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ABSTRACT 
Sensor networks have emerged as a fundamentally new tool 
for monitoring inaccessible environments. Strict limitations 
on system bandwidth and sensor energy resources motivate 
the use of data compression at each sensor. Localization of 
unknown sources is an key application of sensor networks, 
requiring as an initial step, estimation of the time delay be- 
tween signals received at different sensors. In this work, 
joint designs for quantizer-time delay estimator structures 
are presented. The goal for these new application-specific 
encoders/estimators is to achieve the best time delay es- 
timate at a given bandwidth budget or latency bound, or 
minimize the rate required to reach an estimate with de- 
sired accuracy. For white sources, the optimal structure is 
shown to be a maximum-likelihood detector coupled with a 
maximum mutual information quantizer. Variations of this 
system are also considered: sequential detection schemes, 
empirical methods for unknown signal models, and rate- 
constrained methods. The proposed designs offer gains over 
those based on classical compression criteria. 

1. INTRODUCTION 

Sensor networks consist of a large number of low-power 
nodes cooperating to achieve a sensing goal. Typically, noisy 
measurements are collected from each sensor, and fused at 
some central site or node, to estimate an environmental pa- 
rameter. These sensors are limited in power, memory, com- 
putational abilities and bandwidth. Computation is in gen- 
eral cheaper than communication [3], suggesting the use of 
data compression at the sensors. In this paper, we seek to 
develop algorithms to support collaboration and target lo- 
calization in a sensor network; thus we consider time-delay 
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estimation, which is integral to these tasks. Thus, we con- 
sider systems where quantized data is sent from each of 
two sensors, and the fusion center estimates the associated 
time-delay based on received decoded data. Our goal is 
to design scalar quantization methods at the sensor which 
maximize the accuracy of the time-delay estimation, rather 
than simply reproduce the sensor data with some fidelity, 
e.g., a desired MSE level. We first cast time-delay estima- 
tion as a discrete, multi-hypothesis testing problem, develop 
the minimum probability of time delay estimator for our 
system model, and then design a novel scalar quantization 
scheme that optimizes the probability of error for this detec- 
tor. We provide designs based on exact knowledge of source 
and noise statistics, and show that our processing-aware de- 
sign outperforms standard detection-quantization schemes 
by achieving the best time delay estimate at a given latency 
bound, or minimizing the rate required to reach a required 
accuracy. We also present empirical techniques to train the 
quantizers and detectors on real data samples, and entropy- 
constrained approaches to operate within a rate budget. 

Prior work [4, 5, 61 on hypothesis testing with quan- 
tized data has focused on binary decisions in a Neyman- 
Pearson framework. This problem set-up does not translate 
directly to our multiple hypothesis, time-delay estimation 
problem. Since exact calculation of probability of error is 
generally intractable, these papers focus instead on optimiz- 
ing asymptotic distance measures between the distributions 
under each of the two hypotheses (e.g. Kullback-Leibler 
distance, Chernoff bound). In more recent work [7, 81, the 
asymptotic bound on classification (multi-hypothesis test- 
ing) error probability is shown to be related to the small- 
est painvise distributional distance. In our work, we ex- 
plicitly derive a quantizer based on the probability of error. 
Interestingly, for our particular model, since all incorrect 
hypotheses are identically distributed, the resulting optimal 
quantizer maximizes the relative entropy (a distributional 
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Standard scalar quantization seeks to encode the data 
from a source, characterized by its probability density func- 
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average distortion. The most common distortion measure is 
the mean squared error (MSE) between quantized and un- 
quantized data [9]. Non-MSE based quantization for cross- 
correlation detection includes the study in [ 101 of transform 
based quantization to optimize the Cramer-Rao bound for 
time-delay estimation. The transform based method comes 
at a cost of an increase in complexity and processing delays; 
furthermore, the correlator output depends on the reproduc- 
tion levels of the quantizer, whereas our minimum probabil- 
ity of error detector is reproduction level independent. Fur- 
ther, instead of optimizing on a bound (CRB), which may 
or may not be achieved by a practical estimator, our novel 
quantizer directly optimizes the probability of error for the 
time-delay estimation task. In earlier work [ 111, we have 
presented quantizer designs for cross-correlation that mini- 
mize the squared error between quantized and unquantized 
correlation functions. Again, this is only an approximation 
to the probability of error, which should be (and is, in our 
new approach) the criterion for optimization. 

