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Abstract

Many stereo image compression algorithms exploit the redundancy between the two images

in a stereo pair by using disparity compensated prediction. Thus, research in coding of stereo im-

ages has focused mostly on the issue of disparity estimation, with less attention being devoted to

the equally important problem of allocating bits among the two images. This bit allocation prob-

lem is complicated by the dependencies arising from using a prediction based on the quantized

reference images. In this paper, we address the problem of blockwise bit allocation for coding of

stereo images. The goal is to select the quantization parameters for each block in the reference

and di�erence images so as to minimize some averaged distortion measure, while meeting any

applicable bit budget constraints. In this paper we show how, given the special characteristics of

the disparity �eld, one can achieve an optimal solution with reasonable complexity, whereas in

similar problems in motion compensated video only approximate solutions are feasible. The key

observation is to note that the disparity �eld is composed of vectors with only (or predominantly)

horizontal components. Thus, unlike the motion compensated case, blockwise dependencies are

limited to a single dimension, i.e. the blocks in one line in the target image depend only on blocks

in the same line in the reference image. Under these conditions we present algorithms based on

dynamic programming that provide the optimal blockwise bit allocation. With our experiments

based on a modi�ed JPEG coder we show gains over standard, independent, bit allocation tech-

niques. For example, the proposed scheme provides higher PSNR, about 1-2dB compared to

constant quantization in the whole frame and 0.2-0.5dB compared to disparity compensation

with independent blockwise quantization. We also propose a fast algorithm that provides most

of the gain at a fraction of the complexity.

Keywords
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I. Introduction

The usage of stereoscopic images/video is becoming increasingly popular as demand

grows for more realistic 3D imaging systems in a variety of applications such as visual-

ization (CAD/CAM/medical data), telecommunication (telemedicine, telepresence), teler-

obotics (remote control, autonomous navigation, surveillance), entertainment (interactive

HDTV and cinema) or Virtual Reality. A wider deployment of stereo systems has always

been limited by the requirement of inconvenient stereo glasses. Thus recently introduced

technologies for autostereoscopic displays are likely to contribute to a wider usage of stereo

techniques. As in the case of monocular images bandwidth or storage limitations have to
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be taken into account (with in this case a doubling of the data rates) thus requiring e�cient

compression techniques [2], [3], [4].

As in other coding scenarios, compression can be achieved by taking advantage of re-

dundancies in the source data (e.g., spatial and temporal redundancies for monocular

images and video). In the case of stereo images and video an additional source of redun-

dancy stems from the similarity between the images in a stereo pair. In this paper, we

will assume that \generic" transform coding and motion estimation are used to exploit

the spatial and temporal redundancies, and will focus on the issues that are speci�c of

disparity compensated coding.

As shown in Figure 1 the basic idea in block-based disparity estimation and compensation

(DE/DC) is to use one of the images in the stereo pair as a reference (F1) and to try to

estimate the other image (the target, F2) by �nding for each block in the target image the

block in the reference that best matches it [5], [6]. Note that the principle is analogous

to that behind motion estimation and compensation and thus many of the intuitions and

techniques used in motion estimation are directly applicable to disparity estimation [7].

Since the goal is not to estimate the true disparity but rather to achieve a high compression

ratio it may not be worthwhile to compute a dense disparity �eld if the cost of transmitting

the disparity vector (DV) �eld is too high. For this reason, and due to their comparative

simplicity and robustness, we are focusing on block-based, rather than segmentation based,

techniques.

Encoder
Reference

Image, F1

Decoder
Disparity

Estimation/
Compensation

Target

Image, F2

DV

Buffer

Rate Control (Q1,Q2,V)

Channel/
Storage

DCD

Encoder

R1,D1

R2,D2

F1(Q1)

Fig. 1. Block diagram of a general encoder for stereo images, where encoder consists of disparity estima-

tion/compensation, transform/quantization and entropy coding.
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There is one signi�cant di�erence between motion and disparity compensation, though.

This di�erence lies in the fact that, if the cameras meet the epipolar constraint1, disparity

occurs only along the horizontal direction, i.e. a particular object will appear in the two

images with only a horizontal shift between its respective positions. By comparison, in

the motion compensation case one can observe motion vectors with any direction in the

2D plane. This property not only simpli�es the matching process but, as will be shown,

also enable us to �nd optimal solutions to our allocation problem.

Various stereo coding techniques have been proposed since Lukacs introduced block-

based DE/DC [5]. While Dinstein et al. proposed a compression method based on the

frequency domain relationship without DE [8], [9], most research e�orts in stereo im-

age/video coding, have been based on DE and thus a great deal e�ort has been devoted

to investigating e�cient DE schemes. Examples include DE in DCT domain [6] or sub-

band domain [10], DE using Markov Random Fields (MRF) models [11], [12], hierarchical

segmentation-based DE [13], multiresolution-based DE [14], [15], pixel-based DE with

object-based coding [16], [17]. There is of course a wealth of work in motion estimation,

which has relevance to the DE/DC problem. In particular, techniques developed in rate-

distortion (RD) based ME in video coding [18], [19], [20], [21], [22], [23] can be used to

estimate optimal (in an RD sense) choices of disparity.

