An Input Dependent Algorithm for the Inverse
Discrete Wavelet Transform

Paul Fernandez, Antonio Ortega
Integrated Media Systems Center
Department of Electrical Engineering-Systems
University of Southern California, Los Angeles, CA 90089
{pfernand,ortega}@sipi.usc.edu

Abstract— We propose a fast algorithm for computing the
Inverse Discrete Wavelet Transform (IDWT). The method
takes advantage of the large number of zero coefficients after
quantization. A bit map of the wavelet coefficients is used
to test for streams of zero coefficients and inverse transform
filtering is omitted for these coefficients. The zero testing
algorithm is a tree-like search operation. Information on
the statistics of the wavelet transform coefficients of a few
typical images, together with estimates of the cost of testing
and the cost of filtering, are used to obtain optimal sizes of
the root and leaves of the search tree. Results show that our
algorithm is faster than the baseline inverse wavelet trans-
form algorithm by about 20% to 50% for PSNRs in the range
35dB to 29dB.

I. INTRODUCTION

Transforms such as the Discrete Wavelet Transform
(DWT) and the Discrete Cosine transform (DCT) are used
as tools to remove the correlation between neighboring pix-
els. DCT has been given more attention than other trans-
forms because it does not have high memory requirements
and its block based operation makes is easier to parallelize.
Efficient implementations of the DCT have been widely
studied over the past few years. Recently, prompted by
the wide use of software - based image coding and decod-
ing schemes, input dependent methods have been proposed
to minimize the complexity of the inverse DCT. In such al-
gorithms, when a encoder/decoder receives data that does
not need to be processed (such as zero transform coeffi-
cients), it skips these computations and go on to the next
set of input data. Algorithms of this type(see [1] and [2])
are by nature variable complexity and thus better suited
for software implementations.

Recent tests within the JPEG 2000 standardization pro-
cess show that the DWT has better performance than DCT
based schemes due to both the transform and the better
structures it enables. However, complexity issues related
to the wavelet transform have received less attention until
recently. Examples of such work include reduced memory
implementations of the Discrete Wavelet transform in [4]
and [5] and an input dependent algorithm for the inverse
DWTI6].

The wavelet transform decorrelates the data and concen-
trates most of the energy in a few coefficients - hence there
will be a large number of zero coefficients after quantiza-
tion. Figure 1 is a histogram plot of the percentages of

This work was supported in part by Texas Instruments

streams of zero coefficients for a 512x512 image with 3 lev-
els of decomposition after quantization corresponding to a
PSNR of 32dB. The streams were obtained through raster
scanning. The subbands in the first and second level of de-
composition have a significant percentage of zero streams
of length close to the size of columns/rows in that subband.
For example, the HighLow (HL) subband of the first level
of decomposition has about 50% zero streams of length 256,
i.e half the lines are all zero.

Work done in [6] proposes a bit-plane based progressive
decoding scheme that takes advantage of zero coefficients.
In this work the wavelet coefficients are decoded from the
most significant bitplane to the least significant bitplane.
Multiplications are avoided and the IDWT operation be-
comes a set of additions and right shifts. The reconstruc-
tion is done coefficient by coefficient. Our work does not
use a progressive bitplane decoding scheme. However, we
propose a systematic way of testing for streams of zero co-
efficients and a method of optimizing this scheme. This
approach would give more savings than a coefficient by
coefficient zero test particularly for a data set that has
a significant number of zero streams. For a one dimen-
sional coefficient array of length N and filter length is L, a
k stage decomposition with b bitplanes will have of order of
k* L= N = b operations (consisting of zero-tests, additions
and shiftings) by Guo’s approach. Our method would have
of the order of k* L N operations consisting of multiplica-
tions, zero-tests and additions. The cost of a multiplication
is about 2-3 times that of a shift or addition.The number
of bitplanes in a typical implementation is 8-16. If the cost
of multiplications is not much larger than that of addition,
increasing the number of additions over several bitplanes,
in order to avoid multiplications, would most likely not give
much reduction in complexity. Also, in a two dimensional
implementation of the bit-plane scheme in software, access
of bits during filtering in the second direction would require
some extra overhead, increasing complexity.

The coefficient map of a 1-level decomposition is shown
in figure 2(a). The standard implementation of the
IDWT initially involves low-pass filtering of the up-sampled
columns of the low-low (LL) and low-high (LH) subbands
and the high-pass filtering of the up-sampled columns of the
high-low (HL) and high-high (HH)subbands. The summed
output of these two filtering operations gives the result in
Figure 2(b). The next stage involves the low-pass filtering

of the rows of the up-sampled low (L) subband and the
high-pass filtering of the rows of the up-sampled high (H)
subband. In our algorithm, zero-testing on the columns
and rows is carried out prior to filtering. The zero testing
is done in a tree-like manner - the top of the tree represent-
ing testing for zero streams of a certain length and progres-
sively lower levels of the tree corresponding to testing for
zero steams of progressively shorter lengths. A method of
optimizing the testing is proposed that uses the statistics
of typical image coeflicients.

