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ABSTRACT

In this paper, we study the problem of evaluating the impact of
hardware faults on decoded image/video quality. Our goal is to
define quality evaluation tools for fault acceptability of hardware;
acceptable faults are those that lead to a degradation in decoded
quality that is deemed “acceptable”, according to perceptual crite-
ria. For faults arising in both the discrete cosine transform (DCT)
and Motion Estimation (ME) hardware, we focus on the distortion
between faulty and fault-free decoded outputs. Our results show
that, in the DCT case (applicable to JPEG or MPEG coders), suit-
able metrics can be found by combining tools developed for image
quality ranking with a notion of error rate and significance. In-
stead, in the ME case, we show that the effect of faults can be
well quantified by using standard quality metrics. The difference
between the two cases can be explained by the different character-
istics of errors in each case (error effects remain local in the DCT
case, while they have a global impact in the ME case).

1. INTRODUCTION

Multimedia compression hardware systems are designed under the
assumption that only fault free systems will be used. However, our
recent work on error tolerant image and video compression has
shown that in some cases faulty hardware can be used, as long
as only “acceptable errors” are introduced [7, 8]. The motivation
for this work is an increasing awareness of the importance of Er-
ror Tolerance (ET) techniques; a relaxation of the requirement of
100% correctness for devices and interconnects. ET is motivated
as a tool to dramatically reduce costs for manufacturing, verifi-
cation, and testing [5]. In our work to date we have studied the
impact of hard (deterministic) errors, likely to be originated by
real defects on chips. However, other sources of hardware errors
are worth considering, such as soft errors due to Deep Submicron
(DSM) noise and voltage scaling which cause probabilistic and
input-dependent errors in multimedia systems [11, 17]. For any of
these scenarios, determining which errors are acceptable should be
done by evaluating the resulting image/video quality and determin-
ing whether the degradation in perceptual quality is “acceptable”.

Mean Squared Error (MSE) is a widely used objective qual-
ity metric for multimedia compression. While its limitations are
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well-known [10], it is frequently used to provide a rough compar-
ison between different coding techniques or to drive efficient rate
control algorithms. In this paper we show that for certain systems
suffering from computation errors, MSE is not a suitable perfor-
mance measure. In particular we will show that alternative metrics
are needed for errors in the DCT, while MSE might be appropriate
when errors occur in motion estimation.

Fig. 1. Left:Higher MSE but Acceptable, Right:Lower MSE but
Non-Acceptable

To get some intuition about why this may be true in some
cases, consider Figure 1. The image on the left is obtained with a
fault-free JPEG encoder and has higher MSE (PSNR = 37.9db).
This image, however, is perceptually better than the one on the
right, which has lower MSE (PSNR = 38.9db), and was ob-
tained by simulating the presence of faults in the JPEG encoder. In
this second image we can observe a regular error pattern in various
areas. In a typical compression scenario, quantization noise tends
to affect all components (e.g., all blocks, all frequencies within a
block). Instead, we are now considering hardware errors that can
lead to unevenly distributed artifacts, because they only manifest
themselves for certain inputs. We have observed that this is indeed
true for hardware errors in the DCT in the context of JPEG coding:
only certain blocks and certain frequency components within those
blocks can be seen to be affected, as seen in Figure 1. Clearly,
MSE would then not be a suitable metric, since a large error in a
only a few blocks (or frequencies), while clearly visible by the end
user, may still lead to a low overall MSE.

More specifically, here we consider two types of commonly
used deterministic faults1: i) Single Stuck At 0 (SSA0), ii) Single

1We focus our discussion on these faults but the quality assessment
tools we propose could also be applied in other scenarios, e.g., when dis-



Stuck At 1 (SSA1) [12]. In SSA0 faults a specific bus line (pth)
is modeled to be always set to 0, so that whenever that line was
meant to have a value of 1, an error with magnitude 2p is added
to or subtracted from the original value. The same holds for SSA1
case except that error occurs when the bus line is set to 0. Clearly,
if one of these faults affects the computation of a frequency term in
the DCT, two similar blocks may suffer very different errors (i.e.,
no error vs. 2p error) if they differ in the specific faulty bus line.