With few exceptions (e.g. [24]) quantization and bit allocation issues speci�c to stereo

coding have rarely been considered, with the usual approach being to rely on methods

developed for motion compensated video coding. In this paper we study the problem of

optimal blockwise bit allocation for stereo image coding. We show that this is a dependent

bit allocation problem [25], since we predict the target image based on the quantized

reference image and thus choices of quantizer for the reference frame result in di�erent

residual energy levels in the di�erence frame, i.e. F1(Q1) is used to predict F2. As will be

shown, if bit allocation is performed independently for the reference and di�erence frames

the overall performance can be suboptimal.

A similar situation arises in video coding as choices of quantization for a reference frame

a�ect the frames that are motion predicted from it [25]. However, in the case of video

1This constraint implies that the focal rays of the two cameras are parallel and perpendicular to the stereo

baseline.
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coding it is di�cult to take into account blockwise dependencies because each block in the

predicted frame depends on up to four blocks in the reference, and, conversely, blocks in

the reference frame a�ect several blocks in the target image. This 2D temporal dependency

has led to much of the work concentrating on analyses of framewise dependency, i.e. where

a single quantizer is allocated per frame [25], [26]. Also note that schemes such as [27],

[28] have addressed the quantizer allocation within a frame, where quantizer choices are

dependent in that lossless DPCM is used to encode the quantization indices. However in

these cases the assumption was that each frame was coded independently, without taking

into account the e�ect of a particular allocation on future frames.

In Figure 1 the encoding performance can be controlled by the choices of DV and quan-

tizers (Q1; Q2). The simplest approach to select these parameters would be as follows.

First, F1 is independently compressed up to a desired quality level. Then, the DV �eld is

estimated by computing the best match in the reference frame for each block in the target

frame. Disparity compensation is performed and the resulting disparity compensated dif-

ference frame (DCD), i.e. the di�erence between F2 and F1(Q1) displaced according to the

DV , is then encoded. At the decoder, the reference image is decoded and then the target

image is reconstructed by adding the disparity compensated image and the decoded DCD.

This simple approach completely decouples all the encoding steps and therefore there is

no guarantee that the allocation of bits to the various components in any way e�cient.

The main novelty of our work is the introduction of an optimal blockwise dependent

allocation scheme for stereo image coding. We emphasize that the related problem of

blockwise dependent bit allocation in video coding has not been solved exactly and thus

our results may also provide some ideas for approximate solutions for that case. Given that

the epipolar constraint is met, the dependency between frames is strictly one dimensional

and therefore optimal allocation can be performed2. Note that we will assume that the DV

�eld is �xed and thus do not address RD optimized DE. This problem could be approached

with simplemodi�cations of the techniques developed for RD optimizedMotion Estimation

[22], [20], [23]. Also we will assume that the DE is performed \open loop", i.e. based on

2Note that if the parallel axis constraint is not strictly met, the disparity is not exactly 1D, but it is predominantly

1D, i.e. while there may exist some vertical disparity this is con�ned to plus/minus a few pixels and thus the

dependency comes from mostly from blocks located in the corresponding row in the reference frame.
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the original image F1 rather than the quantized version F1(Q1). We will thus concentrate

only the quantizer allocation to F1 and the residue image, and not the DE itself.

Due to the simple 1D dependency, we can represent all possible allocations for blocks

in the same row in reference and target images by constructing a trellis. The costs to

the branches and nodes of the trellis correspond, respectively, to the target and reference

blocks. We demonstrate how the optimal set of quantizers can be determined using the

Viterbi algorithm and in addition we introduce novel methods, which approximate the

optimal solution with, limited loss in performance but much faster operation.

Our experimental results demonstrate the proposed scheme provides higher PSNR, about

1-2dB compared to DC with framewise quantization and 0.2-0.5dB compared to DC with

independent blockwise quantization. The proposed schemes can be used with arbitrary

search window sizes, regardless of the block size used in DE. This blockwise dependent bit

allocation can be a benchmark for faster allocation schemes or be used in asymmetric ap-

plications, which may involve o�ine encoding, such as CD-ROM, DVD, video-on-demand,

etc. In particular, it can be useful for coding applications where encoding is done just once

but many users will access and decode the data, e:g:, storage of stereo data in the WWW .

The proposed scheme also can help develop a fast and e�cient bit allocation strategy,

which is essential to maintain high (perceptual) image/video quality for the available bit

budget, especially for low bit rates.

This paper is organized as follows. In Section II we formulate the problem of bit al-

location and we describe how to �nd optimal blockwise quantizer assignments using the

Viterbi algorithm. We also discuss how to reduce the complexity of the allocation algo-

rithm. Experimental results are provided in Section III. Finally, we discuss the results

and give directions for future work in Section IV.

