25.

where αl is a constant that depends on zω/2 and pl:

αl = ln(
1
pl
− 1)zω/2

√
pl(1− pl), (18)

and γ is chosen so that
∑L−1

l=0 n∗l = nT . This result gives rise to a sample allocation scheme analogous

to the “water-filling” results in information theory [22]. We allocate equal weighted number of samples

to each source, until for some sources the number of samples is equal to the number of source inputs.

The weighting factor (Klαl)2/3 is a constant that depends only on the specific characteristics of the lth

source (length and crossover probability).

The intuition behind the optimal sample allocation can be understood by inspecting the rate function

H(.). For the same estimation error (4pl)(nl) = p̂l(nl) − pl, the impact to the encoding rate will tend

to be larger when the true pl is small (Figure 2(a)). Since different sources have different pl, we should

allocate the samples accordingly and use more samples for those sources with small pl, so as to minimize

the overall rate penalty. This is reflected in (17) and (18).

Since we have chosen to use the same zω/2 in all sources, we have the same probabilities of over-

estimation for all sources. In some applications it may be more appropriate to choose different target

failure probabilities for different sources, e.g., in the cases when the sources are bit-planes extracted

from a continuous valued source, MSB bit-planes are more important and should have smaller failure

probabilities. This can be incorporated in the sample allocation by using different zω/2 for different

sources in (14).

Note that the optimal sample allocation depends on the crossover probabilities {pl}. However, {pl} is
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obviously not known initially. In practical applications, our results can be applied as follows:

• In many applications, we may have some a priori knowledge of {pl}. For example, in hyperspectral

image compression [11], where bit-planes of spectral bands are extracted and compressed, {pl} of

neighboring spectral bands are usually similar. Therefore, we can use some approximations of {pl}
in the optimal sample allocation equations to determine the sample assignment. We will present

experimental results in Section VI to demonstrate that this can be a viable method. Note that using

the a priori knowledge directly to select the encoding rate may cause decoding error, if this a priori

knowledge leads to over-estimating the correlation. Instead, by using the a priori knowledge to

determine the sample allocation and (8) as the estimator to select the coding rate, we are guaranteed

that p̂l is larger than pl with probability (1−ω/2), and we can bound decoding error systematically.

Also this is more robust in cases where the a priori knowledge may not be a good approximation

to the true {pl}.

• We can also use an iterative approach similar to [23]. Essentially, we would allocate samples in

batches of same size. For the first batch, we allocate the same number of samples to all bit-planes

and obtain some initial estimates for {pl}. For the subsequent batches, we allocate the number

of samples according to the current estimates and the optimal sample allocation strategy. In this

approach, we can also use any available a priori knowledge to initialize the scheme.

B. Rate Penalty Analysis - Multiple Sources

Having an expression for E[4H] as a function of nT allows the encoder to select appropriate values

for nT , given that increasing nT leads to additional overhead but also reduces the rate increase due to

inaccurate estimation. We focus on the cases when nl < Kl, where closed form equations can be derived.

The equations relating E[4H] to nT can be obtained from (14) and (17):

E[4H] =
β√
nT

, (19)

where β = 1
KT

[∑L−1
l=0 (Klαl)2/3

]3/2
. Note that β is a constant for a given system. Therefore, the average

rate penalty is inversely proportional to the squared root of the amount of sampling overhead.

C. Experiments

In this section we assess the benefits of using the optimal sample allocation when compressing

i.i.d. sources. We randomly generate L pairs of binary correlated sources {bX(l), bY (l)} each with
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crossover probability pl and dimension Kl. Then nT samples are used to estimate the correlation. The

number of samples allocated to each source is determined according to the following schemes:

• Optimal allocation. We use (17) to determine nl, the number of samples allocated to the l-th source.

• Even allocation. We allocate the same number of samples to each source, i.e., nl = nT /L.

Note that in this section we use the true crossover probabilities to determine the optimal allocation, while

a similar comparison using some a priori information to determine the optimal allocation in practical

scenarios will be discussed in Section VI. The schemes are compared based on the average (overall)

rate penalty after NE sampling experiments. We compute the reduction in the average rate penalty (in

bits) as: E[4H]even−E[4H]opt, where E[4H]opt is the average rate penalty using the optimal sample

allocation, and E[4H]even is that of using the even sample allocation. Since there are many possible

combinations of {pl}, as an example we choose {pl} of the form {p + kδp}, k = ±1,±2, ..., p = 0.25.

Therefore, a large δp corresponds to more substantial variation (standard deviation) in {pl}. Figure 2(b)

depicts the comparison results and shows that over 0.07 bits reduction in rate penalty can be achieved

in the case of considerable variation in {pl}, with this extra number of bits representing a 11.7% rate

increase. In practical applications significant variations in crossover probabilities are indeed common

(e.g., see [11] or data in Section II-C).

