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Abstract

In this paper we present an adaptive image coding
algorithm based on novel backward-adaptive quantiza-
tion/classification techniques. We use a simple scalar quan-
tizer to quantize the image subbands. Our algorithm uses
several contexts to characterize the subband data and differ-
ent arithmetic coder parameters are matched to each con-
text. We show how the context selection can be driven by
rate-distortion criteria and how the performance can be im-
proved by replacing the scalar quantization strategy by a
entropy-constrained approach. Our results are comparable
or better than the recent state of the art with our algorithm
also having advantages in terms of simplicity.

1. Introduction

Over the past few years adaptivity has become an essen-
tial component of state of the art image coders, in particu-
lar those based on wavelets. Several researchers have ad-
vocated adapting in various ways the basic components in a
wavelet-based image coder, namely, the tree-structured fil-
terbank, the filters themselves, the quantizers and the en-
tropy coders. In this paper we concentrate on the issue of
adaptive quantization/entropy coding for a fixed filterbank.
The issue of joint adaptation of quantizers and filterbanks
[11] is not considered here.

Two main approaches to adaptive quantization have been
reported in the recent literature. The first approach relies on
a fixed quantization for all coefficients in a given band and a
layered transmission of the coefficients using binary or low
order (ternary, quaternary) arithmetic coding. Examples in-
clude the algorithms of [3, 6, 2]. Context based arithmetic
coders were used in [6] while in [3, 2] context information
was taken into account by using the zero-tree data structure,
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which enables the joint transmission of zero-valued coeffi-
cient present at the same spatial location across several fre-
quency bands.

The second approach for adaptivity relies on using dif-
ferent quantizers, and thus entropy coders, for different re-
gions of each subband. One example is the work of [1]
where a different quantizer is used for each “class” of co-
efficients, after block-wise classification in each band has
been performed. The classification technique used in [1] re-
lied on pre-analyzing the subband data and sending the class
assigned to each block as side information. In [10] it was
shown that this approach could be extended to a backward
adaptation framework, i.e. where the class of each coeffi-
cient is determined from previously quantized coefficients
in the same band.

In this work we present a novel approach to adaptive
quantization of image subbands which can be seen as a com-
bination of both abovementioned methods. We use a fixed
uniform threshold quantizer (UTQ) for all the subbands and
arithmetic coding of the resulting set of coefficients

�

. Fur-
thermore, as in [10], we use backward adaptive classifica-
tion to determine which set of probabilities our arithmetic
coder will use. Subband coefficients are modelled as Lapla-
cian random variables for which the parameters are explic-
itly sent to the decoder, so that UTQs in each band can use
reproduction levels that are matched to the given Laplacian
parameter (see Section2.1). Since several different arith-
metic coders (AC) can be used for the quantized coefficients
a key issue is that of determining how to assign a coefficient
to each AC. To do so we classify current coefficients based
on past neighboring quantized coefficients. We generate a
predictor based on the neighboring coefficients and select
thresholds on the predictor to determine the class. Based on
simple assumptions we show that the optimal classification
can be approximated by designing an Lloyd-Max quantizer
(LMQ) matched to the distribution of the predictor.

We are thus considering a context-based adaptive arith-
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metic coder similar to that proposed in [9] with the ma-
jor differences being (i) we operate in the subband domain,
rather than the image domain, and (ii) our contexts are de-
termined based on past quantized data rather than from the
original data as in the lossless compression scheme of [9].
Our approach is simpler than adaptive quantization meth-
ods, it may also be better suited to high rates where the lay-
ered coding approaches lose some of their benefits.

2 Context-based adaptation

In our algorithm adaptivity is achieved by (i) matching
the reproduction levels of the UTQ to the statistics of each
band (see Section 2.1), (ii) using different entropy coders de-
pending on the context of the current coefficient (see Sec-
tion 2.2) and (iii) using adaptive arithmetic coders (see Sec-
tion 2.3).