II. Blockwise Dependent Bit Allocation

A. De�nitions and Notations

F1 and F2 are, respectively, the reference and target images in a stereo pair (refer to

Fig. 1). Assume that an image is segmented into N square blocks. Then, the segmented

image can be represented as a set of N blocks Fl = fBlm; 0 � m � N�1; l 2 (1; 2)g, where
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B and m represent a block and its index, and l = 1; 2 is the image index. Similarly, a

blockwise quantizer allocation can be represented as Ql = fqlm; 0 � m � N�1; l 2 (1; 2)g.

The overall rate and distortion are the sum of rates and distortions of the individual

blocks, Rl =
PN�1

m=0 r(qlm), and Dl =
PN�1

m=0 d(qlm). In the following sections, to simplify

the notation, we will sometimes use Bm and B0
m instead of B1m and B2m and qm and pm

instead of q1m and q2m. Finally we will assume that a blockwise disparity �eld (V ) has been

computed, which indicates the correspondence between blocks in the target and reference

image. The disparity �eld is de�ned as V = fvm; 0 � m � N � 1g, where the index m

corresponds to a block in the target image. Note that in this work we only consider block

based disparity estimation and that we assume that the disparity has only a horizontal

component.

We use simple objective measures such as mean squared error (MSE) and peak signal

to noise ratio (PSNR). The evaluation of reconstructed stereo images has to take into

account properties of human visual perception, i.e. the preservation of 3D perception.

However, the subjective evaluation of the quality is still an open problem and is not

very reliable and repeatable yet. Therefore, we measure distortions of F1 and F2 using

MSE, i.e. D1 = (F1 � F1(Q1))2 and D2 = (F2 � F̂2(Q1; Q2; V ))2, where F (Q) denotes

the decoded image, when quantizer Q is used. The decoded target image, F̂2(Q1; Q2; V ),

can be reconstructed by adding the compensated target image and the decoded DCD, i.e.

F̂2(Q1; Q2; V ) = F1(Q1; V )+E(Q2), where E = F2�F1(Q1; V ), i.e. the di�erence between

the target image and the compensated image from the reconstructed reference image with

DV .

B. Problem Formulation

We assume that, as is the case in current standards such as MPEG-2 or H.263x, a

di�erent quantizer (or quantization scale) can be assigned to each block (chosen from a

�nite set of available quantization choices.) Using DPCM to encode the quantizer selection

would introduce additional spatial dependency between consecutive (or neighboring) blocks

[27], [28]. For simplicity, however, we assume the quantizer indices are encoded with a

constant number of overhead bits per block. Note that such a 1D dependencies due to the

quantization indices could also be incorporated easily into our scheme.
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Let (Rbudget; RV ) be the given bit budget and the bits that were used for the DV �eld,

respectively. For a given DV �eld, V , and remaining bit budget, Rbudget�RV , the optimal

dependent bit allocation problem can be formulated as follows.

Given F1; F2; V;Rbudget �RV

�nd X̂ = (Q1; Q2)

such that X̂ = arg minXfD1(Q1) + �D2(Q1; Q2)g

subject to R1(Q1) +R2(Q1; Q2) � Rbudget �RV :

The relative importance of D1 and D2 can be controlled using the weighting constant �

which allows us to support two di�erent views of the depth perception process: fusion

theory and suppression theory [29], [9]. Fusion theory claims that both images in a stereo

pair contribute equally in 3D perception while suppression theory indicates that the highest

quality image (or region) dominates the perception. According to suppression theory, one

of the images in the stereo pair can be highly compressed as long as the other image retains

the details of the scene. We set � equal to one during our experiments. We would have

an independent bit allocation problem in the particular case where D2(Q1; Q2) = D2(Q2)

and R2(Q1; Q2) = R2(Q2).

In general, this constrained optimization problem can be transformed into an uncon-

strained problem using the Lagrange multiplier method [30], [31], [32] and introducing a

Lagrangian cost

J(�) = J1(Q1) + J2(Q1; Q2)

= fD1(Q1) + �R1(Q1)g+ fD2(Q1; Q2) + �R2(Q1; Q2)g (1)

where the Lagrange multiplier � is a nonnegative constant. In a practical lossy data

compression scheme, only a �nite number of operational RD (ORD) pairs are possible for

a given source because only a �nite set of quantizers is available. Under this assumption,

the optimal operating RD points can be searched for the �xed �.

Figure 2 demonstrates the implications of operating in dependent bit allocation frame-

work [25]. Note that, for a given � and three ORD points, Q1b is the RD optimal quantizer

for the reference image because its Lagrangian cost J1(Q1b) is the lowest. However if the

overall Lagrangian cost for the two images is taken into account things may change. For
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example, Q1a may turn out to be the best choice for the reference image, if the total

Lagrangian cost J1(Q1a) + J2(Q2bjQ1a) is smaller than J1(Q1b) + J2(Q2bjQ1b).