Thus, in general, hardware faults in image/video compression
systems can generate errors that are unevenly distributed over i)
frequency components, ii) blocks or iii) frames (in the case of
video). Therefore, in our work we consider quality metrics in
terms of error significance, which measures degradation in indi-
vidual components of the signal (e.g., a block), and error rate,
measuring the probability that unacceptable degradation occurs in
an individual component.

Note that here we are considering the additional degradation
introduced by hardware faults on decoded outputs. Thus we will
typically evaluate the error between pairs of decoded images or
frames, namely those produced by faulty and fault-free systems.
This is in contrast to standard quality evaluation in the context
of compression, where often a decoded image is compared with
the original uncompressed one. Our problem is in effect an im-
age ranking problem (where two different decoded versions of an
image are compared) [16]. Unlike typical ranking scenarios, how-
ever, in our case a single encoder (with fixed coding parameters)
is considered and the image generated by the faulty system cannot
be better in quality than that generated by the fault free system.

In this paper we focus on two very common components of
multimedia compression systems, DCT and motion estimation (ME).
The DCT is used in video coders, e.g., MPEG [14], and image
coders, e.g., JPEG [13], and similar linear block transforms are
used in emerging compression systems, such as ITU-T H.264/MPEG4
AVC [2]. Note that in all these systems the transform is followed
by quantization. Thus, while we consider faults in the transform
operation, our analysis considers the impact of faults after quanti-
zation. ME is a key component of video compression systems such
as ITU-T H.264/MPEG4 AVC [2]; it is critical to achieve efficient
overall rate-distortion (RD) performance.

We will show that faults in the DCT block cause numerical
errors that are unevenly distributed over both blocks and frequency
components (and frames in the video case). Instead, faults in the
ME process have a more indirect impact in quality; they result
in higher energy in the motion compensated residual signal and
thus somewhat worse overall RD performance. Unlike the DCT
case, the quality degradation is spread out over multiple blocks
and frames.

The paper is organized as follows. In Section 2 we consider
faulty DCT in a JPEG system and propose to use block based er-
ror rate and error significance metrics. Our proposed error signifi-
cance metric is based on Watson’s work on DCT basis [15, 3], and
takes into account the fact we are comparing two decoded images.
In Section 3 we discuss the impact of faulty DCT in a MPEG sys-
tem, and in particular show how some of the errors introduced in a
frame are in fact attenuated for SSA0 case and similar or accumu-
lated for SSA1 case in successive frames. In Section 4, we present
and analyze the behavior of ME faults, which suggests that mea-
sures such as MSE or PSNR may still be sufficient for evaluation
of the quality degradation due to faults.

tortion is added by soft errors

2. FAULTY DCT IN A JPEG SYSTEM

We start by introducing some notation. We consider three images,
the original image, I, the decoded image obtained from a fault-
free encoder, Q(I), and that produced by a faulty encoder, Q(I′).
Moreover much of our discussion will consider blocks within these
three images, denoted Ȳ, Q(Ȳ) and Q(Ȳ′), respectively, as well
as individual frequency coefficients within one such block, de-
noted Y (u, v), Q(Y (u, v)), Q(Y ′(u, v)), respectively. Whenever
possible we drop the (u, v) index to simplify the notation. We will
consider distortion metrics at the image, block or frequency com-
ponent level, which we will denote DI , DB , and DC , respectively.
This is summarized in Table 1.

