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Bit-Rate Control Using Piecewise
Approximated Rate-Distortion Characteristics

Liang-jin Lin, Antonio Ortega

Abstract— Digital video’s increased popularity has been
driven to a large extent by a flurry of recently proposed in-
ternational standards (MPEG-1, MPEG-2, H.263, etc.). In
most standards, the rate control scheme, which plays an im-
portant role in improving and stabilizing the decoding and
play-back quality, is not defined and thus different strate-
gies can be implemented in each encoder design. Several
rate-distortion (R-D) based techniques have been proposed
to aim at the best possible quality for a given channel rate
and buffer size. These approaches are complex because they
require the R-D characteristics of the input data to be mea-
sured before making quantization assignment decisions. In
this paper, we show how the complexity of computing the
R-D data can be reduced without significantly reducing the
performance of the optimization procedure. We propose
two methods which provide successive reductions in com-
plexity by (i) using models to interpolate the rate and dis-
tortion characteristics, and (ii) using past frames instead of
current ones to determine the models. Our first method
is applicable to situations (e.g. broadcast video) where a
long encoding delay is possible, while our second approach
is more useful for computation-constrained interactive video
applications. The first method can also be used to bench-
mark other approaches. Both methods can achieve over 1dB
peak signal-to-noise rate (PSNR) gain over simple meth-
ods like the MPEG Test Model 5 (TM5) rate control, with
even greater gains during scene change transitions. In addi-
tion, both methods make few a priori assumptions and pro-
vide robustness in their performance over a range of video
sources and encoding rates. In terms of complexity, our first
algorithm roughly doubles the encoding time as compared
to simpler techniques (such as TM5). However complexity
is greatly reduced as compared to methods which exactly
measure the R-D data. Our second algorithm has complex-
ity marginally higher than TM5 and PSNR performance
slightly lower than that of the first approach.

Keywords— Rate control, Rate-distortion optimization,
Piecewise approximations, MPEG Video.

I. INTRODUCTION

Digital techniques for recording and transmitting video
signals have become popular in the last few years, as several
video compression standards, such as MPEG-1 and MPEG-
2 [1], [2], have been finalized, and adopted for example in
the Digital Video Disk (DVD) and several digital broadcast
TV standards. Most of these applications use constant-bit-
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rate (CBR) channels to deliver compressed, variable-bit-
rate (VBR) bit-streams, and thus the compressed data has
to be stored in memory buffers at encoder and decoder to
smooth out the bit-rate variations. A bit-rate control algo-
rithm at the encoder is necessary to ensure that the buffers
at encoder and decoder do not underflow or overflow. Even
in cases where large buffers are available, the constant end-
to-end delay constraints may be the dominating factor and
bit-rate control will still be required®. In the rest of the pa-
per we assume that the constraints (whether memory or de-
lay dominated) are given in the form of a maximum encoder
buffer size. In the CBR transmission case it can be shown
that, when using the same buffer sizes at encoder and de-
coder, preventing encoder underflow/overflow guarantees
that no decoder underflow /overflow will occur [3]. Thus for
CBR it is sufficient to control the output of the encoder to
avoid overflow (underflow can be avoided through bit stuff-
ing). In the VBR transmission case similar analyses can be
made and the result is analogous, i.e., appropriate bit-rate
control at the encoder can guarantee that end-to-end de-
lay constraints are not violated. We concentrate here on
the CBR transmission case but the techniques we develop
would also be applicable, with simple modifications, to the
case where VBR transmission is used and the encoder can
select both source rate and channel rate (see [4] for an ex-
ample of such joint optimization). Note that even in stored
video applications (e.g., DVD or CD-ROM) where data is
encoded off-line, the bit-rate still needs to be controlled
correctly to prevent the decoder buffer from overflowing or
underflowing during real-time playback. Because the rate
control itself is not specified by the standard, and affects
only the encoder, any standard compliant decoder can de-
code the bitstream regardless of the rate control technique
used. This makes it even more important to design efficient
high performance rate control algorithms.

In addition to avoiding overflow, it is important to de-
sign bit-rate control algorithms which provide good video
quality, by not only maximizing the quality of each picture
frame but also avoiding excessive variations in video qual-
ity. Quality requirements are often overlooked in designing
rate control algorithms so that only a fraction of the nu-
merous proposed algorithms explicitly consider distortion
as a factor. Thus, the focus of our paper will be the design

ITLet AN be the end-to-end delay in the system, i.e. AN is the
time (measured in frame intervals) a particular frame remains in the
system, from the time it is encoded to the time it gets decoded. In
systems where no frames are dropped AN is constant and, given R,
the channel rate in bits per frame, it can be shown that the encoder
can store at most AN - R bits in its buffer in order to guarantee
that decoder buffer underflow will not occur, even if a larger buffer
memory 1s available [3], [4]
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of effective, rate-distortion (R-D) based, bit-rate control
algorithms. We consider both high and low encoding delay
scenarios, and provide algorithms that are suitable for each
case.

