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ABSTRACT

The progress of VLSI technology towards deep sub-micron feature sizes, e.g., sub-100 nanometer technology,
has created a growing impact of hardware defects and fabrication process variability, which lead to reductions
in yield rate. To address these problems, a new approach, system-level error tolerance (ET), has been recently
introduced. Considering that a significant percentage of the entire chip production is discarded due to minor
imperfections, this approach is based on accepting imperfect chips that introduce imperceptible/acceptable system-
level degradation; this leads to increases in overall effective yield. In this paper, we investigate the impact of
hardware faults on the video compression performance, with a focus on the motion estimation (ME) process.
More specifically, we provide an analytical formulation of the impact of single and multiple stuck-at-faults within
ME computation. We further present a model for estimating the system-level performance degradation due to
such faults, which can be used for the error tolerance based decision strategy of accepting a given faulty chip.
We also show how different faults and ME search algorithms compare in terms of error tolerance and define
the characteristics of search algorithm that lead to increased error tolerance. Finally, we show that different
hardware architectures performing the same metric computation have different error tolerance characteristics
and we present the optimal ME hardware architecture in terms of error tolerance. While we focus on ME
hardware, our work could also applied to systems (e.g., classifiers, matching pursuits, vector quantization) where
a selection is made among several alternatives (e.g., class label, basis function, quantization codeword) based on
which choice minimizes an additive metric of interest.

Keywords: Error tolerant compression, Motion estimation, Computation error tolerance, Multiple stuck-at
fault

1. INTRODUCTION

As semiconductor manufacturing technology advances, yield rate has decreased and it is becoming economically
more difficult to produce close to 100% correct circuits as they become more highly condensed and integrated
towards nanoscale. Lower yield rates can increase the chip manufacturing and verification cost and delay their
time-to-market. To deal with these problems and improve yields, defect and fault tolerance techniques at the
design and manufacturing stages have been widely studied and practiced.1,2 While these approaches aim at
masking all effects of defects such that no error occurs at any output of a faulty system, a recently introduced
application-oriented approach to error tolerance (ET) is based on not discarding those systems that produce
erroneous yet acceptable output,3 so that overall effective yield can be improved. ET is based on determining
whether a system is acceptable or unacceptable by analyzing the system-level impact of faults and accepting minor
defects which result in slightly degraded performance within some application specific ranges of acceptability.
This is a particularly promising solution for highly integrated LSI chips used for video compression applications,
because the analysis can exploit the limitations in human perception and the fact that compression itself is a
lossy processs. However, a critical factor for this approach to be successful is to be able to cost-efficiently test
and accurately predict if a defective chip will provide acceptable system-level performance without having to
perform application level testing.
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In our work to date we have studied the impact of hardware defects that lead to faults at circuit interconnects
and soft errors produced by voltage scaling. Hardware faults such as those arising in a typical fabrication process
can potentially lead to “hard” errors, since some of the functionality in the design is permanently impaired,
whereas “soft” errors may arise when a circuit operates at a voltage lower than specified for the system. Our
previous works4,5 showed that certain range of hardware defects within the motion estimation (ME) and discrete
cosine transform (DCT) with quantization subsystems lead to acceptable quality degradation. We also proposed
a novel ET based testing strategy for such systems. Our other recent work6 showed that the ME process exhibits
significant error tolerance in both hard and soft errors and further proposed simple error models to provide
insights into what features in ME algorithms lead to increased error tolerance.

In this paper, based on the same ET concept, we further extend our previous work and provide an analytical
formulation of the impact of multiple hardware faults on the motion estimation (ME) process. This provides
estimates of system-level performance degradation due to such faults, which can be used in deciding whether to
accept a given faulty chip. Furthermore, based on this model, we investigate the error tolerance behavior of the
ME process in the presence of multiple hardware faults from both an algorithmic and a hardware architecture
point of view. In comparing different motion search algorithms we observe that high performance, low complexity
techniques can in fact more error tolerant than other methods. As an example, in our experiments, enhanced
predictive zonal search (EPZS)7 exhibits minimum degradation with respect to full search (FS) in the fault-free
case (e.g., 0.01dB loss) but can perform significantly better in the presence of faults (e.g., up to 2.5dB gain
compared to a faulty FS in some cases). When comparing different hardware architectures to perform the same
metric computation, we also observe significant variations in error tolerance. We show that the optimal ME
hardware architecture in terms of error tolerance is a perfectly balanced binary tree structure, which is also
effective in terms of enabling parallel computation. Our simulations show that, if the optimal structure is used,
the expected error due to a fault can be reduced by up to 95%, as compared to other architectures, and that
more than 99.2% of fault locations within ME circuits result in less than 0.01dB performance degradation. While
we focus on ME hardware, our work could also applied to systems (e.g., classifiers, matching pursuits, vector
quantization) where a selection is made among several alternatives (e.g., class label, basis function, quantization
codeword) based on which choice minimizes an additive metric of interest.