We consider three possible distortions (introduced here at the
image level, but also used at block and component level with ap-
propriate subscript): D1

I = D(I,Q(I)), D2
I = D(I,Q(I′)),

D3
I = D(Q(I),Q(I′)), where D is a “basic” distortion metric

applied to the two images (or blocks or frequency components). D
will be discussed in Section 2.1. D1

I and D2
I quantify the degrada-

tion introduced by quantization (with fault-free and faulty systems,
respectively) with respect to the original image. D3

I evaluates the
difference between the two decoded images.

Object/Level image block frequency comp.

original I Ȳ Y or Y (u, v)
fault free decoded Q(I) Q(Ȳ) Q(Y ) or Q(Y (u, v))

faulty decoded Q(I′) Q(Ȳ′) Q(Y ′) or Q(Y ′(u, v))
Distance DI DB DC or DC(u, v)

Table 1. Summary of Notation

In our previous work [7] we studied the test design for fault
acceptability of DCT hardware based on the assumption that tools
are available to determine what is perceptually acceptable. Here
we analyze some of the characteristics such a metric should have
and propose a concrete objective metric, especifically for hardware
testing in a faulty scenario.

We wish to compare Q(I′) and Q(I) by ranking the quality of
these two images, i.e., by computing D1

I and D2
I and comparing

these two distortions. As will be discussed later, D2
I ≥ D1

I . Thus
if D2

I = D1
I , the fault degradation will certainly be acceptable,

while in cases where D2
I > D1

I degradation may be acceptable if
the difference is small.

2.1. Basic Distortion Metric Selection

Since our ultimate goal is to introduce quality acceptability criteria
in automated hardware testing, we consider only objective metrics
that take into account the human visual system (HVS) [9]. The
faults we consider occur within the DCT block and thus produce
errors in individual frequency components. For this reason we
take Watson’s [18, 3] techniques as a starting point to define D.
In [3], visibility thresholds for each DCT frequency component
(Thw(u, v)) are proposed. Using these thresholds, a perceptual
objective metric is introduced in [3, 18], which evaluates distance
between two images: reference and test image (typically I and
Q(I) in our notation). The DCT is performed on non-overlapping
8 × 8 blocks in both images and the absolute differences (L1
distance) between corresponding coefficients in the two images
are computed. Each resulting difference or error component is



weighted by the corresponding perceptual threshold (Th(u, v)).
Then pooling is performed first over the frequency components in
one block and then over all blocks in the image pair, so as to obtain
a single distortion metric value. In both cases Minkowski pooling
is used. For frequency pooling this can be written as

Dk = (
�

u,v

Dk(u, v)b)
1
b

where Dk is the metric for block k, Dk(u, v) is the weighted ab-
solute difference for frequency (u, v), and b is a parameter that
controls how much emphasis is given to the largest values. Note
that in some cases the Th(u, v) can be modifed so as to incorpo-
rate luminance compensation (LC) and contrast masking (CM).

For our purposes we modify Watson’s approach as follows.
First, since our goal is to incorporate these thresholds into a test-
ing strategy we do not use either LC or CM modified thresholds,
as these would be image dependent. Second, we have noted that
faults could lead to large errors in some blocks and no errors in
others. For this reason we do not perform spatial pooling of the
metric and will measure block by block error (see Section 2.3 for
further details). Finally, because faults in the DCT operation can
lead to errors being added to only certain frequencies in a given
block we use Minkowsky pooling setting b = ∞, i.e., the metric
for a block is the largest weighted absolute error in the block.

2.2. Discrete Cosine Transform (DCT) and Quantization

We now provide a detailed analysis of faulty DCT operation fol-
lowed by quantization. The input to the system (see Fig. 2) is a
vector X̄, which we assume drawn from a vector distribution that
can be statistically characterized, e.g., by its covariance structure.
We can define the set of possible faults, or fault space, F, by an-
alyzing the architecture of the system. Assume there is a single
fault fi ∈ F in the transform and denote its faulty (vector) output
Ȳ′. Denote Ȳ the output of the fault-free system when the input
is X̄.