Rate-distortion techniques aim at meeting the require-
ment of overflow prevention while maximizing the video
quality. Methods based on Lagrangian optimization [5],
(6], [7], [8], [9] or dynamic programming [10] have been
considered in the literature. These methods typically per-
form a pre-analysis of future video frames to measure their
R-D characteristics before applying a rate allocation strat-
egy. If frame dependencies are taken into account [7] the
complexity can become very high, as increasing numbers
of R-D operating points have to be measured, thus making
some of these methods only suitable for off-line encoding.
A popular approach to reduce the complexity has been to
rely on rate and distortion models, which avoid the need to
measure the R-D data on all possible quantization settings
[11]. Traditionally, models which allow the computation of
closed form solutions have been prefered but, in this pa-
per, we will argue that sufficiently accurate modeling for
practical coders may not be possible with closed form so-
lutions. Instead, in Section III, we introduce models based
on sampling the R-D data and interpolating (using spline
approximations) those points that have not been measured.
Our models also take into account the dependencies arising
in motion compensated video coding and we demonstrate
that they can be used to significantly speed up the search
procedures in R-D based bit-rate control, with negligible
penalty in video quality. In our results, we achieve average
gains of close to 1dB peak signal-to-noise rate (PSNR),
with gains of over 2dB possible for particular scenes, as
compared with a simple one-pass encoder. The complexity
increases by only a factor of two with respect to the one-
pass encoder but is an order of magnitude lower than that
of a similar scheme which measures, rather than models,

the R-D data.

The results in Section III show that pre-analysis can
be effectively used in combination with modeling of R-D
characteristics. This pre-analysis approach can be used
in applications, such as stored video and broadcast video,
where the encoding delay can be large, allowing the en-
coder to store several video frames. In general, significant
encoding delay may be possible, and indeed desirable, for
applications where two-way interactivity is not required?.
For example, in the stored video case, because encoding is
done once but the sequence is decoded many times, there
is a clear need for algorithms that can significantly improve
the video quality, even at the cost of additional compute
power requirements at the encoder. It is important to note

?Note that we make a distinction between encoding delay and real
time encoding. A system can support real time encoding (e.g., encode
30 frames per second) while having a significant encoding delay (e.g.,
frame ¢ is captured at the time when frame i — AN: 4+ 1 is being
compressed, so that AN, frames are stored at the encoder at any
given time.) This is the case for many hardware video encoders which
operate using various degrees of pipelining. For example the encoder
can be computing the motion field for one frame while the DCT of
another frame is being computed.

that the proposed models permit a faster implementation
of general R-D based algorithms with little loss in perfor-
mance. Thus our models, as will be seen in Section IV,
permit benchmarking of other, faster, approaches, with a
reasonably low computation cost.

Data pre-analysis can only be very limited in applica-
tions requiring a low end-to-end delay. This is the case for
example in interactive communications, as in the video-
phone and videoconferencing applications for which the
H.261 [12] and H.263 [13] standards are designed. In low
encoding delay and low complexity scenarios, predictive
control schemes, e.g. [14] or the MPEG Test Model 5
(TM5) [15], have often been considered to be good solu-
tions. In predictive schemes rate allocation decisions are
based on currently available information such as the buffer
state or the expected rate for future blocks (which is es-
timated based on the rate used for previous frames). Ex-
amples include direct buffer-state feedback methods where
the buffer occupancy determines the quantization setting
[14]. These methods suffer in performance if the assump-
tions, which may be based on a particular type of sequence
or scene, do not hold. Moreover, most predictive meth-
ods suffer from degradation at scene changes since models
change from scene to scene and the rate control is set to
parameters based on a model that is no longer valid.

While predictive schemes are attractive due to their low
computational complexity and low delay, we will propose
that pre-analysis and R-D criteria can be used to improve
the performance, even for interactive applications. Simple
pre-analysis based on a single frame has been used to im-
prove TM5, by measuring the frame and block activities
from the current frame, rather than using estimates based
on the previous frame. Another TMb)-based method pro-
posed in [16] uses a constant g to quantize and encode all
the blocks in each frame in order to get a bit-usage profile,
which is then used during the actual encoding. Another
work [17] proposes measuring the entropy and using it to
predict the bit-rates at the macroblock level. Other model-
based methods can be found in [18], [19] but again most of
the proposed schemes are based on rate only.