Our previous work as well as most previous research has relied on the single stuck-at (SA) fault assumption,
which has been well-studied due to its simplicity and high fault coverage and has worked fairly well in practice.
However, with decreasing feature sizes and increasingly aggressive design styles, single SA fault has become a
rather restrictive model since it allows the defect to influence only one net, while defects in modern devices tend
to cluster and affect multiple lines in the failing chip. Multiple SA fault model on the other hand covers a greater
percentage of physical defects, and can also be used to model defects of certain different fault types such as
multiple bridging faults or multiple transition faults. However, the multiple SA fault case has not been studied
extensively due to the issues of complexity and functional error inter-dependency characteristics. In this paper,
we present an analytical model of the system-level fault effect for any arbitrary multiple SA faults in a metric
computation circuit and study error tolerance properties of the ME process at both algorithmic and hardware
architecture level based on multiple SA fault assumption.

The rest of this paper is organized as follows. In Section 2, we begin with a brief description of motion
estimation and a corresponding generalized hardware architecture model, followed by the formulation of multiple
SA fault effect estimation problem on ME process. In Section 3, we present a model for measuring the impact
of multiple SA fault on the accuracy of both the metric computation and matching process. In Section 4, we
analyze and define the characteristics of ME search algorithms that lead to increased error tolerance. In Section
5, we provide analysis on ME hardware architecture pertaining to the error tolerance and show the optimal
structure is perfectly balanced tree structure. Furthermore, we present experimental results and discussion on
actual ET based decision example in the context of H.264/AVC, comparing different ME hardware architectures
and search algorithms. Section 6 summarizes our conclusions and main results.

2. MOTION ESTIMATION PROCESS AND MULTIPLE SA FAULT MODEL

Block-based motion compensation is by far the most popular technique to exploit temporal redundancy in video
coding, and has been adopted in many video compression standards. Block-based techniques require estimating



the motion vector (MV ) of a block of pixels, which points to the best matching block in the reference picture.
Throughout this paper we assume block-based techniques are used. The ME process comprises a search strategy
and a matching metric computation. The search strategy aims at selecting a set of candidate MVs and then
proceeds to compute the matching metric for each candidate. Finally, it selects the one that minimizes a relevant
metric, e.g., the sum of absolute/squared differences (SAD/SSD), or absolute hadamard transformed differences
(SATD). After the encoder selects the MV that minimizes the cost metric, it encodes the difference block
(prediction residual) between the original and motion compensated blocks. Each residual block is transformed,
quantized, and entropy coded. All simulations throughout this paper were performed using the SAD metric.
However, our analysis and models are generic to any distortion metric.

There are several types of hardware implementation architectures8 for computing a ME matching metric,
with different levels of parallelism. We will refer to them as matching metric computation (MMC) architectures.
Figure 1 illustrates a few examples of MMC architectures8 which can be viewed as arrays of cascaded adders
and represented as binary tree graphs, where each inner node represents an adder, an edge connecting two inner
nodes represents a data bus, and a leaf node corresponds to the processing element (PE) that computes the
pixel-level prediction error, e.g., absolute/squared difference for SAD/SSD metric.

Throughout this paper we consider only faults in the interconnect data bus that affect the data transfer
between PEs within a ME hardware architecture. These interconnect faults are modeled with the stuck-at (SA)
fault model, a well-known structural fault model that assumes that the design contains a fault that will cause
a line in the circuit to behave as if it is permanently stuck at a logic value 0 (stuck-at-0 fault) or 1 (stuck-at-1
fault). The SA fault model covers 80-90% of the possible manufacturing defects in CMOS circuits,9 such as
missing features, source-drain shorts, diffusion contaminants, and metallization shorts, oxide pinholes, etc.