D1

R1

Q1c

Q1a

Q1b

D2

R2

Q1b

Q1a

Q1c

(a) (b)

Q2a

Q2b

J1(Q1b)

J1(Q1a)

J2(Q2b|Q1a)

J2(Q2b|Q1b)

D1(Q1b)

D1(Q1a)

Fig. 2. Operational RD plots in a typical dependent bit allocation scenario: (a) reference image and

(b) target image. Independent bit allocation: for given �, the quantizer Q1b is optimal because the

Lagrangian cost J1(Q1b) is smaller than for the others. Dependent bit allocation: if stereo pairs

are considered together, there is a chance for the quantizer Q1a to be optimal, because the total

Lagrangian cost J1(Q1a) + J2(Q2bjQ1a) can be smaller than J1(Q1b) + J2(Q2bjQ1b).

C. Optimal Blockwise Dependent Quantization

The distortion and the bit rate of a block in the DCD frame depend on up to two blocks

in the reference image along the DV. Thus, the Lagrangian cost of (1) can be expressed

in terms of the blockwise quantizer assignments as,

J(�) =
N�1X

m=0

fd(qm) + �r(qm)g+
N�1X

n=0

fd(pn; q
�1(vn)) + �r(pn)g (2)

where q�1 is a vector which contains the quantizer indices of the blocks in the reference

which are used to predict the current block in the target image. Note that �1 denotes (at

most) two consecutive blocks in the reference image. Figure 3 shows an example of the

dependencies reected in (2): given the disparity vector v1, the selection of a quantizer

for B0
1 in the DCD frame will be a�ected by the selection of quantizers for B2 and B3 in

the reference image. Thus a block in the DCD frame depends only on the quantizers, pn

and (qm; qm+1), i:e:, d(pn; q�1) = d(p1; q2; q3) in Figure 3. In general, the index m can be
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denoted as m = n+ b vn
jBj
c, where bc and jBj represent the oor function and the width of

the block, respectively.

B2B1

p2p1 p3

v1 v2 v3

(b)

q2q1 q3

Reference

Target
B’1 B’2

v1 v2
(nodes)

(branches)
B’3

Image

Image

(a)

B3

Fig. 3. Binocular dependency between corresponding blocks along the disparity vector. At most two

consecutive blocks in the reference image are related to a block in the target image. For example, a

block B0

1
in the target image is compensated from (at most) two consecutive blocks, B2 and B3, in

the reference image along the disparity vector v1. Therefore, the distortion of the block in the DCD

frame is a function of p1, q2 and q3.

Note that, under the assumption of predominantly horizontal disparity, blockwise depen-

dent quantization can be performed independently in each row of blocks (ROB), without

a�ecting the overall optimality. Since a ROB in the target image depends only on the

ROB in the position of the reference image we can optimize each pair of ROBs (one from

the reference and one from the target) independently: by using the same � for each pair

of ROBs we guarantee overall optimality. By comparison, in the case of video coding an

optimal blockwise dependent bit allocation would require that the whole image be con-

sidered, because the temporal dependency links blocks in arbitrary directions in the 2D

plane (whatever direction is indicated by the motion vector).

D. Solution using the Viterbi Algorithm

We can take advantage of the fact that dependencies are limited to at most two blocks

to streamline the optimization approach. We construct a trellis to represent all possible

quantization assignments for all blocks in a ROB in the reference frame and the corre-

sponding ROB in the DCD. Refer to Fig. 4 for the trellis corresponding to the example

in Fig 3. Each stage of the trellis corresponds to a block in the reference frame, with each
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node corresponding to a di�erent quantizer allocation for that block. Thus the cost of each

node is the Lagrangian cost of the block coded with the given quantizer. Then branches

linking two nodes correspond to blocks in the DCD that depend on the two blocks in the

reference frame represented by the corresponding stages. Note that more than one block

in the DCD frame can be assigned to a given branch (this will depend on how large the

disparity search region is and our algorithm accommodates any possible disparity range.)

When several DCD blocks depend on the reference blocks represented by the two stages we

simply add the corresponding Lagrangian costs to the branches linking those two stages.

For example in Fig 3 two blocks in the DCD are assigned to a a branch, i.e. B0
1 and B0

2

both depend on B2 and B3 and thus the two Lagrangian costs corresponding to B0
1 and

B0
2 would be added to each branch linking stages 2 and 3 in the trellis.

0

1

2

3

J1(0,0)       J2(0,i)      J1(i,1)     J2(i,j)     J1(j,2)      J2(j,i)     J1(i,3)      J2(i,T) .
      Jacc(0,0)            Jacc(i,1)                 Jacc(j,2)                Jacc(j,3)                 Jacc(0,T)

B1 B2 B’1 B’2 B3 B’3

0

1

2

3

Fig. 4. Trellis structure for blockwise dependent bit allocation. Each node in the trellis corresponds

to a quantizer choice for a block in the reference image and has a corresponding Lagrangian cost.