DCT Quantization

Fault fi

X Y' Q(Y')

DCT Quantization
X Y Y'

E

Q(Y')

Fig. 2. DCT and Quantization

To analyze the effect of fault fi, we first simplify the problem
by viewing its effect as an error term Ē added to the fault-free
output Ȳ. Clearly, Ē is a deterministic function of fi, X̄, and
the structure of the DCT. Since we consider invertible transforms,
there is a 1-to-1 mapping between X̄ and Ȳ, and thus, Ē is not
independent of Ȳ.

Note that scalar quantization is normally used, so that each
component of Ȳ (or Ȳ′) is independently quantized. Denote Y (u, v),
E(u, v), Y ′(u, v) the (u, v)-th component of the vectors Ȳ, Ē,
and Ȳ′, respectively, with u, v = 1 . . . N , with N is the vector

dimension. When considering individual components it is reason-
able to assume that E(u, v) will be independent of Y (u, v), even
though Ȳ and Ē are dependent. To see why, note that for a spe-
cific value of Y (u, v) there are many possible values of E(u, v),
which depend on the Y (k, l), (u, v) �= (k, l). In what follows we
make the assumption that E(u, v) is a random additive error term
independent of Y (u, v). We have verified that this is a reasonable
assumption for typical systems. For convenience, in what follows
we focus on one component and drop the frequency index (u, v).

DCT Quantization

Quantization

X

Q(Y)

Q(Y')Y'Y

E

Fig. 3. Quantization Analysis

Our focus now turns to analyzing how the error (E) leads to
error after quantization. Let E and Y be discrete and continu-
ous random variables, respectively, with known pmf/pdf. Let the
quantization step size be ∆, and define D2

C = |Q(Y ′) − Y |,
D1

C = |Q(Y ) − Y | (we use L1 as discussed in the previous sec-
tion).

We make the following observations. First, because of the
structure of DCT computation hardware, individual faults do not
affect all frequency components (see [7] for details). Second, in
some cases, even though Y ′ �= Y , we will have that both Y and
Y ′ fall in the same quantization bin, so that Q(Y ′) = Q(Y ). In
these cases the error is masked by the quantization operation, and
thus errors are not uniformly distributed over the image blocks.
Another consequence of this observation is that, as quantization
becomes coarser, fewer blocks are likely to be different in Q(I)
and Q(I′). However, the magnitude of those differences that are
present after quantization will increase as the quantization becomes
coarser. To understand why, recall that the same quantization step-
size is applied to both images, thus:

Q(Y ′) = Q(Y ) ± K∆,

for an integer K. Therefore, as ∆ grows it is more likely that K
will be zero, but when K is not zero the corresponding error K∆
will be larger.

Finally we observe that D2
C ≥ D1

C , i.e., the image produced
by the faulty system can only have larger distortion than that pro-
duced by the fault-free one. First recall the definitions: D1

C =
|Q(Y ) − Y | and D2

C = |Q(Y ) − Y ± K∆|. Then noting that
|Q(Y )−Y | ∈ {0, ∆

2
} it is clear that D2

C ≥ D1
C , since for K �= 0

we have that |Q(Y ) − Y ± K∆| ≥ ∆/2 ≥ D1
C (for K = 0,

D1
C = D2

C . This obviously also holds at the block and image
levels (D2

B ≥ D1
B and D2

I ≥ D1
I ).

2.3. Error rate and Error significance

As can be seen in Section 2.2 errors are unevenly distributed over
blocks. This justifies our initial assertion than a global averaging
metric (such as MSE) would not be suitable for our problem. Thus
we propose to quantify error significance on a block-by-block ba-
sis and then quantify error rate. The error significance will be a



blockwise objective metric (to be introduced in the next section)
that quantifies the difference between the two decoded images.
The error rate will be the probability that the error significance ex-
ceeds a certain threshold in any one block. Acceptability can then
be defined (for a particular application) in terms of the percent-
age of blocks (in an image or a video sequence) for which visible
differences between the images can be tolerated.