IV. CONTINUOUS INPUT SOURCE: MODEL-BASED ESTIMATION

In this section we investigate correlation estimation methods in the particular but important cases

when bit-planes are extracted from a continuous input source and each bit-plane is compressed via SW

coding. This situation arises in several proposed distributed image and video coding algorithms (e.g.,

[11], [14]). Often, in these applications, some a priori statistical model knowledge of the continuous-

valued input source is available. For example, wavelet and DCT transform coefficients are typically

considered to be well modeled by Laplacian distributions [24]. In what follows we propose a model-

based estimation method, where the continuous-valued joint p.d.f. of the source and SI is first estimated

via sampling of continuous valued inputs5, and then the bit-plane level (binary) correlation is derived

from the estimated model. This is in contrast to the direct approach studied in Sections II and III, where

the bit-plane correlation is estimated through exchanging binary samples from the extracted bit-planes.

We shall demonstrate that the model-based method can achieve better estimation accuracy than the direct

approach provided that the continuous-valued model is sufficiently accurate.

5In practice, the continuous valued inputs are rounded so that the samples can be represented with a finite number of bits.
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Section IV-A will outline the basic ideas of model-based estimation and its application to binary

correlation model. Section IV-B will then discuss how the same framework can be applied to situations

when previous decoded bit-planes and continuous SI are used in joint decoding.

A. General Approach

We first focus on the setting of Figure 1(a), where binary correlation is exploited for compression

of a continuous input X using continuous side-information Y . Assume X and Y are drawn i.i.d. from

fXY (x, y). We assume Y = X + Z, where Z is the correlation noise independent of X . Our proposed

model-based approach starts by estimating the p.d.f.’s fX(x) and fZ(z). This can be done by choosing

appropriate models for the data samples and then estimating the model parameters using one of the

standard parameter estimation techniques, e.g., maximum likelihood estimation (MLE).

Once we have estimated fX(x) and fZ(z) we can derive the bit-plane statistics as follows. Suppose

we extract raw bit-planes from the binary representations of X and Y , and are interested in estimating pl,

the crossover probability between the bit-planes of X and Y at significance level l. Figure 3(a) depicts

the events (shaded regions Ai) that lead to the occurrence of crossover between X and Y at significance

level l. For example, consider l = 2 (i.e., the 2nd bit-plane), when X takes the values from 8 (= 01000b)

to 11 (= 01011b), crossover occurs when Y takes the values from 4 (= 00100b) to 7 (= 00111b) (region

A4 in Figure 3(a)), or 12 (= 01100b) to 15 (= 01111b) (region A5 in Figure 3(a)), ..., etc. Specifically,

Ai is a subset of R2 defined as

Ai = { (x, y) | 2c · 2l ≤ |x| < (2c + 1) · 2l, (2d + 1) · 2l ≤ |y| < (2d + 2) · 2l; or

(2g + 1) · 2l ≤ |x| < (2g + 2) · 2l, 2h · 2l ≤ |y| < (2h + 1) · 2l}, (20)

for some c, d, g, h ∈ Z+. Hence we can estimate the crossover probability at bit-plane l by

p̂l =
∑

i

∫ ∫

Ai

fXY (x, y)dxdy

=
∑

i

∫ ∫

Ai

fX(x)fY |X(y|x)dxdy (21)

Assuming that Y = X + Z and that X , Z are independent, fY |X(y|x) can be found to be equal to

fY |X(y|x) = fZ(y − x) (22)

and the integral in (21) can be readily evaluated for a variety of densities. In practice we only need

to sum over a few regions, Ai, where the integrals are non-zero. Note that when l is small (i.e., least

significant bit-planes) the crossover probability is close to 0.5, since in such cases Ai are small and

evenly distributed throughout the sample space, and hence for most models (21) will give p̂l close to 0.5.
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Fig. 3. (a) Crossover probability estimation for raw bit-planes. Ai are the events that lead to occurrence of crossover between X and Y at

significance level l. (b) Refinement bit-plane crossover probability estimation: probability of crossover and Xi is already significant. (c) Sign

bit-plane crossover probability estimation: probability of sign crossover and Xi becomes significant.