This paper is organized as follows: in Section 2 the basic
zero testing algorithm is described. Section 3 describes the
optimal algorithm. In Section 4 our results are presented.

II. Basic ZERO TESTING ALGORITHM

Since most of the coeflicients in the LL subband in Figure
2(a) are typically non-zero, no zero testing of coefficients
is done when doing column filtering on this subband. Zero
testing is done when column filtering the HL, HH and LH
subbands. Figure 2(b) is the output after the column fil-
tering.

When doing the row filtering, no zero testing is done for
the L subband since it is the result of filtering the LL sub-
band, which consisted mainly of non-zero coefficients. Zero
testing for row filtering of the H subband is done as follows:
Consider the set of coefficients C in Figure 2(b) - they are
formed by column filtering the set of coefficients A and B
in Figure 2(a) and adding the resulting outputs. Hence,
when row filtering the first column of the H subband we
would simultaneously test the first columns in the LH and
HH subbands; if any significant coefficients are detected,
the corresponding coefficients in the first column of the H
subband would be row filtered. So in general, row filtering
of columns in the H subband in Fig 2(b) is done by simulta-
neously testing corresponding columns in the LH and HH
subbands. The row and column filtering is done in this
manner for each level of decomposition.

We use significance bitmaps to do zero testing of coeffi-
cient streams. Each bit in the bitmap represents a coeffi-
cient. Each coefficient is tested and its corresponding bit
in the bitmap set to one or zero depending on whether the
magnitude of the coefficient is greater or equal to zero. In
the system used in our experiments, the largest possible
integer representation is 32 bits long - hence the bitmap
consists of 32 bit numbers. Since column-filtering is done
first, the bitmap is formed column-wise. The zero testing
for the basic implementation of our algorithm will therefore
start with streams of length 32.

Figure 3 illustrates the testing method. It is a left-first
tree search, which was chosen because it was simple to im-
plement. It was implemented without recursive function
calls as this would decrease the speed of the algorithm.
When performing the inverse filtering on a column, a bit-
map number for that column is zero tested - this corre-
sponds to the root of the tree. If it is zero, no filtering is
done on the corresponding pixels. If it is non zero, the left
16 bits are tested. If they are all zero, the right 16 bits are
tested. If the left 16 bits are not all zero the left 8 bits are

tested, and so on. The leaf of the tree corresponds to four
bits.If not all the four bits in a leaf are found to be zero,
filtering is done on the corresponding four coefficients by
adding the impulse response of each of the coefficients.

A deeper tree search would have larger overhead of zero
testing coefficient steams. This overhead will be offset if
there are a significant number of streams of zero coefli-
cients of shorter length. For this basic implementation four
bits was chosen for the leaf size after some experimentation
showed that going down to two bits would increase com-
plexity (The next section will describe a more systematic
method of calculating the best tree structure). This tree
structure zero testing is used for both the column and row
filtering. It is easier to implement this structure if the size
of the columns and rows are even.

When performing the row filtering, one has to take into
account the overlap of impulse responses: We look here at
the case of filters whose origin is the first coefficient. From
Fig 2. if one of the leaves A or B (of length 4) are found
to be non-zero, row filtering on the group of coefficients
C, of length 2 x4 4+ (L — 1) (where L = filterlength), is
performed. The extra L-1 coefficients in C are the result of
column filtering any significant coefficients amongst the(L-
1)/2 coefficients immediately below groups A and B as well
as column filtering some of the significant coefficients in A
and B. Hence, when testing the (L-1)/2 coefficients just be-
low A and B, these overlapping L-1 coefficients in C should
not be row filtered if they had previously been filtered. In
terms of implementation this means certain parts of the
tree will not be traversed.

In general, the complexity of our algorithm would be
proportional to filter length.

III. OPTIMAL ALGORITHM

We address two questions that arise from the method
described above: how many bits should we start the tree
search at (optimal size of the root) and how many bits
should we stop at (optimal size of the leaf).

To determine the optimal size of the root and leaf of
the search tree, we use information on the statistics of the
coefficients and estimates for the cost of testing for zero
streams and the cost of filtering.

Consider zero testing starting with streams of size N. Let
us define the following probabilities:

Pr = probability of all N coefficients being zero.

P%/N = probability of a stream of N/2 coefficients
being zero given that not all N coefficients are zero

with P , & defined in the same way.
ok—T/ 5k

We define the following costs:

Cy = cost of filtering a coefficient and

C, = cost of testing if a stream of bits is zero.