2.4. Block based Distortion and Acceptability Issue

So far we have discussed distortion metrics that are appropriate
for our problem and can be applied to pairs of images. However,
unlike traditional image quality assessment problems we now have
three images to consider.

One possible blockwise metric is Dnew
B = D2

B − D1
B ≥ 0,

since D2
B ≥ D1

B . We can think of Dnew
B as perceptual distance

between Q(Ȳ)and Q(Ȳ′) when using the original image Ȳ as a
common reference.

Another candidate metric is D3
B , which directly evaluates the

distance between Q(Ȳ′) and Q(Ȳ). This alternative metric is
problematic. When ranking we would expect that when D2

B =
D1

B + δ (with δ > 0 small) the two decoded image will have
almost the same perceptual quality. However, it is possible for
D3

B to be large relative to δ when the quantization parameter is
large. To see why, consider an example where a single frequency
Y (u, v) in a block is affected by a small error E(u, v) and Y (u, v)
is near the boundary of a quantization bin. Assume the error is suf-
ficiently large so that Y ′(u, v) is now in the immediately neighbor-
ing quantization bin. Then D1

C(u, v) � D2
C(u, v) � ∆/2 and the

same will be true for D1
B(u, v) and D2

B(u, v) so that Dnew
B will

be small. However D3
C(u, v) = ∆, which can be large. Based

on this, we choose Dnew
B as our distortion metric between two de-

coded image blocks. Alternatively, we could use D3
B when ∆ is

small, but for simplicity we use Dnew
B for all quantization settings.

We now define an acceptability threshold for Dnew
B . In [16], it

was shown that if Watson’s distance between two images (in their
case, original and decoded) is less than or equal to 1, there are
no visible artifacts. This was based on setting the Minkowski fre-
quency pooling parameter b to ∞ (as we do, albeit for different
reasons). Equivalently, this condition states that two blocks cannot
be visually differentiated as long as DC(u, v) ≤ Th(u, v) for all
u, v. We believe it is reasonable to use the same condition for our
problem, because Dnew

B is attempting to quantify perceptual dis-
tance between Q(Ȳ) and Q(Ȳ′). In our preliminary simulations,
this assumption looks reasonable, but more thorough perceptual
experiments are needed for a more complete validation of this as-
sumption. In summary, we define acceptability for an individual
block as follows: Q(Ȳ′) is acceptable if Dnew

C (u, v) ≤ Th(u, v)
for all u, v. In our previous project, using this approach we pro-
posed a test for faulty DCT in a JPEG system, with a simple mod-
ification to reduce number of test vectors (see [7] for details).

3. FAULTY DCT IN A VIDEO ENCODER

Our discussion thus far has centered on DCT computation in the
context of an image coder. We now consider the impact of DCT
faults in a video encoder, e.g., an MPEG-2 encoder. I frames are
individually coded and thus are already covered by our previous
analysis, however, errors occuring in these frames may actually
propagate over time. Moreover, since the DCT computation sys-
tem will be used for both I and P frames, errors will manifest them-

selves in both types of frames. We are currently developing an
analysis to capture the behavior of standard video systems in terms
of temporal error propagation, which would also be applicable to
P frames.

We performed some preliminary experiments using MPEG2
TM5 [1] (IPPP structure) with the Foreman and Stefan sequences.
We simulated the faulty DCT in the architecture analyzed in [7],
and introduced various kind of faults. Our experimental obser-
vations indicate that the temporal behavior of errors depends on
the fault type and that errors can accumulate or be attenuated over
time.