B. Extensions to Other Correlation Models

1) Model-based estimation with previously decoded bit-planes as side-information: The model-based

method can also be extended to estimate the correlation in the cases when the previously decoded bit-

planes are used as SI. Specifically, we consider the cases when bit-planes are extracted from a continuous

input source, and each bit-plane bX(l) is compressed with both the previously decoded bit-planes of the

same source bX(l + 1), ..., bX(l + m) and that of the correlated source bY (l), bY (l + 1), ..., bY (l + m) as

SI (Figure 4(a)) 6. We assume bit-planes are communicated to the decoder starting from the MSB, while

the reverse order can be addressed similarly. For encoding bX(l) we need to estimate the coding rate

H(bX(l)|bX(l + 1), ..., bX(l + m), bY (l), bY (l + 1), ..., bY (l + m)). (23)

To determine (23), we need the joint p.d.f. between the input and all the SI:

p(bX(l), bX(l + 1), ..., bX(l + m), bY (l), bY (l + 1), ..., bY (l + m)), (24)

which has 2(2m+2)−1 free parameters. While estimating the joint p.d.f. may appear complex, the model-

based estimation for (24) in fact exhibits regular structure, which greatly simplifies the estimation process.

In addition, in some applications further improvement from using m > 1 may be negligible (Figure 5(a))7,

and estimation with m = 1 requires only modest complexity.

6In Section IV-B.2 we will consider the case where the continuous SI Y is used in joint decoding.
7Note that the improvement of using previous bit-planes would depend on the statistics of the data, and hence is application-dependent [25].
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Fig. 4. (a) Encoding of bit-plane bX(l) with both the previously decoded bit-planes bX(l + 1), ..., bX(l + m) and that of the correlated

source bY (l), bY (l + 1), ..., bY (l + m) as SI. (b) Joint p.d.f. between the input and all the SI.

We denote γi,j the joint probability when the binary representation of i is bX(l + m)...bX(l + 1)bX(l)

and that of j is bY (l + m)...bY (l + 1)bY (l) (Figure 4(b)), i.e.,

γi,j = p(〈bX(l + m)...bX(l + 1)bX(l)〉 = i, 〈bY (l + m)...bY (l + 1)bY (l)〉 = j),

and 〈b(l + m)...b(l + 1)b(l)〉 denotes the numerical value of the concatenation of the sequence of the

bits b(l + m), ..., b(l + 1), b(l), i.e.,
∑m

i=0 b(l + i)× 2i. It can be shown that by tracing the binary

representations of X and Y the events leading to the occurrence of 〈bX(l + m)...bX(l + 1)bX(l)〉 = i

and 〈bY (l + m)...bY (l + 1)bY (l)〉 = j correspond to the region Ai,j in the sample space of X and Y in

Figure 5(b). Therefore,

γi,j =
∫ ∫

Ai,j

fXY (x, y)dxdy (25)

where

Ai,j = { (x, y) | c · 2l+m+1 + i · 2l ≤ |x| ≤ c · 2l+m+1 + i · 2l + 2l − 1,

d · 2l+m+1 + j · 2l ≤ |y| ≤ d · 2l+m+1 + j · 2l + 2l − 1, c, d ∈ Z+}. (26)

(25) can be readily computed by factorizing fXY and estimating fX and fZ as discussed in Section IV-A.

In practice, we only need to sum over a few regions where the integrals of fXY are practically non-zero.

Note that we can extend this to estimate the encoding rate for structured bit-planes (i.e., sign/refinement

bit-planes) as will be discussed in Section V.

2) Model-based estimation with continuous side-information in joint decoding: In this section we

consider situations where each bit-plane bX(l) is compressed with both the previously decoded bit-

planes of the same source bX(l + 1), ..., bX(l + m) and the continuous SI Y available to be used in joint
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Fig. 5. (a) Entropy/conditional entropy of the video bit-planes data used in the experiment in Section II-C, i.e., X and Y are the quantized

DCT coefficients in a current frame and the corresponding quantized coefficients in the motion-compensated predictors in the reference frame,

respectively, using the 2nd AC coefficients of Mobile (720 × 576, 30 fps), at QP= 12: (i) Without SI, i.e., intra coding (“No SI”); (ii)

Using only the corresponding bit-plane as SI, i.e., m = 0 (“SI: Corr. bit-plane”); (iii), (iv), (v): Using corresponding and one, two or three

previously decoded bit-planes as SI, i.e., m = 1, 2 or 3 respectively. (b) Model based estimation: The events leading to the occurrence of

〈bX(l + m)...bX(l + 1)bX(l)〉 = i and 〈bY (l + m)...bY (l + 1)bY (l)〉 = j correspond to the region Ai,j in the sample space of X and Y .

decoding8. As will be shown, this could be addressed with minor extensions of the techniques we have

discussed. For encoding bX(l) we need to estimate the coding rate

H(bX(l)|bX(l + 1), ..., bX(l + m), Y ). (27)

To determine (27), we need the joint p.d.f.:

p(bX(l), bX(l + 1), ..., bX(l + m), Y ). (28)