The quantizer indices are monotonically increasing ordered from �nest to coarsest. Each branch

corresponds to a quantization assignment to all the blocks in the DCD frame that depend on the

corresponding blocks in the reference frame. Branches can represent more than one quantizer because

two consecutive blocks in the reference image can have dependency with more than one block in the

target image. A branch linking stages i and i+ 1 has a Lagrangian cost corresponding to the optimal

quantizers for the DCD which depend on blocks i and i + 1 from the reference image. The darker

path denotes selected quantizers using the Viterbi algorithm.

Once the trellis has been constructed we can use deterministic dynamic programming

techniques, i.e. the Viterbi algorithm (VA) [33], to �nd the path with the smallest overall

Lagrangian cost. This will be the optimal cost for the given �. We now de�ne our method

more formally. Let k be the index of the stage and (i; j) denote indices of nodes in two
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consecutive stages, k and k + 1, respectively. Note that a trellis is built for each ROB

in the in the image, so when we refer to k-th block it should be clear that this is within

the particular ROB. Let ROB1 and ROB2 be the reference image and DCD image ROBs

respectively. We de�ne,

Stage: the kth stage in the trellis corresponds to the kth block in ROB1. Therefore,

the number of stages, K, is equal to the number blocks in the ROB.

Node: each node in the kth stage corresponds to a possible quantizer choice for the

kth block of ROB1. The choices are ordered from top to bottom in order of �nest

to coarsest. Therefore, the number of state nodes per stage is L = jqj, i.e. the

number of available quantizers for the reference image. Each node has a corresponding

Lagrangian cost, J1(i; k) in (3), which depends only on the rate and the distortion of

the kth block when quantizer i is used.

J1(i; k) = d(qik) + �r(qik) (3)

Branch: A branch, joining nodes qik and q
j
k+1, corresponds to the optimal vector of

quantizers, pijn , for the (possibly more than one) blocks in ROB2 which depend on

blocks k and k + 1 in ROB1. The subscript n denotes all the blocks in ROB2 which

depend on k and k + 1 in ROB1. Each branch has a total Lagrangian cost

J2(i; j) =
X

n2�2(k;k+1)

fd(pijn jq
i
k; q

j
k+1) + �r(pijn jq

i
k; q

j
k+1)g (4)

which adds up the Lagrangian costs corresponding to each of the blocks n.

Path: A path is a concatenation of branches from the �rst stage to the �nal stage in the

trellis. Each path corresponds to a set of quantization choices for the ROB1 (nodes)

and ROB2 (branches). The cost of a path is the accumulated cost of branches and

nodes along the path.

Trellis: The trellis is made of all possible paths linking the nodes in the �rst stage and

the nodes in the last stage, i.e. all possible concatenated choices of quantizers for a

given ROB in the stereo pair.

The optimal blockwise dependent quantization problem is equivalent to �nding the small-

est cost path from a node in the �rst stage to a terminal node in the last stage of the
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trellis. Note that the sum of (3) and (4) over a path is equal to a Lagrangian cost of

selected quantizers in (2). Therefore, a path in a trellis corresponds to the quantizer

choices assigned to ROB1 and ROB2. The Viterbi algorithm can be used in searching

the minimum cost path through the trellis. With a given �, the optimal set of dependent

quantizers, (Q1; Q2), can be found by applying repeatedly the following procedure to the

corresponding ROBs.

Step 0: Initialization: let K and L be the number of stages and nodes per stage, re-

spectively. Add an initial node B0 and a �nal node BT where T = K + 1. Select a �

and set k = 0 & Jacc(0; 0) = 0.

Step 1: At stage k, branches are added to the end of each node i (of all surviving paths)

and Lagrangian costs, J1 and J2, are assigned to the node and the branch, respectively.

Step 2: At a stage (k + 1), for each node j, an accumulated transition cost from node

i, Jtr(i; j), is calculated by summing the accumulated cost, Jacc(i; k), and the tran-

sition cost, J2(i; j). Of all arriving branches (at most L), the one with the lowest

accumulated-transition-cost is chosen. The resulting cost is assigned to the accumu-

lated cost, Jacc(j; k + 1) and the remaining branches are pruned.

Jtr(i; j) = Jacc(i; k) + J2(i; j)

Jacc(j; k + 1) = minfJtr(i; j)g
L�1
i=0

Jacc(j; k + 1) = Jacc(j; k + 1) + J1(j; k + 1) (5)

Step 3 if k < K, then k = k + 1, go to step 1 and repeat.

Step 4 the path with minimum total cost across all paths can be found by backtracking

the surviving path.