The costs Cy and C, were calculated by taking into ac-
count the number of additions, subtractions, conditional
statements and multiplications. An addition, subtraction
or conditional statement was given a cost of 1 while a multi-
plication was given a cost of 2. These estimates were based
on work done by Lengwehasatit[2].

Using these probabilities and costs, complexity costs of
possible trees were calculated as follows: Suppose the root
of the tree is of size N and the size of a column is M: The
complexity cost of testing if all N coefficients are zero and
performing the filtering if they are not all zero (correspond-
ing to a one-level tree) is:

M M
CN7>N:CZ*W+(1_PN)*C]°*N*W (1)

The first term is the cost of testing and the second term
is the cost of filtering. There are % streams of length N.
The number of N length streams that do not have all zero
coefficients is (1 — Py) * 4. Hence the cost of filtering is

(1-—Pn)xCpxNxX

If we traverse down one level (2-level tree) the complexity
cost would be:

M
CN7>%:CZ*N+(1—PN)*02*

N

M
+(1_PN)*(1_Pg/ﬁ)*Cf*E*§ (2)
2

SRS

The second term is the cost of testing % length streams.
The probability of such streams is (1 — Py). There are X
such streams. ’

The third term in the coefficient is the cost of filter-
ing. The probability of a non-zero stream of length % is
(1 — Py) * (1 — Py /N) (using the chain rule from proba-

bility theory). There are % such streams, and % elements
2

filtered per stream.

If the complexity cost CN_>% was less than Cn_sn,
the two level tree structure would be better. The task of
finding the optimal tree (i.e. optimal root and leaf size) is
to find, out of all possible trees, the the tree corresponding
to the minimum complexity cost.

In general, if we had a k+1 level tree (i.e going all the
way down to a leaf of size & bits and then filtering), the
complexity cost would be:

M
CN_>2%:CZ*N+(1_PN)*CZ*

M
& e +(1—PN)* *(l—PN /T)*
9 ok—1/3k—2
N M
1-P, ——)*xCr*x — % — 3
(2%/2;?11)* f*2k*ﬂk 3)

[V

The ranges of N and k are:N = M....2, k = 0....log2%.
Therefore there are (logs % +1)xlogy % possible trees from
which the optimal is determined.

The probabilities defined previously were gathered for
each subband of each level for three training images. Then
the optimal root and leaf sizes for each subband averaged
over the three images were calculated.

Since the computation of the optimal trees is done off-
line, the complexity of this search is not of great concern
to us.

It was found that the different subbands within one level
had optimal root and leaf sizes that were either identical
or very close. Also, it was noted that if the LH and HH
subbands had different root and leaf sizes, the complexity
of doing the simultaneous zero-test on each of these sub-
bands when performing the row filtering of the H subband
increases significantly. Hence an average optimal root and
leaf size was used for all the subbands in one particular
level of decomposition.

If the size of the leaf of the tree is k., we can use one
bit of the bit-map to represent k,,; pixels.

IV. RESULTS AND DISCUSSION

We used wavelet decomposition with three levels of
decomposition. The filters were conjugate-quadrature
Daubechies filters of length 8. The algorithm was trained
on three images: Barbara, Goldhill and Lena, and then
tested on three other images (Boat, Creek and Lake) in
addition to the training images.

Figure 4 represents the percentage saving in computation
time of the IDWT compared to the baseline IDWT imple-
mentation vs distortion. Note that we include the time to
compute the bitmap when determining the complexity for
the Inverse DWT with zero testing.

Our results show a marked improvement over the base-
line case. The algorithm also performed well with the three
images it was not trained on. The complexity saving begins
to level off after certain distortions when most insignificant
coefficients are zero.

In order to determine the robustness of the algorithm
it was tested on images Boat, Creek and Lake for seven
tree sizes with PSNR values of 29.6dB and 31dB. Tables
1 and 2 shows the percentage decrease in complexity. The
calculated optimal was case 7. It was determined from
data obtained for PSNR of 31dB. At a PSNR of 29.6, the
optimal still has among the better results. There is greater
variation in complexity saving at PSNR of 31db compared
to 29.6dB for image Lake. The reason is that at high PSNR
values, there are larger number of zero streams of shorter
length - hence the depth of the tree matters. On the other
hand at low PSNR values there are more zero streams of
longer length. In this case the algorithm does not typically
traverse down most of the tree - so the structure of the tree
does not matter.

We have proposed an algorithm that is about 20% to
50% faster than the standard implementation. We pro-
pose a method of calculating an optimal test structure,
which is shown to be robust to different distortions. Fu-
ture work could look at combining it with other implemen-
tations. One such implementation is the embedded zero
tree wavelet coding scheme.