We denote p(〈bX(l + m)...bX(l + 1)bX(l)〉 = i, Y = y) by γi(y). Following the discussion in Section IV-

B.1 it can be shown that

γi(y) =
∫

Ai

fX,Y (x, y)dx (29)

where Ai are subsets of X (Figure 6):

Ai = { x | c · 2l+m+1 + i · 2l ≤ |x| ≤ c · 2l+m+1 + i · 2l + 2l − 1, c ∈ Z+}. (30)

8Note that while this model is commonly used in distributed video applications (e.g., [14]), many lossy image compression

applications may not communicate the LSB bit-planes and therefore a full resolution version of Y would not be available to be

used for joint decoding.
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Fig. 6. Model based estimation: The events leading to the occurrence of 〈bX(l + m)...bX(l + 1)bX(l)〉 = i correspond to regions Ai,

subset of X .

C. Experiments

We now compare the accuracy of direct estimation and model-based estimation as discussed in Sec-

tion IV-A. We generate i.i.d. Laplacian sources X and Z of dimension M with model parameters β and

α respectively, i.e., fX(x) = 1
2βe−β|x|, fZ(z) = 1

2αe−α|z|. Then the crossover probability pl of X and

Y (= X + Z) at significance level l, 0 ≤ l ≤ L− 1, is estimated using the following approaches:

• Direct estimation with even sample allocation. This is similar to the estimation method in Section II,

where n binary samples of the l-th bit-planes are exchanged. Since there are L bit-planes in total,

the total amount of exchanged data is L · n bits.

• Direct estimation with optimal allocation. This is similar to the aforementioned approach except that

the optimal sample allocation (17) is used to distribute the L · n binary samples among bit-planes.

• Model-based estimation. Here n L-bits random samples of Y are sent to the encoder of X , where

the model parameters β and α are estimated from the n samples of X and Z(= Y −X) respectively,

using MLE [16]. Then the estimate of pl, 0 ≤ l ≤ L − 1, can be derived analytically from β̂ and

α̂ using (21). Therefore, the model-based approach also incurs L · n bits to estimate the crossover

probabilities of all the bit-planes.

Note that in the direct approach we do not include offset in the estimator, i.e., the estimator is S(n)
n

following the notations in Section II. Therefore, it is fair to compare with (21). Practical applications may

choose to bias both the direct and model-based estimators as in (8) (in model-based estimation we would

replace S
n by that calculated in (21)). The approaches are compared based on the deviation of the estimates

from the true (empirical) crossover probability: |p̂l − pl|/pl. The deviation is measured for different bit-

planes using different percentage of exchanged samples, n
M , with β = 0.3, α = 2.5, M = 6480. These

parameters are similar to those observed in the video data used in the experiments in Section II-C,

i.e., X and Y are the quantized DCT coefficients in a current frame and the corresponding quantized
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(c) The 3rd bit-plane.

Fig. 7. Comparing estimation accuracy between the direct approaches and the model-based approach.

coefficients in the motion-compensated predictors in the reference frame, respectively. Figure 7 depicts

the comparison results, where the deviations are obtained by averaging over NE = 1000 experiments. As

shown in the figure, the model-based estimation can achieve considerable improvements in the estimation

accuracy, especially when only a small number of samples are used or crossover probability is small. Note

that model-based estimation utilizes the information that the bits to be encoded have been extracted from

continuous-valued data following certain distributions, and therefore would tend to perform better than

direct estimation, which does not use such information. However, model-based estimation is applicable

only to bit-planes extracted from continuous sources, and obviously its performance depends on how

accurately the continuous-valued data can be modeled. Additional experiments assessing the performance

in terms of coding rate and distortion using a real application will be presented in Section VI.

V. MODEL-BASED ESTIMATION ON STRUCTURED BIT-PLANES

In this section we discuss how to extend the model-based estimation to the cases when bit-planes

are extracted using more sophisticated methods. For example, in the cases when X and Y are wavelet

transform coefficients9, bit-planes are usually partitioned depending on the magnitude of the transform

coefficients to improve coding efficiency, as in the set-partitioning algorithm used in SPIHT [17]. Specif-

ically, in these “significance coding” techniques, the encoder first signals the significance of each of the

components at a given bit-plane. After a component becomes significant, sign information is conveyed and

then further refinement bits are transmitted. While different wavelet systems may use different techniques

to encode the bits (e.g., context coding can be used as in JPEG2000 or alternatively zerotree coding can

be used as in SPIHT to represent significance maps), the definitions of the (uncoded) sign/refinement bits

9A concrete application scenario can be X and Y are collocated wavelet transform coefficients of two correlated images.
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and significance maps are largely the same, so the techniques we propose in the context of SPIHT in this

section would also be applicable to other wavelet-based compression schemes that use bit-plane encoding.