In the proposed framework, the quantization choices for the kth block in the reference

image and corresponding blocks in the DCD frame do not a�ect the choices for the future

blocks. Thus, based on the Bellman's optimality, the Viterbi algorithm provides a globally

optimal solution because pruning suboptimal paths at a given node does not eliminate

paths that could potentially be globally optimal [34], [35]. In other words, if the minimum

cost path from stage 1 to stage k passes through a node at stage (k� 1), then its subpath

from 1 to (k � 1) is also the optimal path from 1 to (k � 1).
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E. Selection of � and a Heuristic Fast Algorithm

Note that the bit rate is a function of �. Given that the cost function has the form,

J = D + �R, increasing � and then �nding the optimal point is equivalent to �nding the

ORD point that �rst \hits" the line of absolute slope � (see Figure 2). Thus, increasing �

corresponds to achieving optimal points with higher distortion and lower bit rate.

For a �xed �, using the Viterbi algorithm, we can obtain the best possible quantizer

selection that minimizes the Lagrangian cost de�ned in (2). However, to �nd optimal

quantizer with a given bit budget, we may need to iteratively change � until we �nd ��

such that R(��) � (Rbudget � RV ) � �, for � � 0. The desired �� can be selected using a

fast bisection search algorithm, which can be found in [32], [36].

Let (L;K) be the numbers of nodes per stage and stages per trellis. For each node

or branch, L comparisons have to be performed. Thus, the required total number of

comparisons is O(KL3), because the total number of nodes and branches per trellis are

L�K and L2�K, respectively. The main complexity of the proposed scheme is in the RD-

point generation because each comparison in a node requires that the corresponding RD

values be known and these are di�erent for each branch. The complexity can be reduced

by approximating the RD values instead of calculating real RD values [26]. We propose

an alternative method which reduces the search space in the trellis but this method could

be also combined with modeling approaches to further speed up the search.

In general, computing RD values for blocks in the DCD is more complicated. Therefore,

we propose a heuristic fast algorithm, which restricts search space to the paths selected

by the reference image. First, we only calculate ORD points for the reference image (i.e.

we compute the rate and distortion for each quantization choice and each block in the

reference image). Then, we apply the Viterbi algorithm with the branch costs set to zero

for two di�erent values of the Lagrange multiplier �1 and �2. Each � will provide an

optimal path (a set of nodes). We then restrict ourselves to only consider those paths that

lie in between the paths selected using �1 and �2. Finally we use the algorithm outlined

above except that we apply the VA on the pruned trellis so that only a subset of the

branches representing DCD blocks need to be grown. This reduces the computational

complexity signi�cantly. For example, the complexity of the trellis in Figure 4 can be
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reduced as shown in Figure 5. The proposed fast search algorithm is as follows.

0

1

2

3

J1(0,0)     J2(0,i)       J1(i,1)     J2(i,j)      J1(j,2)     J2(j,i)    J1(i,3)      J2(i,T) .
Jacc(0,0)                 Jacc(i,1)                 Jacc(j,2)               Jacc(j,3)                 Jacc(0,T)

B1 B2 B’1 B’2 B3 B’3

0

1

2

3

Fig. 5. A heuristic fast search. The trellis in Figure 4 can be restricted using the proposed fast search

algorithm. The underlying assumption is that the reference image is more important than the di�er-

ence. The search space is reduced to the nodes selected by the blockwise quantization for the reference

image.

Step 0: Select two �'s, e:g:, (�1; �2), for the reference image.

Step 1: for each �i, �nd an optimal path in the trellis only for the reference image,

using only the node costs, and setting all branch costs to zero. Then, keep the nodes

between the selected paths. Note that as � goes to 0, the minimum cost path is the

one corresponding to the �nest quantizers.

Step 2: calculate corresponding RD-points of the DCD frame and assign to the branches

of the pruned trellis.

Step 3: �nd the shortest path satisfying the given bit budget constraint using Viterbi

algorithm on the pruned trellis.

III. Experimental Results

In our experiments we use the images shown in Figures 6 (a) and (c)3. The target image

is segmented into blocks of size 8 � 8 pixels and then disparity estimation is performed

using �xed size block matching (FSBM) between the target image and the reference image

3The test images as well as decoded images corresponding to the results presented in this paper are available in

http://escalus.usc.edu/ wwoo/Stereo. The original images where obtained from

Room: http://www-dbv.cs.uni-bonn.de/ ft/stereo.html and

Fruit: http://www.ius.cs.cmu.edu/idb/html/stereo/index.html
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within a search window of size 1 � 16. For this particular selection of DE block size and

search region size two consecutive blocks in the reference image will a�ect at most two

consecutive blocks in the target image, as in Figure 4.

The resulting DV �elds are shown in Figure 6 (b) and (d). The DV �eld is losslessly

encoded using DPCM with a causal median predictor to exploit the spatial redundancy

among neighboring DV s. The reference image and the DCD frame are encoded using

a JPEG-like coder, with the only modi�cation with respect to baseline JPEG [37] being

that we allow each block to have a di�erent quantization scale (QS). Note that a given

quantization table in JPEG only determines the relative coarseness of quantization step

for each coe�cient within a block. Consequently, the change of QS per block allows

the encoder to assign di�erent levels of quantization coarseness to each block. For each

block one of among eight di�erent QS can be chosen from the set QS = f90; 80; � � � ; 20g,

where increasing values indicate �ner quantization. In our calculation of rate, we assume

a constant overhead is used for each block and thus overhead is not incorporated in our

optimization. Similarly our total rate computation includes only the rate for each block

and not any applicable headers for the compressed �le.