Consider first as an example a SSA0 fault affecting a relatively
high significance bit line. This fault is more likely to manifest it-
self as an error in an I frame, where we can expect larger frequency
values. In successive P frames, the fault will not affect blocks for
which the residual energy after estimation is low. Erroneous blocks
in the I frame will be stored in the frame memory and used as po-
tential reference for the next P frame. However, because ME at-
tempts to match correct blocks (in the new frame) it will often not
pick as best matches those blocks affected by error, thus increas-
ing the chances that these errors will be eliminated from the video
sequence. Our preliminary experiments confirm that this behav-
ior can be observed and errors generated at the I frame gradually
disappear.

As alternative example, consider the SSA1 case with errors
also occuring at high significance bits. Here, errors are less likely
to appear in I frames, but they may lead to errors in encoding the P
frames. Because these errors manifest themselves when the energy
of the prediction residual is low, they tend to appear frequently.
Roughly speaking, if the error is large enough that an intra block
is sent to refresh that area, the next prediction will be better and
the error will again appear. These preliminary results are based
on limited observations and we are in the process of developing a
more systematic approach to tackle DCT faults in the video con-
text.

4. FAULT IMPACT ON MOTION ESTIMATION

A key factor in video compression efficiency is how well the tem-
poral redundancy is exploited by motion compensated prediction.
The ME process comprises a search strategy of the motion dis-
placement offset (motion vector, MV) and a matching metric com-
putation. A searching strategy aims at selecting a set of candi-
date MVs and then proceeds to compute the matching metric for
the candidates and select the one that minimizes a relevant metric,
such as a Lagrangian cost. J = D + λ ∗ R, where the term D
(distortion) corresponds to the prediction error, i.e. Sum of Ab-
solute Differences (SAD) or Sum of Squared Differences (SSD).
R corresponds to the actual or estimated bitrate required for en-
coding the current MV while λ is a Lagrangian multiplier. λ can
be selected using well-known methods such as [4, 19]. After the
encoder selects the MV that minimizes cost J, it encodes the differ-
ence block (prediction residual) between the original and motion
compensated blocks. Each residual block is transformed, quan-
tized, and entropy coded. For simplicity, in this paper we only
consider the case where λ=0.

There are several types of hardware implementation architec-
tures [8], which we will refer to as Matching Metric Computa-
tion (MMC) architectures, with different levels of parallelism that
are used to compute D. Most MMC architectures can be repre-
sented as a binary tree graph, where each inner node represents



an adder, leaf nodes represent absolute difference or squared dif-
ference computations, and edges connecting two inner nodes rep-
resent a data bus. Our work is focused on the interconnect faults
within a MMC architecture that affect the data transfer between
processing elements (PEs), assuming that each PE is error-free,
using the SSA fault model. More detailed description on MMC
architecture and SSA fault model analysis can be found in [8].

error rate -  error significance plot for ME fault
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Fig. 4. Error Rate and Significance for ME fault

Faults in a MMC archictecture would imply that it is likely
that the MV selected for Motion Compensated Prediction (MCP)
(MVf ) may not be equal to the best MV (MVmin) correspond-
ing to ME without faults. We define a block being in Error if
MVf �= MVmin due to a fault. An error does not occur for
all blocks but only occurs if certain conditions are met. For ex-
ample, for the Lagrangian cost function mentioned above, an er-
ror occurs iff, a) if a fault is in the p-th data line, then the in-
put to p must be 0 for MVmin and 1 for MVf , and b) 0 <
D(MVf ) − D(MVmin) ≤ 2p. Therefore, our focus is on how
often these errors occur (error rate Pe = prob(MVf �= MVmin))
and how much additional quality degradation is introduced (error
significance Se = D(MVf )−D(MVmin), representing the level
of inaccuracy of MCP). Error rate and significance depend highly
on the fault position with a certain variation due to the input se-
quence characteristics. Figure 4 demonstrates clearly how error
rate and significance values change with faults at different posi-
tions. Points connected with the same line are faults in the same
interconnect data bus with a different data bit line. Points shown
in outer lines indicate faults in the data bus which has 32 more leaf
nodes connecting towards that data bus than the adjacent inner line.
Also note that SSA0 and SSA1 faults at the same positions produce
identical results in both error rate and significance. Proof of this
and further analysis on this concept of error rate and significance
of ME fault are provided in [6].