We shall consider systems where SW coding is applied to compress the sign/refinement bit-planes10, and

propose extension of model-based approach to estimate the corresponding crossover probabilities, so

that encoding rate can be determined. The extended approach can also be applied to facilitate adaptive

combinations of SW/entropy coding to improve coding performance [26].

In what follows we will first discuss how to extend model-based approach to estimate crossover

probabilities of sign/refinement bit-planes. Since significance coding is usually used in wavelet-based

applications (e.g., [17], [27]), we will also discuss how to address some of the issues when applying

model-based estimation in wavelet-based DSC applications.

A. Model-based Estimation for Refinement/Sign Bit-planes

Given an input source Xi to be compressed using side information Yi (= Xi + Zi), and following the

same assumptions in Section IV-A, our goal is to estimate the crossover probability of the refinement and

sign bit-planes of significance level l, denoted as pref (l, i) and psgn(l, i) respectively11. Following from

the definition of refinement bits, the refinement bit-plane of significance level l includes only coefficients

that are already significant [17], i.e., |Xi| >= 2l+1. Therefore, the crossover probability of the l-th

refinement bit-plane for source Xi is

pref (l, i) =
Pr(R ∩ |Xi| >= 2l+1)

Pr(|Xi| >= 2l+1)
(31)

where R denotes the event of crossover in magnitude bits, i.e., R =
⋃

Ai, with Ai defined in (20).

Following the discussion in Section IV-A, we can calculate Pr(R ∩ |Xi| ≥ 2l+1) by integrating the

joint p.d.f. of Xi and Yi, fXiYi
, over the shaded regions in Figure 3(b), similar to (21). Moreover, fXiYi

can be factorized as in (22). Therefore, pref (l, i) can be readily calculated.

The crossover probability of sign bit-planes can be derived in a similar fashion. The difference here

is we need to integrate different regions in the sample space of Xi and Yi. The l-th sign bit-plane

10Since significance map carries structural information, a single decoding error in the significance map would cause decoding failure of all

the subsequent bits, and therefore SW coding may not be suitable for compressing significance map.

11We introduce the subscript i in this section to facilitate the discussion of wavelet-based applications in the next section. Specifically, in

Section V-B, Xi will be used to denote the wavelet transform coefficient in the i-th subband. We use separate models for different subbands

in order to take into account different statistics in different subbands (e.g., variances tend to decrease when going from high level subbands to

low level subbands).
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includes only the sign bits of the coefficients that become significant at significance level l [17], i.e.,

2l+1 > |Xi| ≥ 2l. Hence the crossover probability of the l-th sign bit-plane in the source Xi is

psgn(l, i) =
Pr(S ∩ 2l+1 > |Xi| ≥ 2l)

Pr(2l+1 > |Xi| ≥ 2l)
(32)

where S = { (xi, yi) | xi > 0, yi < 0} ∪ { (xi, yi) | xi < 0, yi > 0} denote events of crossover in sign

bits. Pr(S ∩ 2l+1 > |Xi| ≥ 2l) can be calculated by integrating the joint p.d.f. of Xi and Yi over the

shaded regions in Figure 3(c), similar to (21), and factoring the p.d.f. as in (22). However, estimating

fXi
(x) and fZi

(z) may not be necessary, since this has been done in refinement crossover estimation.

B. Model-based Estimation for Wavelet-based Applications

Since significance coding is used mostly for wavelet-based compressions, in this section we will

discuss the particular scenarios of applying model-based estimation for wavelet-based DSC applications.

We denote X the wavelet transform coefficients of the input data, with the i-th subband denoted Xi, 0 ≤
i ≤ NB − 1, where NB is the total number of subbands. A main issue to extend model-based approach

to wavelet-based applications is that in some subbands there may not be enough coefficients to obtain

reliable estimates of the model parameters (e.g., high level subbands in the case of dyadic decomposition).

We will discuss how to address the issue in the following.

1) Estimation with adequate number of samples: Following the discussion in Section V-A, to estimate

the crossover probabilities of sign/refinement bit-planes, we need to estimate the models fXi
(x) and

fZi
(z). Experimental results on real image data suggest a single model fZ(z) can be used for all Zi

without any noticeable impact on coding performance. Estimation of fZ(z) (at the encoder of X) involves

samples of Y and therefore is subject to communication/computational constraints, and only a small

amount of samples Z (= Y −X) should be used to estimate fZ(z) (as illustrated in the experiments in