The performance is also assessed in terms of quality, as measured by the peak-signal-to-

noise-ratio (PSNR) in dB for each image. The mean PSNR is used to evaluate the overall

performance of the stereo pair,

PSNRmean = 10 � log10f
2552

(D1 +D2)=2
g (6)

where D1 and D2 are the MSE of the reconstructed reference and target images, respec-

tively.

Figure 7 compares the RD performance we achieve with four di�erent algorithms: (i)

JPEG without DC (ii) JPEG with DC (iii) JPEG with DC and independent blockwise

quantization and (iv) the proposed JPEG with DC and dependent blockwise quantization.

In algorithms (i) and (ii) a constant quantization scale is used for all blocks in each image.

In algorithms (iii) and (iv), we �x � for the two images and then �nd the optimal quantiza-

tion scale for each block. The RD points we plot are obtained for � = f0; 0:1; 0:5; 1; 2; 100g.

As shown in Figure 7 (a), the RD performances for the reference image are similar with

or without a dependent bit allocation. However, the dependent bit allocation results in
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(a) (b)

(c) (d)

Fig. 6. Test images and DE results with 8� 8 block. (a) the target image (l room.256) (b) the DV �eld

with FSBM (c) the target image (l fruit.256) (d) the DV �eld with FSBM.

signi�cant RD performance gains for the target image as shown in Figure 7 (b). Figure

7 (c) compares the RD performance in terms of the overall bit rate and the mean PSNR

(and again each of the points in the plot corresponds to a particular �.) Figure 8 shows

the RD obtained for another stereo pair.

According to the experimental results, the proposed blockwise dependent bit allocation

method resulted in 1-2 dB improvement in average PSNR at the given bit rates compared

to a �xed quantization without DC (JPEG) and 0.5 dB improvement compared to the

independent blockwise quantization with DC.

Figure 9 shows mean ORD curves for the reference image (points marked with x) and the

dependent DCD frame (points marked with o), respectively. As shown, the monotonicity

property is satis�ed for the blockwise quantization, i.e. J(QS2jQS�
1) � J(QS2jQS1), for
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Fig. 7. RD performance comparison (Image: room.256, Block size=8 � 8, SW = 16, jQj = 8, QS =

f90; 80; � � � ; 20g and � = f0; 0:1; 0:5;1;2; 100g). The points marked with � correspond to the results

of JPEG without DC and those marked with + to JPEG with DC. In both cases a �xed QS is used

for the whole image. The points marked with x and o correspond to blockwise independent and

dependent QS selections, respectively. Each point is generated with one di�erent �. (a) The RD

performance for the reference image is similar for both types of blockwise allocation. (b) Better RD

performance for the target image can be achieved using the dependent bit allocation approach. (c)

The overall performance also improves when taking dependencies into account.
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Fig. 8. RD performance comparison. (fruit.256, Block size=8 � 8, SW = 10, jQj = 8, QS =

f90; 80; � � � ; 20g and � = f0; 0:1; 0:5;1;2; 100g). The points marked with + correspond to the re-

sults of JPEG with DC. The points marked with x and o correspond to blockwise independent and

dependent QS selections, respectively. RD characteristics for (a) the reference image, (b) the DCD

frame, and (c) the two images.
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QS�
1 � QS1. Thus if the quality of the reference frame improves, so does, for the same

quantization scale QS2, that of the DCD, i.e. if � = 0, d(QS2jQS�
1) � d(QS2jQS1), for

QS�
1 � QS1 [25]. Thus the �ner quantization (QS1 = 90) leads to more e�cient coding

for the DCD frame in the RD sense so that the corresponding mean ORD curve is closer

to the origin, In addition, the plot shows that, in both cases, the distortion, d(QS2jQS1),

are monotonically increasing by changing quantization scales from the �nest to coarsest,

i.e. from 90 to 30.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5
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15

20
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35

40

R[bps]

M
SE

−x−: reference image

−o−: DCD frame

(QS
2
|QS

1
=90)

(QS
2
|QS

1
=30)

Fig. 9. Mean ORD plots for the block in the reference image and the DCD frame. (room.256, QS =

f90; 70; 50;30g) QS2 is changed for the DCD frame with a given QS1. As shown, the monotonicity

property is satis�ed, i.e. J(QS2jQS�

1
) � J(QS2jQS1), for QS�

1
� QS1. In particular, if � = 0,

d(QS2jQS�

1
) � d(QS2jQS1), for QS�

1
� QS1.

This observedmonotonicity property explains the good performance of the fast algorithm

described in the previous section. Figure 10 shows the RD performance of the proposed

fast algorithm. As explained, the blockwise quantization scheme is applied to the reference

image alone with two �'s, f�1; �2g = f0; 0:5g in our example. Then, the search space is

restricted to the nodes between two paths selected by the �'s. As a result, only 61% of

original nodes remain, which corresponds to 37.2% of the original number of branches.