While faults in the DCT block tend to have a rather direct im-
pact on visual quality degradation and the type of artifacts intro-
duced, ME faults have a more indirect impact on overall quality.
When a ME error occurs the residual signal energy increases. In
most cases there are constraints imposed on the bit rate of the sys-
tem such that a certain local average bit rate needs to be maintained
over time by using a rate control (RC) algorithm. Thus, if addi-

tional bits are required to encode a particular residual block/frame
(because of its increased energy due the error in ME), this extra
rate will be compensated by a reduction in the number of bits used
for other blocks/frames. This will lead to an increase in distortion
for other blocks/frames. In this case, artifacts tend to appear in
the form of standard quantization artifacts, rather than, as was the
case for DCT, error-specific artifacts. Therefore, the problem of
measuring the visual quality degradation due to fault introduction
within the ME can be equally seen as the problem of measuring
the impact on picture quality of a compression process. Thus, any
visual quality metric which captures the video compression im-
pairment reliably can be also applied to this case.

Distortion variation metrics can be particularly meaningful for
our study of ME faults since we observed that introducing a SSA
fault in ME always increases both the temporal and spatial qual-
ity variation on the video output. Note that the level of variation
increase depends on the RC scheme. Typically RC process per-
forms bit allocation by selecting the encoder’s quantization step
size (QP) for the residual block/image. Most modern implementa-
tions of RC, a constraint is employed on the increment/decrement
of the quantizer, which results in distributing distortion through-
out the picture. Therefore errors occurring with certain rate are
subdued and smoothly spread out over the picture after the rate
controlled quantization process. Therefore distinguishing errors
into two measures of error rate and significance becomes no longer
necessary. We have observed that spatial distortion variations tend
to be imperceptible, on the other hand temporal variations can be
significant. Spatial variation was measured by computing the vari-
ance of Qp values for each frame and by averaging them. To eval-
uate temporal variations within a video sequence we defined the
measure temporal quality variation, TQV , as:

TQV =

�N−2
i=0

���MSEfault
i − MSEfault

i+1

���
�N−2

i=0

���MSEno fault
i − MSEno fault

i+1

���
(1)

where MSEfault
i and MSEno fault

i are the frame MSE values
of the decoded images with and without ME faults respectively,
and N is the total number of frames considered.

RD performance in the presence of faults
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Figure 5 depicts the RD performance for the Foreman sequence,
at CIF resolution, in the presence of ME faults within an MPEG-
2 encoder. Similarly, TQV for the same faults are presented in



Figure 6. Since error rate and significance measurements are no
longer useful after RC Quantization for ME fault case, PSNR with
additional measure of temporal quality variation would be able
to represent well the quality degradation introduced by ME fault.
However, we observed that temporal variation increase is relatively
small compared to PSNR change and roughly proportional to the
PSNR degradation, so that PSNR by itself may be sufficient to
capture the behavior of the system. Figures 5 and 6 illustrate well
this point, as large quality variations in Figure 6 occur when sig-
nificant drops in PSNR are observed in Figure 5. In Figure 4, a
PSNR based quality threshold T (e.g. T = 0.1dB) can be used
to classify faults. This threshold essentially defines an acceptance
curve, according to which faults below this curve are considered
as acceptable, while faults above are considered as unacceptable.

Temporal Quality Variation Increment due to Faults
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Fig. 6. Temporal Quality Variations due to Faults

5. CONCLUSION

We studied quality measurement for images/video encoded with
faulty hardware. We propose perceptually-based objective metrics
at the block level, and a notion of error rate and error significance
for the DCT computation case. For the ME case we showed that
standard quality metrics could be used.
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