REFERENCES

[1] K. Froitzheim and H.Wolf, “Knowledge-based approach to JPEG
acceleration”, in Proc. of IS & T/SPIE Symp. on Electr. Imaging
Science and Technology, (San Jose), Feb 1995.

[2] K. Lengwehasatit and A.Ortega, “DCT computation with mini-
mal number of operations”, in Proc. of VCIP 97,(San Jose, CA),
Feb 1997.

Case | L3 L2 L1 Boat | Creek| Lake
(R,L) | (R.L) | (R,L)
1 (64,8) | (64,8)| (64,8)| 40 3.4 17.5
2 (32,4)] (32,4)| (32,4)]| 42.1 | 8.6 22.25
3 (16,2) | (32,4)| (64,8)| 42.1 | 3 18.58
4 (8,2) | (8,2) | (8,2) | 41.6 | 8.2 24.6
5 (16,4) | (16,4)| (64,8)| 424 | 3 19.1
6 (16,2) | (16,2)| (16,2)| 42.4 | 10.7 | 24.6
7 (8,2) | (324)| (32,4)| 424 | 7 21.98

TABLE I
PERCENTAGE SAVING IN COMPLEXITY FOR PSNR 29.6DB FOR SEVEN
casEs, KEy: L1 (R,L): LEVEL 1 (ROOTSIZE,LEAFSIZE) ETC

Case | L3 L2 L1 Boat | Creek| Lake
(R,L) | (RL) | (RL)

1 (64,8) | (64,8)| (64,8)| 36.9 | 0 16.2
2 (32,4) | (32,4)| (32,4)| 38.7 | 2.1 14.4
3 (16,2) | (32,4)| (64,8)]| 38.7 |1 16.5
4 8,2 | (82) | (8,2) | 377 |6 22.3
5 (16,4) | (16,4)| (64,8)| 39 1 17

6 (16,2) | (16,2)| (16,2)| 39.26 | 4 21.7
7 (8,2) | (32,4)| (32,4)] 39 4 20.7

TABLE II

PERCENTAGE SAVING IN COMPLEXITY FOR PSNR 31DB FOR SEVEN
cases, KeEy: L1 (R,L): LEVEL 1 (ROOTSIZE,LEAFSIZE) ETC

[3] W. Pennebaker and J. Mitchell, “JPEG Still Image Data Com-
pression Standard”, Van Nostrand Reinhold, 199/.

[4] C. Chrysafis and A. Ortega, “Line-based, Reduced Memory,
Wavelet Image Compression”, Data Compression Conference,
Snowbird, Utah, March 1998.

[5] P.C. Cosman and K.Zeger, “Memory constrained wavelet-based
image coding”, Signal Processing Letters, vol5, pp221-223,
September 1998

[6] H. Guo, “Mapped Inverse Discrete Wavelet Transform for Data
Compression”, ICASSP, 1998.

[7] J.M. Shapiro, “Embedded Image coding Using Zerotrees of
wavelet coefficients”, IEEE trans. Signal Processing, vol 41, pp
8445-3462, December 1993.

)
-
o
.
&

=

=
=)
-

level 3 0

o
22

% of zero segments
o ~
% of zero segments
% of zero segments

0 0
23456 23456 23456
base 2 logarithm of length base 2 logarithm of length base 2 logarithm of length

3 2
2 2 2
€ £ €
9 (7])
15
£20 Exn £
level 2 i @ @
° ° o 10
810 810 9]
5 % 59
8 8 B3
234567 234567 234567
base 2 logarithm of length base 2 logarithm of length base 2 logarithm of length
3 60 6
)))
820 40)
Q (7] Q
level1 o [o
< o o
810 %20 820
s s s
s 8 s
0
2345678 2345678 2345678
base 2 logarithm of length base 2 logarithm of length base 2 logarithm of length
Low-High High-High High-Low

Fig. 1. Histograms of zero streams. The x-axis is the logarithm of

the length of zero streams. The y-axis is the percentage of each
of the zero streams:Calculated as the number of zero streams
of a length divided by the total possible number of such non-
overlapping streams

@
2
Low-Low Low-High
1”7,
7
High-Low High-High
Column Filtering
(b)
v
7
c
Z .
Low High

Fig. 2. Subbands for One-level Decomposition

’ Test 32 bits

65

60

55r

o
=]

% decrease in complexity
IS
o

301
25r
201

15
0

Key:
L 16: Left 16 bits test
R 16: Right 16 bits test

Fig. 3. Zero Testing Algorithm

_x]
_ X
Lena }g P
7/
¥ e]
/ X
¥ /
) 7" Goldhil i
!
#
!
I
1
! !
*

Barbara

I I
20 40 60 80 100
mean-squared error

501

% decrease in complexity
w S
S 3
T T

n
o
T

101

I
0 20 40 60 80
mean-squared error

Fig. 4. Complexity Saving vs Distortion