2.1 Design of UTQ with dead zone

Assume that in a given subband the wavelet coefficients
have Laplacian distribution with known parameter
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:
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for which we would like to design an optimized UTQ with
dead zone, as in Fig. 1. A UTQ has a fixed step size (ex-
cept for the “dead zone” around zero) and the reproduction
levels for each bin should be placed at the centroid of the
distribution for that bin, i.e. for the interval � ��� � � � � ��! the
reproduction level should be " :
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Let > � �?�%@A�?� � � be the length of each interval in UTQ
and define B � B'C as:
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where �K@L� C � � C ! is the dead zone. The probability that a sam-
ple falls into the M 2<N bin �+� � � � � � � � is:
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and thus it is easy to find the reproduction levels given the
stepsize and the Laplacian distributionparameter. Given theV

In the next equations assume WYXIZ\[ ; the case WYX^]_[ requires simple
modifications

fixed stepsize these will be the optimal reproduction levels.
The paramater

�
is explicitly sent to the decoder as side in-

formation for each subband. In the section to follow we
made the choice � C � > .
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Figure 1. Uniform Thresholded Quantizer with
dead zone

2.2 Prediction and Context Selection

Suppose that we have transmitted a number of coeffi-
cients

&cb � d �fe =�=�= M of the wavelet representation of our
image. Based on the past we try to estimate the next coeffi-
cient that we need to transmit.

g& � �ih $G& � � & � � � � =�=�= � & C , (6)

Many experiments have shown that traditional linear
predicition methods are not very efficient for encoding im-
age subbands. In a linear prediction scheme the differ-
ence between the current coefficient and a predictor obtained
from previouslyquantized ones is sent. Since the correlation
of the wavelets coefficients tends to be close to zero, and pre-
diction results in doubling of the dynamic range, little gain
is in general achieved with this method.

However context information is useful when it comes to
adapting the entropy coder as was demonstrated in [9] in a
lossless image coding scenario. In this work we use a small
neighborhood of previously quantized coefficients to deter-
mine, from a finite set of choices, which probability model
to use for the entropy coder. The motivation is simple; as
shown in [10], when surrounding coefficients are close to
zero it is more likely that the next coefficient will also be
zero. The coefficient in the same position in the previous
band also offers some information about the value of the cur-
rent coefficient.

In practice we only try to estimate the distribution of the
magnitude ( & ( of the value

&
we need to transmit. Our pre-

dictor has the form:
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where the j'm can be seen in Fig. 3. There is no reason for dis-
tinguishing between j � and j " in the prediction so

k
�
�nk " .

We also found out that for the most of the images
k C%o k `

so we set
k C �pk ` . In our experiments we used

k C �qk ` �

�rc
 e and

k
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�sk " �ut r8
 e which provided good perfor-
mance for a range of images. Now, based on the value of

gj ,



we can select a different entropy coder for each coeffcient
&

depending on the
gj obtained from its neighborhood.

Suppose that we have to encode an infinite number of co-
efficients

&
and the only information we have about

&
is an

estimate of ( & ( given by (7). Since the j m ’s are quantized they
a take a finite number of values and so

gj can only take a fi-
nite number of values. It would thus be conceivable to have
as many contexts as different values for

gj and to have dif-
ferent entropy coders for each case. However, in a practical
scenario, the number of different values that

gj takes might
be too large and preclude usage of that many entropy coders.
In addition, since the number of inputs

&
will be finite, there

will not be in general enough data to train the entropy coders
and we will be faced with a phenomenon called context di-
lution.

Thus a partition of the interval � e � � �
is needed for prac-

tical reasons. Define the following partition:

� e � � ��� ���6� � �6� � �
��� ���6� � � � ��� � " ��� =�=�= � ��� � � � � = (8)

We assign the pixel
&

to context � m iff
gj ) ��� m � � m � �

�
where

the indices decrease from zero to infinity. The question is
then how to partition the interval � e � � �

. Note that this is
essentially a quantization problem but that the optimal par-
tition need not be the one that minimizes the expected error
between the partition and

gj . Our goal is to minimize the rate
needed to encode the predicted data.

