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Abstract

We combine backward adaptive quantization with
the scalar-vector quantizer (SVQ) and the trellis coded
quantizer (TCQ) both of which have an underlying
scalar quantizer (USQ) in their structure. The re-
sulting adaptive scalar-vector quantizer (ASVQ) and
adaptive trellis coded quantizer (ATCQ) redesign the
USQ based on the past quantized outputs. The adap-
tive quantizers require no side information and also
outperform the SVQ and the TCQ, respectively, when
the input signal s non-stationary. For an input se-
quence from a bimodal source switching infrequently
between two Gaussian distributions with the same
mean and different variances, both adaptive quantizers
achieve performance gains of more than 1.3dB over
the non-adaptive quantizers designed on the training
set from the same bimodal source. Also the adaptive
quantizers demonstrate minimal performance degrada-
tion due to adaptation when stationary inputs are con-
sidered.

1 Introduction

Most currently used quantization schemes are de-
signed based on training sets and/or models of the
input. The performance of quantizers using such «
priori knowledge of the input is largely affected by the
choice of the training set or the input model. However,
in practice, it may be hard to have a good training set
or sufficient knowledge on the input model. Thus there
exists a motivation for adaptive quantization schemes
which do not require any (or as little as possible) a
priori information on the signal of interest.

We can categorize adaptive quantization schemes
into two broad classes [1]: forward adaptation and
backward adaptation. In forward adaptive quanti-
zation, the encoder makes a decision on how to up-
date the quantizer based on current and future inputs.
Thus side information has to be sent to the decoder
to specify the changes.

In backward adaptation, the quantizers are up-
dated based only on the previously quantized data.
While this approach has the drawback of requiring en-
coder and decoder to have similar complexities, it also
has the advantage of avoiding the need for overhead
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information transmission to the decoding end. In the
remainder of this paper we will concentrate on back-
ward adaptive quantization which, for convenience, we
will refer to as adaptive quantization.

Early examples of adaptive quantizers [2, 3] focus
on the dynamic range adaptation of a uniform quan-
tizer based on past quantized data. Recent work has
extended the adaptation to include updating of both
dynamic range and bin sizes for a scalar quantizer [4].
This quantizer can “learn” the distribution of a sta-
tionary memoryless source and, therefore, performs
well in the presence of long range dependencies of data
as, for example, in a bimodal distribution.

The goal of this paper is to use the adaptive
quantization technique of [4] as a building block in
quantization schemes, such as the scalar-vector quan-
tizer (SVQ) [5] and the trellis coded quantizer (TCQ)
[6], which are constructed based on an underlying
scalar quantizer (USQ). Our motivation is to demon-
strate how adaptivity can be added and provide good
results for popular quantization techniques such as
TCQ and SVQ both of which have useful properties.
We will introduce the adaptive scalar-vector quan-
tizer (ASVQ) and the adaptive trellis coded quantizer
(ATCQ) where we will use the previously quantized
data to update USQ’s of the SVQ and the TCQ.

The SVQ introduced in [5] approximates the per-
formance of the entropy constrained scalar quantizer
(ECSQ) while quantizing the input vectors at a fixed
rate and retaining structural and computational sim-
plicity. The fixed rate approach is attractive to avoid
the potential problems of transmitting variable rate
quantizer data over channels with error. The popu-
larity of the TCQ [6] stems from the fact that it can
outperform scalar quantizers with an encoding com-
plexity which is still far less than that of vector quan-
tizers.

The paper is organized as follows: In Section 2,
we introduce the adaptive scalar quantization scheme
used. Then we explain how adaptivity can be com-
bined with the SVQ and the TCQ in Section 3. Ex-
perimental results with the ASVQ and the ATCQ are

given in Section 4.

2 Backward adaptive quantization
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Figure 1: Block diagram of backward adaptation. In
the diagram, we assume SVQ or TCQ to quantize the
input though, in general, we can employ any quantiz-
ers for the purpose of actual quantization of input as
long as the quantized data can be used to estimate the
input distribution.

Early works on adaptive quantization mainly con-
centrated on the problem of adapting the dynamic
range of a uniform quantizer according to changes in
the input [2, 3]. Clearly, there should be a room for
improvement in performance if the quantization levels
and thresholds can be also updated on the fly. This
was the motivation of the algorithm of [4] which will
be used in this work.