Faults in a MMC architecture can lead to errors in the cost metric computation. We will refer to this as
a metric computation (MC) error and denote its magnitude as ∆ (D, {fi}) = D̂ − D where D̂ and D denote
the computed costs with and without MC error. In general ∆ (D, {fi}) is a function of the input sequence and
the characteristics of the faults (e.g., their types, locations, and their dependencies). However, to simplify the
notation, from here on we omit {fi}, a set of parameter vectors representing each fault’s characteristics. We will
refer to this function ∆ (D) as the MC error function. Note that MC errors do not necessarily lead to matching
process (MP ) errors. We say a block suffers a MP error if MVf 6= MVmin where MVf and MVmin represent
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Figure 1. (Left) Examples of MMC architectures for the computation of prediction error (SAD) in ME, represented as
a dependence graph, where only processing elements (PEs) are shown for simplicity. AD denotes an absolute difference
and an addition, and M denotes a minimum value computation. (Right) Tree structured flow graph corresponding to
the type-2 MMC architecture on the left. In this graph, the absolute difference (leaf nodes) and addition (inner nodes)
computations are separated, thus AD denotes only an absolute difference. If SSD is used as a cost metric, leaf nodes
become PEs computing a square difference.



the selected and best MV , respectively . Since MP errors do not occur for all blocks, we also define the block
MP error rate (PE = prob(MVf 6= MVmin)) which represents how often these MP errors occur, and the block
MP error significance (SE = D(MVf ) − D(MVmin), where D(MVf ) and D(MVmin) are the computed costs
corresponding to MVf and MVmin respectively). SE represents the additional error energy in the residual block
due to faults in the motion estimation process.

3. FAULT EFFECT MODELING FOR MOTION ESTIMATION

In this section we present a complete analysis of the effect of interconnect faults in a ME system. We start
by providing a model to capture the effect of any fault (or combination of multiple faults) on the matching
metric (SAD). We then describe how these errors in metric computation lead to errors in the matching process.
Our motivation is twofold. First, we will use this analysis to predict the behavior of ME algorithms and MMC
architectures in the presence of faults (see Sections 4 and 5, respectively). Second, this analysis is a required step
towards developing comprehensive testing techniques to identify acceptable error behavior. In particular, it will
provide tools to tackle multiple fault scenarios, by discarding specific sets of faults (e.g., when one of the multiple
faults is by itself unacceptable), establishing equivalence classes across faults (e.g., cases when dependent and
independent faults may have the same impact), or determining how the parameters of the faults involved affect
overall behavior (e.g., multiple faults with similar parameters may lead to relatively worse errors than sets of
faults with differing characteristics).

3.1. Multiple Fault Effect Modeling for Metric Computation

Each SA fault in any MMC architecture can be fully characterized by three attributes, a) the fault type t ∈ {0, 1}
(SA0 or SA1), b) the bit position of the faulty data line p ∈ {0, · · · , P} where 0 and P correspond to the LSB
and MSB of faulty data bus respectively, depending on the MMC architecture, and c) the position of that data
bus. The last attribute can be parameterized as a ratio α ∈ (0, 1 ] of the number of leaves in the subtree rooted
at a faulty edge Figure 1 (right), if a fault is positioned at (x), its corresponding α, say α(x) is 1. Similarly,
α(y) = 1/2 and α(z) = 1/8 and so forth. Therefore each fault i can be represented as fi = (ti, pi, αi), where
ti ∈ {0, 1}, pi ∈ {0, · · · , P} and αi ∈ (0, 1 ]. Note that these fault parameters completely capture the fault effect,
so that two faults with the same parameters in two different architectures have, on average, the same effect.

Consider an interconnect fault i affecting a data bus. If the input to the data bus is x then we can represent
the effect of the fault as a function hi (x) , x̂ − x, where x̂ is the output of the faulty data bus. For fault
parameters pi and ti the shift induced by SA fault i can then be described as

hi (x) = x̂ − x = (−1)
ti+1 · 2pi · Iwi

ti

(x) , where

wi
0 =

⋃

k∈2N0+1

[ k · 2pi , (k + 1) · 2pi ) and wi
1 =

⋃

k∈2N0

[ k · 2pi , (k + 1) · 2pi ),

where N0 denotes the set of non-negative integers. Note that hi (x) is a function of x, i.e., an intermediate term
in the computation of the final matching metric cost D. Thus, modeling the final observed metric computation
error would in principle require modeling the distribution of intermediate values x for a given D. Instead, as
a simplification, we assume that, on average and for a given αi and D, we will tend to have x ∼= αD, i.e.,
the intermediate metric value x at the fault position is proportional to the number of pixel-errors accumulated
up to that position∗. With this approximation we define the error at the output corresponding to fault i as
Hi (D) ∼= hi (αD) , which can be written as:

Hi (D) , (−1)
ti+1 · 2pi · IW i

ti

(D) , (1)

where W i
0 =

⋃

k∈2N0+1

[

k · 2pi

αi

,
(k + 1) · 2pi

αi

)

and W i
1 =

⋃

k∈2N0

[

k · 2pi

αi

,
(k + 1) · 2pi

αi

)

∗This would hold if pixel-errors were iid with mean dependent on D. However, based on the generalized central limit
theorem even if there exist some weak dependencies between pixel-errors, this still holds true if none of pixel-error variables
exert a much larger influence than the others.
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Figure 2. Examples of multiple SA fault cases with different dependency relations between faults. (a) two serially placed
faults in the same path of circuit, (b) two parallel faults placed in separate paths, and (c) simple combination of (a)
and (b) cases. These relations are illustrated more clearly in the fault dependency graphs shown below the binary trees.
Metric computation (MC) error function ∆ (D) can be formulated via functions of {Hi (D)}M

i=1
defined in (1) using two

basic operators {⊙, + } (function addition and a variant of function composition operator defined in (2)), according to
the dependency relation of a given set of faults as shown above, where D denotes the final cost value (e.g., SAD).

Hi (D) is a periodic piecewise constant square wave function of D taking values in the set Ri = {0, 2pi ·

(−1)
ti+1} with period Ti = 2pi+1/αi. If there is a single SA fault fi = (ti, pi, αi) in a MMC architecture, then

with the above approximation the error at the output is ∆ (D) ∼= Hi (D), which leads to D being shifted by ±2p

or remaining unchanged depending on D and fi.

However, when we consider multiple SA faults, ∆ (D) cannot be accurately modeled unless extra information
regarding the dependency relation between faults is also provided. In other words, two sets of faults with identical
fault configurations, {fi}

M
i=1 with fi = (ti, pi, αi) could produce different MC error function ∆ (D) depending

on the dependency relation between faults. Figure 2 illustrates simple examples of multiple faults with different
dependencies. If faults are placed serially in the same computation path, the output of previous faults along
the path could affect the input to the following fault position. We refer to such faults as dependent faults
(Figure 2(a)). Note that the relative position of the faults in the architecture matters, i.e., the computations
closer to the root of the tree are affected by the errors introduced closer to the leaves, but not the other way
around. On the other hand, if faults are placed in separate paths such that the output of each fault position is
independent from one another, we refer to them as independent faults (Figure 2(b)). Figure 2(c) shows the case
of a simple combination of both independent and dependent faults. For each of these three scenarios, Figure 2
provides an example of multiple faults locations in the MMC hardware architecture represented as a binary
tree and a fault dependency graph illustrating their dependency relation. Similarly, any dependency relation of
an arbitrary set of faults S = {fi}

M
i=1 in a MMC architecture, where fi = (ti, pi, αi), can be represented as a

combination of parallel and serial cascade of faults.

In order to formulate ∆ (D) for any given set of faults with arbitrary fault dependency relations, we first
introduce (F , +, ⊙ ), an algebraic structure where the elements of F are periodic piecewise constant functions
which are closed under two operations {+, ⊙}. The operator + denotes linear function addition and ⊙ denotes
a function composition operator defined as

f (x) ⊙ g (x) , g (f (x) + x) + f (x) (2)

This operator ⊙ combines f (x) and g (x), where the input to g (x) depends on the output of f (x). These two
operators {+, ⊙} essentially combine two MC error functions for two different sets of faults into one function
providing the total cost shift incurred by both sets of faults. If two sets of faults are independent, the overall
error function is the sum of the two error functions corresponding to each set of faults, thus the + operator
is used. Similarly, the ⊙ operator is applied when two sets of faults are dependent. Figure 2 provides simple
examples of multiple faults and their corresponding ∆ (D) representation using two operators {+, ⊙}. Figure 3
illustrates more graphically for each of the three cases discussed in Figure 2 how ∆(D) function is linked to
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Figure 3. ∆ (D) computation for each of the three cases described in Figure 2. Faults f1 and f2 are SA1 faults with
parameters { 1, p1, α1}, { 1, p2, α2} respectively and f3 is SA0 fault with { 0, p3, α3}. (a) a fault f1 affects the input to
the next fault position f2. Thus, the total cost shift at D (MC error function ∆ (D)) is the summation of the cost shift
due to f1 at D, (H1 (D)) and that of f2 at shifted D by H1 (D), which is (H2 (H1 (D) + D)). (b)∆ (D) is the simple
linear summation of H1 (D) and H2 (D). (c) only dependent relation between faults {f1, f2} and f3 is depicted which is
essentially the same process as (a).

the dependency relation of multiple faults. When two sets of faults are independent as in Figure 3 (b), ∆ (D)
function becomes linearly additive. On the other hand, when they are dependent, as in Figure 3 (a)(c), the error
function will have to be computed by using the ⊙ operator.