Let � $ gj , denote the quantized value of
gj . This quanti-

zation will be efficient if it is such that it minimizes the en-
tropy � � & ( � $�gj ,G� . This entropy minimization is equivalent
to the maximization of the mutual information 	 � & � � $�gj ,G�
between

&
and � $�gj , , or the maximization of the Kullback-

Leibler distance 
 � O���
��������� ( ( O��������� O � � [5].
So our objective is to make � $�gj , carry as much infor-

mation about
&

as possible. Because of equation (7) we
can claim that

gj only carries information about the absolute
value of

&
and no information about the sign. Maximiza-

tion of the mutual information can be quite involved even if
analytic forms of the joint probability density are known so
instead we follow a different approach which will not neces-
sarily minimize entropy but at least will minimize the energy
of the error. We try to minimize

� � ( ( & ( @�� $ gj , ( " � (9)

which will lead us to an approximate solution close to the
optimal. This approximation is necessary in order to provide
an analytical solution, and does not deviate much from the
optimal solution, the maximum mutual information (which
in � in the case of continuous variables) corresponds to the
minimum error (zero) and vice versa.

Minimization of (9) corresponds to the optimal quantizer
for

gj , given that
gj is an estimate of

&
. It has to be noted

that minimization of (9) is not the same as minimization of

� � � ( & ( @�� $G& ,G� " � , but they both have as optimal solution the
Lloyd-Max quantizer (LMQ). In our case we only need to
make the assumption that the quantization error

gj @�� $�gj , is
orthogonal to ( & ( . Under this assumption (9) takes the form:

�	�;� ( & ( @�� $�gj ,G� " �T���	�;� ( & ( @ gj � " � R � � ( gj @�� $ gj , ( " � (10)

and it can be seen that the optimal choice of � � gj � corre-
sponds to the LMQ for

gj . We can now model
gj as an expo-

nential random variable, as is consistent with our previously
selected model for

&
. Note that one could explicitly send this

parameter but for simplicity in our experiments we choose
to assume that

gj has the same variance as
&

. We observed in
our experiments that in general the distributions of ( & ( andgj were close. Recall that the Laplacian parameter for each
subband is sent to the decoder as side information so that the
decoder can calculate the classification thresholds as well.

Sullivan [4] gives a closed form solution for ECSQ for
exponential random variables based on the Lambert �
function. The above objective function is minimized by the
LMQ which can be seen as a particular case of ECSQ. Ex-
ponential distributions are memoryless and thus if we have
an optimal partition in M intervals we can move to M R 
 in-
tervals by just adding one more point ����� � and shifting the
other points appropriately. So essentially if we have an opti-
mal partition for an exponential distributionof mean one, us-
ing  bins we can construct any optimal partition for M�!" 
for all exponential distributions. The recursive relation for
the optimal partition is:

>9�#� �
��$ � R � � @ $ � 
G�&% 1 � (11)

Where: ' � > � � 
 @ > 
 � F

 @ 
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and
$ � � 
 R

' � > � � , � is the Lambert function which
is given in series form[4], and > � � � � � . The > � are
the lengths of the intervals in our quantizer as in figure (2).
More details can be found in [4].
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Figure 2. The interval lengths in ECSQ

The optimal number of classes, M , depends on the num-
ber of coefficients to be encoded, since excessive number of
classes results in context dilution as mentioned earlier. The
parameter

�
depends only on the statistics of our image and

we thus have a simple way of selecting contexts for a given
subband based on its size (selection of M ) as well as its statis-
tics (selection of

�
).
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Figure 3. Prediction

We introduce a slight modification of the above classifi-
cation to take into account the fact that the coefficients j�m are
all quantized, i.e. our classification is based on quantized
data. For this reason, and in particular at low rates, a very
significant fraction of contexts (as high as half the total) will
be such that

gj �De
. Thus the distribution of

gj is better mod-
eled by a mixture of a continuous and a discrete distribution
as in: � �� ����� ��� ' ��� � R � 
 @ ���;��
G� �G� (13)

For pixels
&

for which
gj �le

a different coder is selected
while the classification rules described earlier are applied to
those coefficients such that

gj�� e
. When

gj �De
our classifi-

cation is based on a larger neighborhood than that of Fig. 3.
This modification has proved to be very useful especially at
low rates.