Figure 1 shows the block diagram of the proposed
adaptive quantizer based on the SVQ or the TCQ.
The adaptation algorithm is composed of two basic
building blocks, namely, model estimation and quan-
tizer design as in [4]. The basic idea is to use past
quantized data to estimate the input probability den-
sity function (pdf). Each time a new estimate of the
pdf is obtained the parameters of the quantizer are
updated. For that purpose, simplified versions of the
quantizer design techniques for the SVQ and the TCQ
are used at the encoder. The next input is then quan-
tized using the updated quantizer. Depending on the
required adaptation speed, we keep N past quantized
output in the memory where N is called the adapta-
tion window size. Note that we can either use a fixed
value for N or determine N on the fly by monitoring
the change in the estimated input distribution. An ex-
tensive treatment on the pdf estimation based on the
quantized past can be found in [4]. Here we briefly
sketch the main ideas.

Given M quantization levels r;, ¢ = 0,---, M — 1,
with M — 1 decision thresholds b;, ¢ = 1,---, M — 1,
and the N most recent quantized sample occurrences,
let n; be the number of samples which fell into the i-th
bin [b;, bj41) fori =0,---, M —1, where by = —co and
bar = co. Then we use the normalized histogram
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to deduce the probability mass function P; of the ¢-th
bin such that

b,+1 n;
P= [T e = im0 -1 )
bi N

where f(x) is assumed to be the pdf of the input
source. P;’s are used to determine f(z), the estimate

of f ().

To simplify the problem, we assume a piecewise lin-

ear function for f( ). Hence we can determine f( )
which also needs to satisfy
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by evaluating f(:b) at zg, -+, zp—_1, where we choose

b + biy1

5 =0, M—1. (3)

x; =

: thay = f(by) =
0 to completely specify f(z) in [bo, bas], the support of

Here we need to further assume that f(Bo)

f(m), which can be found from the range adaptation

algorithm. Then fle) at z # 25,6 =0,---, M — 1,
is determined as the linear mterpolatlon of the data
points

{f(20) = 0,F(z1), -, flem—1), f(&nm) = 0}

For the estimation of dynamic range of the input
distribution, we use a method different from that of
[4]. We first detect a new statistical trend in the most
recent quantized data by observing the empirical en-
tropy (or sample entropy) determined from the his-
togram of the latest data; then, if the change in the
empirical entropy is significant, i.e., if there is more
change than a prespecified threshold, we turn on the
range adaptation algorithm of [2].

The range adaptation algorithm in [2] uses a sim-
ple decision rule to adjust the dynamic range of the
uniform scalar quantizer: With appropriately defined
notions of the inner and outer bins, we expand the dy-
namic range if the last quantizer output belongs to one
of the outer bins; otherwise, we reduce the range. The
quantization levels are also adjusted proportionally to
the change in the dynamic range.

3 Adaptive scalar-vector quantizer

and adaptive trellis coded quantizer
The adaptive quantizer of [4] achieved better per-
formance than both the fixed Lloyd-Max quantizer
and the fixed ECSQ for non-stationary input sources
while showing minimal performance degradation for
stationary inputs. Our motivation is to apply the
adaptive quantization technique to a vector quantizer
(or a block-based quantizer) designed on an underly-
ing scalar quantizer (USQ) so that we redesign the
quantizer using the estimation of the marginal input
pdf. Hence we consider two quantizers whose struc-
tures are based on a USQ: the scalar-vector quantizer
and the trellis coded quantizer.



3.1 Scalar-vector quantizer (SVQ)

The SVQ was first proposed in [5]. The motiva-
tion of the SVQ is to design a fixed-rate vector quan-
tizer which can be robust against transmission error in
noisy environments. While reducing the error propa-
gation problem, the SVQ requires less search complex-
ity than conventional vector quantizers (VQ), such as
the Lind-Buzo-Gray VQ [1], due to its special code-
book structure.