More formally, the MC error function ∆ (D) of an arbitrary set of faults S = {fi}
M

i=1 in any MMC architecture,
where fi = (ti, pi, αi), with any dependency relation can be estimated using operators {+, ⊙} on the set of

functions {Hi (D)}M
i=1 resulting also in a periodic piecewise constant function of cost D, taking 2M different

possible values in a finite set RS with period TS , where†

RS =

{

∑

i∈A

2pi · (−1)
ti+1

}

A∈P ({1,··· ,M})

TS = lcm

{

Ti =
2pi+1

αi

}M

i=1

(3)

Since the ⊙ operator is noncommutative and nondistributive over addition, order is important in computing
∆ (D). Based on its fault dependency graph (examples are shown in Figure 2 which can be also represented
as a tree in which each node i correspond to a fault i), ∆ (D) need to be updated iteratively at each node i
of the tree from the leaves towards the root by combining each Hi (D). The combination process at each node
i is performed using + and ⊙ operators to combine siblings ({∆j (D)}

j∈Ji
) and children (

∑

j∈Ji
∆j (D)) with

parent (Hi (D)), respectively, where ∆i (D) represents the updated ∆ (D) for a subtree rooted at node i and Ji

is a set of all child nodes of node i.

∆i (D) = (
∑

j∈Ji

∆j (D)) ⊙ Hi (D)

Therefore for a given arbitrary set of multiple SA faults, we can obtain MC error function ∆ (D) which
indicates whether there is a MC error (∆ 6= 0) and how much shift occurred due to faults (∆ = D̂ − D) for any
given final cost value D. Note that once we obtain MC error function (∆ (D)), the dependency relation does not
have to be reconsidered afterwards.

3.2. Multiple Faults Effect Modeling for the Matching Process

SA faults alter the computed cost values D̂ = D + ∆(D) according to the MC error function which we have
analytically formulated in the previous section. However, this does not necessarily lead to matching process (MP )

†P (·) and lcm (·) denote the power set and the least common multiple, respectively.



errors, which is the case where the selected candidate MV (MVf ) based on the altered cost value D̂ is not equal to

the best MV (MVmin). A MP error occurs if and only if, D (MVf ) > D (MVmin) and D̂ (MVf ) < D̂ (MVmin).

In this section, based on the MC error function ∆ (D) we model the MP error with two assumptions: i)
minimum SAD follows a distribution PminSAD which has different characteristics for different classes of video
sequences (e.g., low motion vs. high motion video), and ii) the set of candidates N to be tested for the matching
process can be modeled as N iid samples drawn from a distribution PSAD. Based on these two assumptions, for
a given ∆ (D), MP error rate PE and the expected MP error significance Ē are formulated as follows.

SA faults shift all computed costs by ∆ (D) which in turn alter PSAD into P̂SAD where

P̂SAD(D̂) =
∑

∀D:D+∆(D)=D̂

PSAD (D) (4)

Figure 4 (left) illustrates example of how a given PSAD is mapped into P̂SAD using ∆ (D) function. MP error

occurs if the shifted minimum SAD (minŜAD) is not the minimum of P̂SAD in D̂ domain and if there exists at
least one candidate that falls within the shaded region shown in Figure 4. We refer to this shaded area as error

region which essentially indicates the range of SAD values satisfying SAD > minSAD and ŜAD < minŜAD
conditions and therefore determined by ∆ (D). This error region is bounded by error region bounding interval
τ which is a function of minSAD value and defined as

τ (D) , ∆(D) − minRS (5)

where minRS denotes the minimum of a set RS defined in (3). We denote F̂SAD as a cumulative distribution
function of P̂SAD and define a new function ξN (D) , (1 − F̂SAD(D̂))N that gives the probability that shifted
cost values of all N candidates fall higher than D̂. Then we can represent MP error rate for a given minSAD
(denoted as Dmin) as PE|Dmin

= 1 − ξN (Dmin). Therefore,

PE =
∑

D

PminSAD (D) · PE|D =
∑

D

PminSAD (D) · (1 − ξN (D)) (6)

Similarly, expected value of MP error significance for a given Dmin can be represented as

EDmin
(SE) =

∑

d∈XDmin

(d − Dmin) · ξN−1 (d) · PSAD (d)

where XDmin
=

{

d | Dmin < d < Dmin + τ (d) , d̂ < D̂min

}

is a set of d corresponding to the blue shaded area

of PSAD (d) in Figure 4 (Left).