Section VI). On the other hand, estimation of fXi
(x) involves samples of Xi and results are affected by

the number of coefficients in the i-th subband, Ni. Since some subbands may not have enough coefficients

to obtain reliable estimate of fXi
(x), we partition the set of subbands {i | 0 ≤ i ≤ NB−1} into L and H,

where L denotes the subset of subbands (low level subbands) which have enough coefficients for reliable

estimation of the models, and H denotes the set of remaining subbands (high level subbands). The partition

of all subbands into L and H is determined by Ni. In particular, if Laplacian model fXi
(x) = 1

2βie
−βi|x|

is chosen of Xi, and MLE is used to estimate βi, then the MLE estimator β̂i has a percentage deviation

D = (β̂i − βi)/βi. It can be shown that D ∼ N(0, 1/Ni), i.e., it depends on Ni only. Therefore, we
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can select a threshold to apply to Ni in order to classify a subband into L or H according to a desired

distribution of D.

Estimation of pref (l, i) and psgn(l, i), where i ∈ L, can be performed using the algorithms discussed in

Section V-A, with models fXi
(x) and fZ(z) estimated from transform coefficients samples using standard

methods, e.g. MLE. Alternatively, the correlation noise model fZ(z) can be estimated from statistics in

the raw data domain (e.g. pixel data) calculated using raw domain samples, and this can lead to some

implementation advantage as transformation of the side-information is no longer required. For example,

if Laplacian model fZ(z) = 1
2αe−α|z| is chosen for Z, then we can estimate α by calculating the standard

deviation of Z, σZ , using raw domain samples, and using the relationship between standard deviation

and model parameter in Laplacian distribution, α =
√

2/σZ . This is viable since the variance of the

correlation noise would be the same in the raw and transform domains if orthogonal filters are used. For

some bi-orthogonal filters, e.g. 9/7, the variance of the correlation noise in the raw data domain would

also be very close to that in the transform domain [28], and we can estimate α using similar procedures.

For other bi-orthogonal filters, e.g. 5/3, the raw domain variance would need to be properly normalized,

following the discussions in [28], so that α can be accurately estimated.

2) Estimation without adequate number of samples: Subbands in H do not have enough coefficients to

estimate fXi
(x) reliably. Instead, we use the empirical p.m.f. Pr(Xi = x) of subbands in H along with

the correlation noise fZ(z) to estimate sign/refinement crossover probabilities. Specifically, we derive the

average crossover probability for the refinement bits consisting of i-th subband coefficients, i ∈ H, by

pref (l, i) =
∑

Pr(U(l, x))Pr(Xi = x) (33)

where U(l, x) denotes the events of l-th refinement bits crossover when Xi = x, and the summation is

taken over all the possible values of Xi where Pr(Xi = x) is non-zero. We can determine Pr(Xi = x)

empirically during encoding by binning the coefficients in the i-th subband. To determine Pr(U(l, x)),

we assume Yi = x + Z (note that here x is a constant instead of a random variable), and U(l, x) is a

subset of the sample space of Z and can be found to be equal to

U(l, x) =





{z | −x + (2k)2l ≤ z ≤ −x + (2k + 1)2l , or

−x− (2k + 1)2l ≤ z ≤ −x− (2k)2l}, if
⌊ |x|

2l

⌋
is odd,

{z | −x + (2k + 1)2l ≤ z ≤ −x + (2k + 2)2l , or

−x− (2k + 2)2l ≤ z ≤ −x− (2k + 1)2l}, if
⌊ |x|

2l

⌋
is even,

(34)

where k ∈ Z+. Therefore, Pr(U(l, x)) can be derived by summing the integrals of fZ(z) over the shaded

regions as depicted in Figure 8. In practice we only need to sum over a few regions where the integrals
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Fig. 8. Pr(U(l, x)) when (a) b |x|
2l c is odd ; (b)b |x|

2l c is even.

are non-zero (e.g., around Z = 0, if Z is Laplacian distributed). Note that computing Pr(Xi = x) by

binning the coefficients may not incur much complexity as the subbands in H have only a small number

of coefficients.

Similarly, we can derive psgn(l, i), i ∈ H, by

psgn(l, i) =
∑

Pr(V (l, x))Pr(Xi = x) (35)

with V (l, x) denotes the event of the l-th sign bits crossover when Xi = x. It can be shown that

Pr(V (l, x)) =
∫ −|x|
−∞ fZ(z)dz when fZ(z) is symmetric. Note that we use (31) and (32) to estimate the

crossover probabilities when there are enough samples in a subband to allow reliable estimation of fXi
(x),

and (33) and (35) when there are insufficient samples in a subband and empirical p.m.f. Pr(Xi = x) is

used to characterize the data.