2. QUANTIZER AND DETECTOR DESIGN 

2.1. Problem Formulation 
In this work, we study the special case of the two-sensor 
time-delay estimation subsystem. With multiple sensors, 
delay estimates can be obtained for pairs of sensors, and 
triangulated on sensor locations to determine the source po- 
sition. Consider two sensors, capturing delayed and noisy 
versions of the same discrete signal, z(.): 

z1(m) = .(m) + w1(m) 
~ z ( m )  = ~ ( m  + D )  + ~ a ( m )  

The source process X ,  and noises W1, W2, are modeled 
as mutually independent, zero-mean, white processes, with 
known distributions. The unknown random delav D is an 

The correlator detector is not necessarily optimal in the case 
of coarsely quantized sources. Further, solving for a quan- 
tizer that minimizes error probability for this detector is 
difficult, in particular because the result depends on both 
a(.) and p(.) (see [ l  13 for an approximation to this opti- 
mal quantizer). Thus, we pursue a joint design of quantizer 
and detector for our specific signal model, that exploits the 
discrete nature of the quantized data, and in particular does 
not require a decoder p(.) to be used. When D is discrete- 
valued, time-delay estimation becomes a multiple hypothe- 
sis testing problem with 2D,,, + 1 choices. We propose 
the maximum a posteriori (MAP) test, which minimizes the 
probability of error for uniform misclassification costs. 

Let hypothesis Hn correspond to n being the true de- 
lay between the two sequences. Let 2 denote the complete 
set of quantizer indices received by the central detector: 
2 = {21 (l), . . . ,?I ( M ) ,  2 2  (l), . . . ,22 ( M ) } .  For equally 
likely Hn, the MAP test is equivalent to the maximum like- 
lihood (ML) test: 

- 
D = argmaxPr{ZIHn} n (1) 

We wish to find the lag at which the two sequences “match” 
best, in the sense of greatest likelihood. Under hypothesis 
H,, we determine the likelihood of this configuration: 

21(1) . . .  2 1 ( M - n )  . . .  2 1 ( M )  
ll 0 0 

22(l) ... &(n+ 1) . . .  & ( M )  
(2) 

With memoryless quantizers operating on a white source, 
Pr{ZIHn} factors into a product of probabilities of corre- 
sponding pairs of symbols under hypothesis H,. If @ de- 
notes the marginal probability mass function (pmj) of the 
quantizer outputs, and 0 the jointpmfinder correspondence, 

n M-n  ~. . 

integerwith uniformprobabilitymassovertheset i-D,,,, D,,,~gPr{ZIHn} =E log@ (&(i)) + l og0  (21( j ) ,  2 2 ( j  + n) )  
Each sensor processes its readings with a scalar quantizer. 
The quantizer is defined by an encoding function, CY, which 
maps quantizer inputs to discrete integer indices (or encoder 

discrete indices into real-valued decoded outputs (or recon- 

i= 1 j=1 
h.f 

+ log@(&(k)) 
bins), and a decoding function, p, which in turn maps the k = M - n + l  

(3) 
structions). Let 2i(m) = a(si(rn)), i E {1,2}. We wish to For known noise levels and quantizer structures, these pmfs 
estimate the time between two M-sample frames. Our 
goal is to design a quantizer-detector such that a time-delay 

can be pre-computed and stored in a look-up table at the 
detector (see [2] for details for the of Gaussian 
and noises); calculation of Eq. (3) involves simple look-ups estimate based on 2% (m) is as close as possible to D. 

and sums of data in a finite range. 