Figure 2 illustrates a 2-dimensional SVQ codebook
constructed on the USQ for a memoryless Gaussian
source. Each quantization level ¢; has a length ¢;
which is the rounded self-information, [— log p;], of the
t-th bin of the USQ, where p; is the probability of
an input component being quantized to ¢;. The SVQ
codebook consists of the grid points in the shaded area
of Figure 2 — the darker the region, the more likely the
contained codevectors are used in quantization.
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Figure 2: 2-dimensional SVQ codebook for i.i.d.
Gaussian source. (a) SVQ codevectors are chosen
from the 2-dimensional grid such that the codeword
length is no greater than a predetermined threshold
L. (b) Quantization levels and the associated lengths
of the underlying scalar quantizer which determines
each component of the vector grid.

In the m-dimensional case, we have n™ vector
points in an m-dimensional grid which is made of n-
bin USQ. If we restrict the quantization budget to r
bits per sample, we have to choose 2" codevectors
among n™ grid points as the reproduction levels in
the SVQ codebook which can best represent the in-
put source. Let the codevector length be defined as
the sum of lengths of component quantization levels.
Then the codevectors with smaller lengths are highly
likely to be used in quantization. Hence we arrange
n'™ grid points in increasing order of codevector length
and form the SVQ codebook with the first 2" points.
This procedure gives a threshold L on the codevector
length such that a grid point z is a SVQ codevector if
and only if its length is no greater than L.

Therefore an SVQ is completely defined in terms of
a triple (@, L, L) where @ = {q1,- -+, ¢n} is the set of

quantization levels of the USQ, £ = {¢;,---,(,} is the
corresponding set of lengths, and L is the threshold on
the codevector length for the SVQ codebook. For the
detailed description and the design algorithms of SVQ,
we refer to [5]. In our adaptation scheme, we update
and estimate @ and £ using our estimated pdf.

3.2 Trellis coded quantizer (TCQ)

The TCQ proposed in [6] is also derived from a
scalar quantizer. Motivated by the set partitioning
ideas from trellis coded modulation [7], the TCQ is
designed on a USQ having twice as many levels as the
quantizer rate, r, allows. The levels are then parti-
tioned into 2™t! subsets where m < r. We consider
here a particular case of rate-2 TCQ with 4 subsets
(ie., m=1).

We include the 8-level USQ and its partition into 4
subsets in Figure 3 (b) to depict this particular TCQ.
Note that each subset is assigned two quantization lev-
els such that the average distance between the levels
within a subset is maximized.

Ao 0

Figure 3: 4-state 8-level uniform trellis code. (a) The
state transition diagram restricts the quantization of
the current input depending on the quantization of the
previous input. (b) Quantization levels of the under-
lying scalar quantizer are partitioned into two sets of
A = {4y, A1} and B = {Bg, B1} where each of the

subsets A;’s and B;’s has two corresponding levels.

Since the quantizer rate is r = 2, we are in gen-
eral allowed to use at most 27 = 4 distinct levels to
quantize an input sample. For the TCQ, a finite state
machine (or a state transition rule of 4-state trellis in
Figure 3 (a)) enables the quantizer to use one of two
sets {Ag, A1} and { By, By} each of which contains two
subsets containing a pair of levels. Since the available
set of levels depends on the state of the finite state
machine, the best encoding for a given source corre-
sponds to the optimal path through the trellis. As
a result, TCQ can have more degrees of freedom in
choosing levels to use due to various combination of
quantization level subsets along the trellis path.

The best choice of subsets for quantization of each
input sample is made such that it globally minimizes



the overall distortion of a given block of input sam-
ples using only the allowable transitions from the state
transition diagram. The Viterbi algorithm is used to
find the best trellis path which is a concatenation of
state transitions through the block of samples.

Note that, since the SVQ and the TCQ have ad-
ditional constraints on top of the USQ, inputs may
not be always quantized to their nearest neighbor in
the USQ. This will affect the our pdf slightly (the bin
counts will not give an exact estimate of the probabil-
ity of the source) but we have observed that the effect
is negligible.

3.3 Complexity considerations

For both the ASVQ and the ATCQ, we use the
empirical entropy of the output to detect the change
in source statistics. We can calculate the empirical
entropy at little extra cost since we keep generating
the output data histogram.

The input pdf estimation and the range adaptation
take only a small fraction of the overall complexity
because we have an estimation strategy which uses a
linear interpolation for the pdf estimate and a simple
decision rule for the range adaptation. Hence, from
Figure 1, most of the additional complexity of the
ASVQ and the ATCQ compared to their respective
non-adaptive quantizers arises from the quantizer re-
design block.