VI. HYPERSPECTRAL IMAGE COMPRESSION EXPERIMENTS

In this section we describe several additional experiments on the proposed algorithms using real image

compression applications. In particular, we use a DSC-based hyperspectral image compression proposed

in [20], [26] as a test-bed12 (Figure 9(a)). To compress the current spectral band Bi, the sign and magnitude

bits of the wavelet transform coefficients are extracted using an algorithm similar to the standard SPIHT

[17], with modifications such that at some significance levels the magnitude bits are extracted as raw bit-

planes (instead of separating them into significance and refinement bit-planes) in order to improve coding

performance. Then LDPC-based Slepian-Wolf coding is employed to compress sign/refinement/raw bit-

planes, using as side information the sign/refinement/raw bit-planes of same significance extracted from

aB̂i−1 + b, where B̂i−1 is the previous adjacent reconstructed band available only at the decoder, and a

12We choose the hyperspectral image applications for experiments mainly because of the availability of the system.
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Fig. 9. DSC-based hyperspectral image compression with (a) direct correlation estimation; (b) model-based estimation.

and b are some linear prediction coefficients. To determine the coding rate, the original previous band

Bi−1 is used to approximate B̂i−1 at the encoder for high fidelity applications, and sign/refinement/raw

bit-planes are explicitly extracted from transform coefficients of aBi−1 + b to estimate the crossover

probabilities using the direct estimation approach discussed in Section II. The amount of information

exchanged needs to be kept small so that the algorithm can be used in parallel encoding scenarios, where

each band is assigned to a different processor. To ensure source and SI bit-planes are formed with wavelet

coefficients at the same locations, we need to apply significance trees of Bi when extracting bit-planes

from Bi−1 [20].

A. Sample Allocation Experiments

Given that nT binary samples can be used to estimate the crossover probabilities when compressing

Bi, we compare two strategies to determine how to allocate the samples to different bit-planes:

• Adaptive sample allocation. We use (17), i.e., the optimal sample allocation, to decide the numbers

of samples allocated to different bit-planes. However, since the crossover probabilities of Bi are

unknown, we use as a priori information the crossover probabilities of Bi−1 in (17) (which have

been estimated during the compression of Bi−1). When compressing the first DSC-coded band, since

a priori information is not available we allocate the same number of samples to each bit-plane.

• Even sample allocation. We allocate the same number of samples to each bit-planes for all the bands.

The NASA AVIRIS image data-sets [29] are used in the experiment. The original image consists of

224 spectral bands, and each spectral band consists of 614 × 512 16-bits pixels. In the experiment, we
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Fig. 10. Sample allocation experiments - (a) Lunar (reflectance data), (b) Moffet (radiance data), using 0.25% total sample. An adaptive

sample allocation scheme using the proposed optimal sample allocation strategy in Section III with a priori information from previous encoded

band is compared with the even sample allocation. Here “Exact” denote the cases when the exact correlation information is used to determine

the coding rate, i.e., no rate penalty.

compress 512 × 512 pixels in each band. Figures 10(a) and 10(b) depict the RD performances of the

system under different sample allocation strategies. Here MPSNR = 10 log10(655352/MSE), where MSE

is the mean squared error between all the original and reconstructed bands. Also shown in the figures are

the RD performances when the exact crossover probabilities are used to determine the coding rate. As

shown in the figures, in the situations with small number of samples exchanged (e.g., 0.25% of total),

the adaptive sample allocation can reduce the rate penalty by about 1dB, as compared to the even sample

allocation. Note that the adaptive sample allocation requires negligible overhead: it simply uses (17) to

determine a more efficient sample allocation across bit-planes based on any available a priori information.

B. Model-based Estimation Experiments

Model-based estimation can be applied to the hyperspectral image system following the algorithms

outlined in Sections IV and V, with X and Y being the transform coefficients of Bi and aBi−1 + b

respectively. As discussed, continuous-valued source samples are used to estimate the models in model-

based estimation, so bit-plane extraction from SI is no longer necessary. In addition, the correlation

noise model can be estimated in the pixel domain in this case following the discussion in Section V-B.

Therefore, the model-based estimation can result in a more efficient system as depicted in Figure 9(b).

Here the core compression module is the same as that in the original system (with direct estimation) in
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Figure 9(a), while the correlation estimation algorithm is modified following the model-based approach,

leading to the following implementation advantages in this application:

• First, the model-based system requires less computation. This is evident when comparing Figures 9(a)

and 9(b): Wavelet transform on and bit-planes extraction from SI as in the original system13 are

no longer required, while estimating the model (using MLE) and the crossover probability (using

analytical equations) require only small amounts of computation in the model-based system.

• Moreover, in parallel encoding scenarios, the model-based system requires less data traffic between

processors. This is also evident when comparing Figures 9(a) and 9(b): In the model-based system,

encoder of Bi only needs to request pixel domain samples from encoder of Bi−1 at the beginning

of processing to compute the linear prediction coefficients and correlation noise model, whereas in

the original system additional traffic is incurred for exchanging significance tree and SI bit-planes.