Similarly, the expected MP error can be expressed as

Ē = E (SE) =
∑

D

PminSAD (D) · ED (SE) =
∑

D

PminSAD (D)
∑

d∈XD

(d − D) · ξN−1 (d) · PSAD (d) (7)
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Figure 4. (Left) Analysis of matching process error due to multiple SA faults. (Right) A comparison of two different
sets of MV candidates with respect to the MP error due to a single SA fault.



4. ERROR TOLERANCE OF MOTION ESTIMATION SEARCH ALGORITHMS

In Section 3, we introduced a function, ∆ (D), to model the distortion in metric computation caused by a given set
of multiple SA faults. Based on this model, we modeled the impact of faults on matching process by additionally
considering the interaction between ∆ (D) and the characteristics of a candidate set in terms of the number N
and quality (distribution PSAD). These attributes can be largely controlled by the ME search algorithm design
while ∆ (D) is determined solely by fault parameters i.e., locations, types, and dependencies. Therefore, in this
section, based on our previous studies of MP error we define the characteristics of the search algorithm that lead
to increased error tolerance and show how fault parameters and design choices made for the search process are
related in terms of error tolerance. Note that our interest is not in accurate modeling of ME search algorithms
but in characterizing their average behavior with respect to the parameters of our interest that are related to
the error tolerance property.

The multiple faults effect model for the matching process in terms of PE and Ē in (5),(6) shows that error
robustness depends on both the number N and quality PSAD of the candidates tested by ME algorithm. Note
that both PE and Ē are a function of ξN (d) = (1 − F̂SAD(d̂))N , which is the only term associated with N .
Since ξN (d) decays exponentially as a function of N , for large enough N the difference in performance between
different N values is negligible. Thus, in practice, for values of N encountered in most practical algorithms (e.g.,
N > 10) differences in overall error behavior are mostly determined by differences in quality of the candidates,
rather than their number.

As to the quality of the candidates, PSAD in our model, we approximate it by the range of PSAD distribution
(a coverage of SAD values) defined as ∆SAD = maxSAD − minSAD based on two reasons: i) Although it
varies from block to block, our experiments show that average distribution given the same ∆SAD exhibits
close to uniform distribution, and ii) error region bounding interval τ defined in (7) over which both PE and Ē
expectation computations are performed is bounded by ∆SAD. In other words, both PE and Ē can be directly
controlled by ∆SAD. Therefore, we approximate the quality of the candidates with one parameter ∆SAD in
this section for the purpose of studying error tolerance property of ME algorithms since it generally captures the
main feature of PSAD that is most related to the PE and Ē.

For given M multiple faults, there can be 2M different τ values τi ∈ T = {τ |τ = r − minRS , r ∈ RS}. If
∆SAD > τi ∀ i, both PE and Ē are determined dominantly by ∆ (D) function but not by ∆SAD. In other
words, if a set of faults has all small pi which decides RS and consequently T , the choice of ME algorithm will
not change the impact of faults and the impact itself of such faults is generally already insignificant due to their
small pi. Figure 6 (left) shows that three ME algorithms with different ∆SADs result in similar Ē for small
p. On the other hand, if ∆SAD < τi ∃ i, then τi = ∆SAD ∀ i ∈ { i | τi > ∆SAD}, resulting the error region
bounding interval τi for PE and Ē computation to be bounded by ∆SAD for some region of D. Therefore, the
choice of ME algorithm can influence the impact of faults considerably. If ∆SAD < τi,∀ i, all τi are completely
bounded by ∆SAD and the error depends primarily on ∆SAD.
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Figure 5. Effect of ∆SAD, N and fault location parameter p with respect to their impacts on the error rate PE and
expected error significance Ē based on our SA fault effect model (6),(7) and PminSAD (D) obtained from the CIF foreman
sequence.
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Figure 4 (right) provides a simple comparison of two candidate sets with different ∆SADs in the presence
of a single SA fault and show how ∆SAD is linked with the expected error. Figure 5 illustrates our conclusions
drawn from our model for a single SA fault case. It shows that PE and Ē increase almost exponentially with
∆SAD and saturate when ∆SAD reaches τ = 2p while the impact of N is minimal especially for large N .