In general, the SVQ and the TCQ are designed by
iterative algorithms to find a set of quantization lev-
els of the USQ based on a given training sequence.
Note however that, for the ASVQ and the ATCQ, the
USQ levels are found based on the piecewise linear
pdf estimate. By taking advantage of this, it is possi-
ble to implement the quantizer design algorithms with
much reduced complexity as compared to their TCQ
and SVQ counterparts. As an example in the ATCQ
case, all that is needed in each iteration is to adapt
the USQ.

4 Experiments and results

We compare our adaptive quantizers to SVQ’s and
TCQ’s designed by training. We consider two types
of input sources: (i) A bimodal source obtained by
switching between two i.i.d. Gaussian sources with
the same mean but different variances. The transi-
tion probability between modes is 0.001; and (ii) an
i.i.d. Gaussian source with parameters N(0,1).

For each source, a sequence of 40,000 samples is
used as an input to both the ASVQ and the SVQ. The
SVQ training sequence to obtain @, £ and L consists
of 100,000 samples and has the same characteristics as
the simulation input. We use an adaptation window of
50 vectors, as an adaptation parameter for the ASVQ.
For both quantizers, the rate is 2.0 bits per sample
and the vector dimension is 8.

Figure 4 contains the plots of the SNR changes by
the ASVQ and the SVQ through the whole simulation
sequences and serves as the performance comparison.
Figure 4(a) shows that the proposed ASVQ performs
better than the trained SVQ when a non-stationary
input source is applied. The average SNRs included
in the figure are obtained by averaging the SNRs eval-
uated for sets of 50 vectors. The overall SNRs of the

ASVQ and the SVQ for the whole input sequence are
8.89dB and 8.00dB, respectively. The performance
loss of the ASVQ compared to the SVQ is minimal
when the input is stationary, as we can see in Fig-
ure 4(b). And, in this case, the overall SNRs of the
ASVQ and of the SVQ are 9.73dB and 9.96dB, respec-
tively.

We also experimented with an ATCQ and a TCQ
under the same setting as for the ASVQ/SVQ exper-
iment. Here we use a block length of 100 samples
to generate a trellis and the adaptation window of 5
blocks. Figure 5 includes the resulting plots of the
SNR changes for the bimodal and the stationary Gaus-
sian input sequences. The overall SNRs for the ATCQ
and the TCQ are 9.32dB and 8.77dB for the bimodal
source, and 10.03dB and 10.13dB for the stationary
Gaussian source, respectively.

Finally, we summarize the experimental data in Ta-
ble 1. We include, in the parentheses, the data from
the ASVQ and the ATCQ which use only the range
adaptation algorithm to update quantizers provided
each of the quantizers has a uniform USQ. Hence, we
conclude that the ASVQ and the ATCQ with the in-
put pdf estimation can achieve performance gain over
those with the range adaptation only.
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Figure 4: ASVQ vs. SVQ (a) When the input is bimodal with each of the modes being Gaussian of the same
mean and different variances, the performance of the ASVQ remains nearly constant throughout the sequence
except at the point of mode change while SVQ performance is better for one of the two modes. (b) When the
input is stationary memoryless Gaussian, there is a slight degradation in performance due to the adaptation.

Nonstationary Stationary
Quantizer bimodal Gaussian
SNRavg | SNR | SNRayvg | SNR
ASVQ 9.35 8.89 9.76 9.73
(9.24) | (8.75)
SVQ 7.99 8.00 9.96 9.96
ATCQ 9.49 9.32 10.07 10.03
(8.87) (7.61)
TCQ 8.19 8.77 10.12 10.13

Table 1: Performance comparison of rate-2.0 quantizers for non-stationary and stationary sources. SNRayg denotes
the average of SNRs evaluated for blocks of input samples while SNR is the overall SNR for the whole sequence.
In the parentheses are the SNRs from the adaptive quantizers using only the range adaptation on uniform USQ’s.

All results are in dB.
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Figure 5: ATCQ vs. TCQ (a)When the input is bimodal, the performance of the ATCQ remains nearly constant
throughout the sequence except at the point of mode change and outperforms the TCQ while the TCQ perfor-
mance is better for one of the two modes. (b) For a stationary memoryless Gaussian input source, the ATCQ
experiences a slight degradation in performance due to the adaptation.