2.3. Optimal Quantizer Design 
We next design the compression scheme. Under the MAP 

Pr{Hn) Pr{log Pr{ZlH,) < log Pr{ZIH,}, m # nlHn} 

2.2. Optimal Detector Design 
A simple estimate of D is to determine the lag at which the 
unbiased quantized sample cross-correlation peaks: 

M-n test, Pr{Detection Error} = 

D = arg max - C ~ ( 2 1 ( n  + m ) ) ~ ( z 2 ( r n ) )  
( M - n )  m=l 

n 
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Let n be the true delay between the two sequences. Recall 
from (3) that the metric logPr{ZIH,} is the sum of (log) 
probabilities of each corresponding pair of symbols under 
this hypothesis. Let (21,22) correspond at lag n. The prob- 
ability of occurrence of this symbol pair is then @(?I, 22). 
The contribution of this symbol pair to the overall log like- 

any lag other than n, the symbols in this pair are considered 
independent; hence their metric ~ontributionislog(@(2~)@(2~)). 

and symbol pairs ( 2 ,  j ) .  Assign the reproduction lev- 
els to be the centroids of each quantization bin, i.e., 
P k ( i )  = E [ Z / a k ( Z )  = 21. 

4. Determine the empirical mutual information: fk = 

E,"=, E,"=, 0[ i , j ]  lorn a; and the empirical rate 
@.[~1@[31 

e X P ( f k - 1 )  $- X R R k - 1  terminate Procedure'. 

lihood sum at lag n (the correct lag) is log(@(21,22)). At 
R k  = Ea=l N 6[i] log &. If exp{- jk}  f X R k k  2 

For low detection error, we would like to maximize the dif- 
ference, averaged over all possible symbol pairs, between 
these quantities. The expected value of this difference is 

Eq. (4) is the relative entropy between the joint distributions 
at match and mismatch, or the mutual information between 
the two quantized sequences at the correct delay. We call the 
quantizer which maximizes Eq. (4), the MaxMI quantizer. 

3. EMPIRICAL QUANTIZER DESIGN 

Empirical quantizer designs, based on unquantized "train- 
ing" samples that are typical of sensor data, are useful when 
a design using closed form models becomes complex or im- 
practical (e.g., for a large number of quantization levels) or 
when models are not readily available (e.g., for vector quan- 
tization, or unknown source and noise statistics). We intro- 
duce an entropy constrained design that explicitly takes into 
account the rate in empirical quantizer design. 

Assume that we have access to two length-M noisy in- 
put sequences z1 and z2 such that z z ( m )  = z 1 ( m  + Dt)  + 
~ ( m  + Dt),  where ~ ( m  + Dt) is an unknown noise term 
and Dt the known true delay. These sequences could be ob- 
tained through direct measurements on an environment of 
interest. Our objective is to design a quantizer which max- 
imizes the entropy-constrained empirical mutual informa- 
tion between the quantized sequences 21 and 2 2 ,  when they 
are aligned at Dt. 
Algorithm: 

Initialize the iteration number IC = 0. Choose an ini- 
tial N-level quantizer Qo, say uniform. Initialize the 
empirical mutual information to fo = 0. Align the 
two sequences at Dt. Let Qk and ,& denote the en- 
coder and decoder mappings, respectively, at the k-th 
iteration. 

Quantize all input signals: arc ( ~ i )  = &, i = { 1,2}. 

Find empirical symbol probabilities 6[2] and joint prob- 
abilities 6[i, j ] ,  by computing the frequency of occur- 

5. Consider the two input sequences pair by pair. For 
the entire frame, re-assign quantizer indices to input 
samples in the following manner: For an input sam- 
ple pair (z l (m),  z z ( m ) ) ,  pick that assignment (2 ,  j )  
which minimizes this cost function: 

- XR(6[ i]  log&[i] + & [ j ]  10g&[j]) 

The first term encourages picking that (vector) assign- 
ment which would add most to the overall mutual in- 
formation. However, this does not guarantee that the 
resulting quantizer will be regula?; The second term, 
weighted by Lagrange factor ANN, is used to penalize 
assignments which cause input samples to stray too 
far from the closest quantization bin. The third term, 
weighted by Lagrange factor X R ,  is used to encour- 
age assignments with low rate contribution. X R  = 0 
would be a design with no rate constraint. 

6. Determine the new empirical symbol probabilities 6[2] 
generated by this re-assignment. To reinforce regular- 
ity, we solve for the regular quantizer ak with bound- 
aries such that the resulting bin probabilities match 
the empirical symbol probabilities 6 [i]. 