Therefore, if our goal is to choose an ME algorithm that reduces the impact of faults, we should choose
one such that typical sets of MV candidates are as close as possible to optimal value (i.e., small ∆SAD). In
practice, search algorithms satisfying this characteristic also show significant complexity reduction (small N)
without having to compromise with the performance.

To evaluate the impact of ME algorithm on error tolerance, three representative ME search algorithms,
full search (FS), three step search (TSS),10 and enhanced predictive zonal search (EPZS)7 are tested as they
provide different combinations of N and ∆SAD parameters. FS exhaustively searches all candidates within the
search window, and thus has the largest number of candidates NFS and SAD range ∆SADFS . TSS successively
evaluates sparsely distributed candidates and tries to follow the direction of minimum distortion to locate the
smallest SAD. Although the number of candidates NTSS is small, its SAD range ∆SADTSS remains relatively
large. On the other hand, EPZS, a state of the art ME algorithm, considers a combination of optimized predictors
and refinement process to locate the minimum distortion location. Unlike TSS, both the number of candidates
NEPZS and SAD range ∆SADEPZS tend to be quite small. As an example, when a search window of ±32 is used,
NFS = 4225, NTSS = 41, and NEPZS = 8.8 on average for Foreman CIF sequence. For the same sequence, we
have ∆SADFS = 1.5×∆SADTSS = 9.75×∆SADEPZS on average. These properties are illustrated in Figure 6
(top), which shows the distribution of the SADs for all candidates of a given block, sorted by magnitude.

With these three algorithms, various sequences were tested with a series of fault parameters using a H.264
/MPEG-4 AVC baseline encoder. Only 16x16 block partitions, a single reference, and only integer-pel search were
used for ME. Note that all experimental results presented from this point forward were performed under these
same constraints. Figure 6 (left) provides the comparison of three algorithms in terms of PSNR degradation‡ due
to a single SA fault with different parameters α and p while Figure 6 (right) depicts their RD performance. The
CIF resolution Foreman sequence was used for both graphs and other sequences tested showed similar results.

‡BDPSNR (Bjontegaard Delta PSNR)11 was used to calculate average PSNR difference between RD curves.
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(right). Perfectly balanced trees (type-3 in Figure 1) show the minimum expected error introduced by a single SA fault.

Our experimental results are consistent with our earlier conclusions that the fault location parameters p and α
mainly determines the fault impact on ME performance while for a given fault location, ME algorithm operating
on smaller ∆SAD reduces the fault impact.

5. OPTIMAL ME HARDWARE ARCHITECTURE FOR ERROR TOLERANCE

In addition to any error tolerance provided by a ME algorithm, the different MMC architectures can also
significantly influence the degree of error tolerance. For example, Ē can be reduced by more than 95% if a type-3
MMC architecture is used instead of type-1 (shown in Figure 1), when 16× 16 block size is used for ME. In this
section we show that MMC architecture with a perfectly balanced binary tree§ structure (type-3) provides the
highest error tolerance to SA faults.

As shown previously in Figure 1, there are several types of MMC architectures with different levels of paral-
lelism, which can be grouped into either whole-block based (type-1,2,3) and sub-block based (type-4) structures.
While whole-block based architectures allow more parallelized form, sub-block based ones reuse the architecture
multiples times to perform whole block error computation. These two types of structures provide different error
tolerance behavior and will be discussed separately. From here on, we omit the term “whole-block based” unless
required for clarity.

Based on the fact that all MMC architectures have the same number of data buses and bit lines and the general
assumption that random defects are distributed with equal probability across the ME circuit, the probability of
fault occurrence is equal for all architectures. Therefore the expected value of additional error energy introduced
by a single SA fault, E

(

Ē|SSAF
)

indicates the error tolerance level of a given MMC architecture in the presence
of a single SA fault. It can be represented as,

E
(

Ē|SSAF
)

=
∑

αi∈Ak

∑

pj∈Pαi

Ē (αi, pj) · q =
∑

αi∈Ak

Ēαi
· q =

∑

α

p (α) · Ēα

§a full binary tree in which all leaves are at depth n or n-1 for some n.
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(type-3), less than 1% of fault positions result in more than 0.01dB quality degradation.