Thus our goal is to design fast, low encoding delay, R-D
based bit-rate control techniques. The algorithm we intro-
duce in Section IV is based on pre-analysis of a single frame,
i.e. we measure the R-D characteristics of the current frame
type (I, P or B), and relies on previously encoded frames
of other types to estimate the R-D characteristics of future
frames. For each frame we use the piecewise spline approxi-
mations presented in Section III. This algorithm maintains
both low encoding delay and low encoding complexity and
may be of interest not just for interactive applications, but
also for non-interactive applications (e.g. live video) where
encoder complexity is limited. In comparison with TM5,
our method can produce more stable quality and is robust
(i.e. our results are consistent for a wide variety of video se-
quences and channel rates), with average gains close to 1dB
in some instances, and even larger gains in specific scenes.
Moreover our scheme allows the introduction of perceptual
criteria, by for example imposing a constraint to limit the
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changes in quality between consecutive frames. We use the
algorithm of Section III to benchmark the performance of
the fast algorithm and show that loss in performance is very
slight, while the complexity is now comparable to that of
the simple TM5 algorithm.

The paper is organized as follows. We start by formu-
lating the problem of bit-rate control in a rate-distortion
framework in Section II. Given that generating the R-
D data is the major complexity factor, in Section III we
introduce models to interpolate R-D characteristics that
allow significant reductions in complexity. Finally, we in-
troduce a fast and efficient bit-rate control method where
R-D characteristics predicted from past frames are used
in combination with R-D data measured from the current
frame (Section IV).

II. PROBLEM FORMULATION

While we present experiments based on MPEG encoders,
which we now briefly introduce, our proposed algorithms
are general enough to be applied to other similar video
coding schemes, such as H.261 or H.263. In MPEG, the
input frame is segmented into blocks of 16 x 16 pixels,
or macroblocks. Each macroblock can be an intra-block,
which is DCT coded, or a non-intra-block, which is DCT
coded after subtracting a block from the reference frame
obtained through motion estimation. The intra/nonintra
selection strategy is not defined in the standard, but it is
constrained by the frame type. Three frame types are de-
fined in MPEG: (i) I (intra) frames, where macroblocks
can only be coded in intra mode, (ii) P (predicted) frames,
where each macroblock can be coded in intra, or non-intra
mode, and (iii) B (bi-directionally interpolated) frames,
where each macroblock can be coded in intra mode, with
forward prediction only, with backward prediction only, or
as a bi-directionally interpolated block. The set of pictures
including an I-frame and all successive P and B frames up
until the next I frame is called a group of pictures (GOP).
When considering motion compensated prediction we will
talk about reference frames, which are used to generate the
prediction, and predicted frames. We refer to [1], [20], [2]
for more details.

MPEG encoders can assign one out of 31 possible quan-
tization values (mgquant) to each macroblock, thus con-
trolling the rate-distortion trade-off. The objective of the
bit-rate control algorithm is to determine mquant for each
macroblock to keep the output bit-rate within the rate and
buffer constraints while maintaining high and stable qual-
ity. To simplify the problem, encoders typically operate at
two levels. First they perform a frame-level allocation by
selecting a single parameter ¢ for each frame. Then, spe-
cific mquant values are assigned to individual macroblocks
within the frame. In TM5, these two steps are called global
control and adaptive quantization, respectively. We concen-
trate here on the frame-level allocation and use the GOP
as our basic coding unit. Optimal (in a R-D sense) mac-
roblock level selection of quantizers [21], [22] is possible
given a rate budget for a frame. Thus a complete allocation
framework could include (and possibly iterate between) (i)

a frame-level allocation of quantizers that generates frame
rate budgets and (ii) a macroblock-level allocation for the
given budget.

Let q = (q1,92, - - -,qn)? be the quantization choices for
the N frames in a GOP, where ¢(¢) is the quantizer choice
for the #-th frame. The rate and distortion functions for
frame 7, denoted r;(q) and d;(q), respectively, can be found
by computing the total number of bits and the mean square
error (MSE) of the ¢-th frame for the given quantization
choice q. By using a vector expression for q, we are tak-
ing into account the “dependency” of the problem, i.e., the
R-D trade-off for a given predicted/interpolated frame de-
pends on the reference frame(s) used to generate the motion
compensated prediction [7]. The buffer occupancy b(i, q)
at the i-th frame interval, when the GOP has been coded
with quantization choice q is then:

. . R
b(i,q) = max (b(z —1,q) + ri(q) — F’O) , (1)
Vi=1,...,N with 5(0,q) =0,

where R is the channel rate in bits/second, F is the frame
rate in frames/second, and b(0, q) is the buffer occupancy
before the first frame is coded. Note that we use a maz
function in our formulation because in underflow situations
the buffer occupancy never falls below zero (stuffing bits are
used).