• Furthermore, the model-based system can achieve better parallel encoding, as there are only small

amounts of dependency between encoders of different bands at the beginning of processing (Fig-

ure 9(b)), and processors can proceed without further synchronization.

The performance of model-based estimation is assessed by comparing with the original system, where

SI bit-planes are explicitly extracted and exact crossover probabilities are used to estimate the encoding

rate, i.e., there is no rate penalty. In the model-based approach, samples of Bi−1 are obtained by

downsampling the image by factors of four and eight horizontally and vertically respectively. Therefore,

3.125% of image data are used to estimate the correlation noise model. To prevent decoding error due to

under-estimating the crossover probability, we allow a larger margin to determine the encoding rate, at

the expense of coding efficiency. Specifically, a 0.15-bit margin is added to the estimated Slepian-Wolf

bound, so that there is no decoding error occurred in the testing data-sets. Figures 11 depicts the RD

performance. As shown in the figures, model-based estimation incurs only small degradation in coding

efficiency. In most cases, the difference is less than 0.5dB when compared to the direct estimation with

exact crossover probabilities used to determine the coding rate.

For reference we also present the coding performance of several 3D wavelet systems (3D-ICER)

developed in NASA-JPL [29]. As shown in Figure 11(a), the DSC-based systems are comparable to

a version of 3D wavelet system (FY04-3D-ICER) in terms of coding efficiency. FY04-3D-ICER uses

the standard dyadic wavelet decomposition and a context-adaptive entropy coding scheme to compress

13It may be possible to avoid wavelet transform of SI by storing and re-using the coefficients during the compression of Bi−1. But this

would significantly increase the memory requirements. And bit-plane extraction from SI is always required if generating SI bit-planes explicitly,

since the SI sign/refinement bits need to extracted based on the significance tree of Bi.
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Fig. 11. Coding efficiency comparison: (a) Cuprite (radiance data); (b) Lunar (reflectance data). The model-based system is compared with

the original system, which uses all samples in direct estimation and exact crossover probabilities to determine the encoding rate, i.e. no rate

penalty. Coding performances of several other wavelet systems are also presented for reference.

coefficients bits. However, there is still performance gap when comparing the DSC-based systems to

a more recent and sophisticated version of 3D wavelet (Latest-3D-ICER). Latest-3D-ICER exploits the

spatial correlation remaining in the correlation noise [29], while the DSC-based systems use simple i.i.d.

model for correlation noise and do not utilize the spatial correlation in the noise, leading to some coding

inefficiency. We have also compared the DSC-based systems with 2D-SPIHT, and the DSC-based systems

can achieve 8dB gains at some bit-rates, as shown in Figure 11(a).

VII. CONCLUSIONS

In this paper, we have investigated correlation estimation for distributed image and video applications

under rate and complexity constraints. Focusing on the situations when sampling techniques are employed

to estimate the correlation, we first analyzed how the number of samples relates to the p.d.f. of the rate

penalty when compressing a binary input source. We then extended the analysis to the cases when multiple

binary input sources are to be compressed and proposed a strategy to allocate samples to the sources

such that the overall rate penalty can be minimized. Furthermore, we proposed a model-based estimation

for the particular but important situations when bit-planes are extracted from a continuous-valued input

source, and discussed extensions to the cases when bit-planes are extracted based on the significance

of the data for wavelet-based DSC applications. Experimental results including real image compression

demonstrated model-based approach can achieve accurate estimation.
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APPENDIX I

DERIVATION OF OPTIMAL SAMPLE ALLOCATION

Here we give the detail of the derivation of the optimal sample allocation given in (17). We consider

min{nl:
PL−1

l=0 nl=nT ;nl≤Kl}E[4H], (36)

where E[4H] = 1
KT

PL−1
l=0 Klαln

−1/2
l and αl = ln( 1

pl
− 1)zω/2

p
pl(1− pl). Using Lagrange multipliers, we construct

J(n) =
1

KT

L−1X
l=0

Klαln
−1/2
l + λ

L−1X
l=0

nl. (37)

Differentiate (37) and set to zero,
∂J

∂nl
=

−1

2KT
Klαln

−3/2
l + λ = 0, (38)

or

n∗l = (Klαl)
2/3(

1

2λKT
)2/3 = (Klαl)

2/3γ. (39)

This is true as long as n∗l < Kl. Otherwise, we need to use the Kuhn-Tucker conditions to find n∗l :

∂J

∂nl

8<: = 0, if n∗l < Kl,

≤ 0, if n∗l = Kl.
(40)

Solving (40) we obtain the results in (17).
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