where Ēαi
=

∑

pj∈Pαi
Ē (αi, pj) which is the same for all MMC architecture given αi. Ak and Pαi

are the set

of all data bus in MMC circuit k and of all bit lines belong to data bus αi respectively. q is a probability of
having a fault at certain position and it is equal probability over all fault locations. p (α) denotes the distribution
of α and it is determined by the MMC architecture. Based on our fault effect model studied in Section 3, Ē
increases linearly with the fault parameter α with an assumption that both PSAD (D) and PminSAD (D) are
uniform distributions over the entire range of D. Then,

arg min
pk(α)

E
(

Ē|SSAF
)

= arg min
pk(α)

∑

α

pk (α) · Ēα = arg min
pk(α)

Dk

where Dk = N ·
∑

α pk (α) · α = N · E (α) which is equivalent to the average depth of the binary tree that
corresponds to the MMC architecture k. If pk (α) determined by the MMC architecture k minimizes E

(

Ē|SSAF
)

,
it also minimizes the average depth of the binary tree corresponding to that MMC architecture k. Therefore the
MMC architecture corresponding to the binary tree with minimum average depth¶ (perfectly balanced binary
tree) leads to the highest error tolerance and furthermore also maximize parallel computation. This conclusion
holds more strongly when Ē increases with α superlinearly which is the case in practice as the above assumption
is not generally true (Figure 7 (left)) mainly due to the PminSAD (D) distribution being more concentrated at
the lower D such that minimum SAD becomes more likely to fall in the error region of ∆ (D) function with
higher α. More specifically, the relative reduction rate of Ē of the type-3 MMC structure compared to the others
increases if the increasing rate of Ē vs. α is higher (e.g., exponential vs. linear increase) or if N increases‖.
Figure 7 illustrate how Ē increases with α (left) and with average binary tree depth describing different MMC
architecture (right) for different ME algorithms in actual simulation.

The same conclusion holds true for the multiple SA faults case although a formal argument establishing this
property is somewhat involved, but its validity is essentially a consequence of the fact that Ē is an increasing
function with each αi of {fi}

M

i=1.

Figure 8 shows how the percentage of unacceptable SSA fault locations given a MMC structure and search
algorithm varies with the acceptance decision thresholds. It also provides comparison for three representative
MMC architectures and search algorithms for the same process. This simulation result shows that even if

¶sketch of proof: a binary tree with N leaves in which the difference between maximum and minimum depths Dmax −
Dmin is greater than 1, can be reformed into the perfectly balanced tree by iteratively moving two leaves at Di

max to
Di

min leaf. Each iteration i reduces average depth by
�
Di

max − Di
min − 1

�
/N . Therefore perfectly balanced trees have

the minimum average depth.
‖for example, Ē of type-1, 2, and 3 increases in the order of O

�
N 2

�
, O (N ), and O (log2N ) respectively.



acceptance decision threshold is as small as 0.01dB∗∗, still more than 99% of fault locations produce imperceptible
degradation. In other words, more than 99% of defective ME circuits with SSA fault having type-3 architecture
only produce less than 0.01dB degradation. This result confirms that the MMC architecture can affect the
system level error tolerance property quite significantly.

Similarly for sub-block based MMC architectures which reuses its structure L times to perform one whole
block error computation, the expected error for a SA fault fi can be represented as

Ēsub = Psub (fi) · Esub (SE |fi) =
1

L
Pwh (fi) · (Ewh (SE |fi))

L

Since a single SA fault in sub-block based structure has the same effect as that of L multiple independent SA
faults with the same fault parameters in whole block based one, its impact increases by a factor of L. Therefore
the fault impact for the sub-block based architectures increases exponentially with L, resulting in reduced error
tolerance compared to the whole block based ones.

6. CONCLUSIONS

Based on the system-level error tolerance concept, this paper has proposed a model for estimating the impact of
multiple hardware faults on the motion estimation process, which can be used for the ET based decision strategy
of accepting a given faulty chip. Furthermore, based on this model, we investigated the error tolerance behavior
of ME process in the presence of multiple hardware faults from both an algorithmic and a hardware architecture
point of view by defining the characteristics of the search algorithm and hardware architecture that lead to
increased error tolerance. We showed that error robustness depends on the number and quality of the candidates
tested by ME algorithm but the quality primarily influences ET level. We also showed that the optimal ME
hardware architecture in terms of error tolerance is perfectly balanced tree structure.
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