Finally, the set of dependent quantization assignments is determined using the pruned

trellis. The proposed scheme signi�cantly reduces the encoding complexity, since only
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those ORD points corresponding to the remaining points in the trellis need to be computed.

The overall RD performance remains practically unchanged in this case. Note however

that we need to make a good choice for the � range, based on the expected quality level for

the overall image. Thus in the example we show good performance at high rates, whereas

the low rate points cannot be achieved (since the corresponding nodes have been pruned

out).

IV. Discussion

We have proposed an optimal dependent bit allocation scheme for stereo image coding.

We have concentrated on quantization issues and assumed that the disparity estimation

was performed open-loop. The proposed dynamic programming algorithm leads to an

e�cient bit allocation between the reference image and the DCD frame. According to our

experimental results, the proposed scheme provides signi�cant PSNR gains, for example

about 1-2dB compared to constant quantization and 0.2-0.5dB compared to the indepen-

dent blockwise bit allocation with DC. In addition, we have shown a method to reduce the

computational complexity and the encoding delay of the Viterbi algorithm by exploiting

the monotonicity property. Adopting reasonable RD models can further reduce the com-

putational complexity of the proposed scheme [26]. This framework has been developed

for a JPEG-like codec but it can be directly extended to an MPEG-like codec without loss

of generality. Further research, however, is required to achieve a more complete allocation

algorithm which includes also the DV . The extension to video coding, in which both

temporal and binocular dependencies have to be taken into account is another area of

future work. Finally, further study of our algorithm may lead to a better understanding

of the similar issues in blockwise dependent allocation for video coding, where an optimal

solution cannot be achieved due to the 2D nature of the dependencies.
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2 Operational RD plots in a typical dependent bit allocation scenario: (a) ref-

erence image and (b) target image. Independent bit allocation: for given �,

the quantizer Q1b is optimal because the Lagrangian cost J1(Q1b) is smaller

than for the others. Dependent bit allocation: if stereo pairs are considered to-

gether, there is a chance for the quantizerQ1a to be optimal, because the total

Lagrangian cost J1(Q1a)+J2(Q2bjQ1a) can be smaller than J1(Q1b)+J2(Q2bjQ1b). 9

3 Binocular dependency between corresponding blocks along the disparity vec-

tor. At most two consecutive blocks in the reference image are related to a

block in the target image. For example, a block B0
1 in the target image is com-

pensated from (at most) two consecutive blocks, B2 and B3, in the reference

image along the disparity vector v1. Therefore, the distortion of the block in

the DCD frame is a function of p1, q2 and q3. : : : : : : : : : : : : : : : : : : 10

4 Trellis structure for blockwise dependent bit allocation. Each node in the

trellis corresponds to a quantizer choice for a block in the reference image and

has a corresponding Lagrangian cost. The quantizer indices are monotonically

increasing ordered from �nest to coarsest. Each branch corresponds to a

quantization assignment to all the blocks in the DCD frame that depend on

the corresponding blocks in the reference frame. Branches can represent more

than one quantizer because two consecutive blocks in the reference image can

have dependency with more than one block in the target image. A branch

linking stages i and i+1 has a Lagrangian cost corresponding to the optimal

quantizers for the DCD which depend on blocks i and i+1 from the reference

image. The darker path denotes selected quantizers using the Viterbi algorithm. 11

5 A heuristic fast search. The trellis in Figure 4 can be restricted using the pro-

posed fast search algorithm. The underlying assumption is that the reference

image is more important than the di�erence. The search space is reduced to

the nodes selected by the blockwise quantization for the reference image. : : 15
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jQj = 8, QS = f90; 80; � � � ; 20g and � = f0; 0:1; 0:5; 1; 2; 100g). The points
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marked with + to JPEG with DC. In both cases a �xed QS is used for the

whole image. The points marked with x and o correspond to blockwise inde-

pendent and dependent QS selections, respectively. Each point is generated

with one di�erent �. (a) The RD performance for the reference image is simi-
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8 RD performance comparison. (fruit.256, Block size=8�8, SW = 10, jQj = 8,
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(room.256, QS = f90; 70; 50; 30g) QS2 is changed for the DCD frame with a
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10 RD performance comparison of fast algorithm. (room.256, Block size=8 �

8, SW = 10, jQj = 8, QS = f90; 80; � � � ; 20g, �1 = [0; 0:5], and � =

f0; 0:1; 0:5; 1; 2; 100g). The points marked with + denote the results of the

proposed fast algorithm which only uses 61% of the original nodes, which cor-

responds to 37.2% of the original comparisons. The x-mark-line corresponds

to the results of the blockwise independent QS selection and the o-mark-line

to those of the blockwise dependent QS selection. RD characteristics for (a)

the reference image, (b) the DCD frame, and (c) the two images combined. : 22
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