7. Increment iteration counter: k = k + 1; go to (2). 

4. SIMULATIONS AND RESULTS 

Computer simulations were run with randomly generated 
i.i.d. Gaussian and Gauss-Markov sources and i.i.d. Gaus- 
sian noise signals, both mean-zero. SNR was measured as 
the ratio of source variance to noise variance. Scalar quan- 
tization codebooks and partitions were generated based on 
a training set for the MSE and Empirical MaxMI quantiz- 
ers, and designed on the joint pdfof source and noise for the 

'Since exp{-f} + A,R is a non-monotonic function of the quanti- 
zation bin sizes, we look for the point at which it changes direction from 
increasing to decreasing: this is the function maximum. 

'Maximizing MI along might force P(a (z t (a ) ) )  > P ( a ( z Z ( b ) ) ) .  for 
rence of the corresponding encoder output symbols i samples such that z i (a )  < zi(b). 
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model-based MaxMI quantizer. The 2-level quantizer was 
assigned reproduction levels kl, as in [12]. Noise was in- 
dependently added to two copies of the source signals; the 
true delay between them was set to a randomly generated 
integer between -10 and 10; and they were quantized with 
each of the three encoders. The number of detection er- 
rors were averaged over 0.1 to 1 million iterations. Block 
lengths ranged from 30 through 105, SNR’s from +7dB to 
-1dB. We plot the probability of error associated with sam- 
ple frames of varying sizes. The block length would trans- 
late with suitable scaling into bit rate, when the quantizer 
outputs are encoded into bits. Thus, error probability can be 
traded off against processing delay or transmission cost. 

Fig. 1 presents model-based block detection simulation 
results for i.i.d. Gaussian data. In all cases, the combina- 
tion of MAP detector and MaxMI quantizer provides best 
performance. Note that the 2-level quantizer is trivially the 
MaxMI quantizer for 2 levels; we observe that while the 3- 
and 4-level quantizers have higher entropy, they achieve a 
required level of accuracy with fewer samples. In following 
sections, we demonstrate that our proposed methods can be 
optimized to meet both total rate and error probability tar- 
gets, yielding an entropy-constrained design. 

The multiple hypothesis testing framework in Section 
2.2 can be applied in a straightforward manner to a sequen- 
tial detector, such as the Multi-hypothesis Sequential Proba- 
bility Ratio Test (MSPRT) algorithm described in [ 131. Data 
is received sample-by-sample; the likelihood of the current 
set of data under each hypothesis is compared against a 
threshold based on the desired error rate. As soon as one 
of these likelihoods exceeds the threshold, the correspond- 
ing hypothesis is declared winner and reception stops. The 
authors show that for a fixed target error probability, the 
expected sample size needed to make a decision is inversely 
proportional to the distributional distance. Since the MaxMI 
quantizer maximizes this distance, it is optimal for this de- 
tector (Fig. 2). 

In Figs. 3(a) and 3(b) we show results of the empiri- 
cal design for quantizers for larger number of bins (e.g., 8) 
for which model-based solutions are intractable. Figs 3(a) 
shows an 8-level empirical quantizer (without entropy con- 
straints) applied to i.i.d. Gaussian data at low SNR, and 
3(b) shows a 6-level entropy-constrained empirical quan- 
tizer applied to i.i.d. Gaussian data at moderate SNR. For a 
sufficient number of quantization bins our combined quan- 
tizerldetector can outperform correlation based techniques 
that use unquantized data. Performance can be traded off 
with transmitted rate under the entropy-constrained design. 

5. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented a novel, application-specific, 
joint detector-quantizer design for time delay estimation in 

sensor networks. We pursue non-standard quantization de- 
signs where we jointly optimize the quantizer and the time- 
delay estimator (a multi-hypothesis detector). This approach 
results in a quantizer which maximizes the mutual infor- 
mation between correctly and incorrectly aligned quantized 
signals. Our jointly optimized scheme outperforms stan- 
dard mean-squared-error based quantization coupled with 
a correlator-based time-delay estimator. Further, the opti- 
mal maximum likelihood detector for quantized signals is 
of lower complexity than the correlator scheme. We have 
successfully generalized our model-based methods to real- 
world scenarios with empirical and rate-constrained meth- 
ods. Future work will include studies of optimal designs for 
correlated data. Tracking, non-homogeneous sensors and 
multiple sensor problems are also of interest. 
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Fig. 3. Empirical quantizer design algorithms described in 
Section 3, applied to i.i.d. Gaussian data. 
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