2.3 Entropy Coding

Whenever a new band is visited we transmit explicitly the
minimum, maximum and variance in this band. Note that
this is also equivalent to sending the Laplacian parameter
and it allows the decoder to initialize the reproduction levels
of the UTQ as well as the classification thresholds. The issue
of initializationof the entropy coders is non trivial since dif-
ferent images have different characteristics and explicit ini-
tialization may require a significant amount of side informa-
tion. It is useful to observe that on the top levels of our de-
composition the sample distribution is almost uniform, but
as we move towards the bottom levels this distribution gets
more and more biased. Thus we can use the same look up
tables for the entropy coders throughout the whole pyrami-
dal structure. Starting with a uniform distributionon the top
level, the distributions “learnt” at a higher level are used to
initialize the distribution at lower levels. Thus the statistics
are learnt on the fly as we move towards to bottom of our
pyramid and no initialization is required for each subband.

3. Description of the Algorithm

The proposed algorithm can be summarized as follows:
Step 1 Compute the wavelet transform for the whole image
Step 2 Apply a UTQ with deadzone with constant step size
to all coefficients in all bands. Only the reconstruction lev-
els are different and are set given the Laplacian parameter of
each band.
Step 3 Initialize all entropy coders to a uniform distribution.
Step 4 Start scanning all the bands from the low to high res-
olution in a predetermined order.
Step 5 When a band is first visited send the maximum, min-
imum and variance of its unquantized coefficients.
Step 6 For each new coefficient define

gj as in equation (7)
and decide which entropy coder to use based on � $�gj , .
Step 7 Transmit the codeword closest to

&
with chosen en-

tropy coder.
Step 8 Continue until all the coefficients have been scanned.

Notice that the whole algorithm is very simple, as no
training is required and simple scalar quantizers are used.
Classification rules are simple, as is the method to obtain the
classification thresholds. The bulk of the complexity comes
from computing the wavelet transform rather than from the
quantization itself.

In our experiments we used a modified version of the al-
gorithm to take into account both rate and distortion crite-
ria. In the above description all the coefficients were scalar
quantized (Step 7), i.e. a given coefficient was assigned to
the reproduction level within its bin. Improved performance
can be achieved if the quantization is entropy constrained,
i.e. we now choose to assign a quantization level to a coef-
ficient if that level minimizes � ��� R��
	 , where ��� e
is the Lagrange multiplier, 	 is the rate needed to send that
level (based on current statistics of the arithmetic coder cor-
responding to that coefficient) and

�
is the distortion for

each level. This involves some additional complexity but
can be done efficiently since we have an initial guess for the
codeword (minimize

�
) and even a suboptimal solution for

the minimization of � ��� R
�
	 is acceptable. In practice
full search versus restricted search gave very small differ-
ence in performance if any. The results in the next section
include this modification.

4. Experimental Results and Conclusions

Experimental results have shown that linear phase odd-
length biorthogonal filters offer advantages in terms of en-
ergy compaction and thus compression [8]. We use a 11-13
biorthogonal 2 channel filter bank[8], with a simple modifi-
cation such that for all the four filters in the filter bank we
have ( � m ( � ( � m ( ����� M�� 7 . This allow us to use standard bit
allocation techniques used in orthogonal filter banks. As far
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as the bit allocation is concerned this filter bank is equiva-
lent to an orthogonal filter bank (see [7] for details.) Bit al-
location is required to determine the average number of bits
to be used in each band. In figure Fig. 4 we present results
on the R-D curves for the lenna and Goldhill images both
of size 512x512. We used 
 
 classes (including the special
class for

gj �De
).

We compare our performance with one of the best algo-
rithms [2]. In one case our algorithm performs better on the
average over different bit rates, while for the other our re-
sults are slightly worse. However, for this latter image no
algorithm outperforms the other for the whole range of bit
rates. Fig. 5 shows a comparison of the two algorithms over
a narrower range. The small differences justify our selec-
tions and theoretical formulations in the previous sections.
We also performed experiments using different classifica-
tion mechanisms for

gj with our method showing better per-
formance. For example when trying to have equal proba-
bility in each bin � m as opposed to our previous formula-
tion we got about

e = 
 � : � less in PSNR for Goldhill at
e = � � r O

(33.00db versus 33.15db).
Potential benefits of this method compared to the one at

[2] are, speed and the fact that there are no tree structures
involved so that all the operations can be done sequentially.
However our system is not embedded while the one in [2] is.
We also verified that our algorithm tended to work better at
high rates and indeed could be modified to provide a range
of bit rates extending all the way to lossless compression.
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