We now formulate the bit-rate control problem with two
different distortion criteria. First we consider the case
where the objective is to minimize the average distortion
over an entire GOP.

Formulation 1: Minimizing Average Distortion:

Let @ = {1,2,...,31} be the set of admissible quantizers3
and let b4, be the prescribed maximum buffer size. Find

a* = (¢7,q5, ..., qy)F, with ¢ € Q for i = 1,2,..., N,
where N is the GOP size, such that
1 N
* = arg min — di(q), 2
q* = arg min N; (a) (2)
subject to
b(i,q) < bmezr, i=1,2,...N —1, (3)
b(N,q) = 0. (4)

We impose the constraint of (4) to force the final buffer
occupancy b(N, q) to be zero (possibly after adding stuff-
ing bits) and therefore maintain a constant number of bits
per GOP. This constraint is necessary for recording on a
digital tape recorder [5], and also allows faster searching
and indexing for video streams stored in a CD-ROM or
hard drive. This constraint also simplifies the optimiza-
tion, since it decouples the rate allocation for each GOP
(all GOPs receive the same rate) and thus makes it possi-
ble to operate with a fixed encoding delay. If “constant rate
per GOP” is not required, the constraints can be removed
to better utilize the buffer and improve the quality.

3 A larger quantization index corresponds to a coarser quantizer and
thus higher distortion and lower rate.
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Several methods have been proposed to solve this prob-
lem. In the simpler “independent” case, where there is no
inter-frame dependency (e.g., I-frame-only MPEG or Mo-
tion JPEG) and r;(q), d;(q) depend only on ¢;, well known
approaches such as Lagrangian optimization [23] or dy-
namic programming [10] can be used to approach or achieve
the optimal solution. In the more general dependent-
coding case (e.g. MPEG with P and B frames) solutions
tend to be more complex even if the buffer constraints are
ignored [7], because allocations in one reference frame affect
the following predicted frames. The complexity increases
in two ways. First, efficient ways for searching the N-
dimensional space of quantization choices QY allocations
may not exist so that in the worst case exhaustive search
may be needed. Second, computing r;(q), d;(q) may re-
quire recoding all the frames in the GOP for each choice of
q even if only one q; changed, since changing quantizer for
a reference frame affects all its predicted frames.

Gradient-based search techniques can be used to tackle
the first source of complexity, as they provide a structured
way of traversing the N-dimensional space of possible so-
lutions and can efficiently find solutions that are close to
the overall optimal one [24]. The number of values of q
that have to be tested before converging is not only much
smaller than that needed in exhaustive search but it also
becomes smaller when solutions for previous GOPs are used
as initialization (because successive GOPs tend to be sim-
ilar). Details of the algorithm can be found in [24], [25].
To make this algorithm (or others based on R-D optimiza-
tion) practical we must still solve the remaining complexity
bottleneck, namely, the computation of R-D points. This
issue will be tackled in Section III.

In video coding minimizing the average distortion does
not always lead to an optimized perceptual quality. This
motivates us to introduce an alternative formulation which
seeks to minimize variations in distortion between frames,
and therefore avoid “flicker problems” caused by abrupt
changes in quality.

Formulation 2: Minimizing Distortion Variation:

For each feasible value of ¢; € Q find ¢* such that

*

— arg min
q g qeoN-1

> ldiar) = dimaain)] )

subject to

b(i,q) < bmazr, 1=2,...,N, (6)

where by, 4. 1s the prescribed maximum buffer size.

Note that the resulting solution depends on the initial
condition, ¢1, which could be chosen to minimize the aver-
age distortion achieved by q*. Solutions to Formulation 2
will tend to be close to those achieved using a minimax or a
lexicographic framework [26]. In a lexicographic approach
the goal is to minimize the maximum distortion among all
frames in a GOP, then given that the maximum distortion
is minimized, minimize the second largest distortion, and
so on. It can be shown that, for a continuous space of ad-
missible quantizers, the optimal solution will be the one

which gives a constant distortion [26], assuming that this
solution does not violate the buffering constraints. If it
exists this solution will also be optimal for Formulation 2.

To solve the above formulated problems it will be nec-
essary to evaluate the code-length and distortion for all
possible quantization settings. In the next two sections, we
introduce two approaches to approximate the R-D data. In
Section III, we apply piecewise spline approximation meth-
ods to speed up the algorithm of [24] in solving Formula-
tion 1. In Section IV a faster method is developed which
combines the spline approximations with prediction mech-
anisms. We demonstrate how this approach can be used to
obtain solutions for both Formulations 1 and 2.

III. APPROXIMATION OF RATE-DISTORTION FUNCTIONS

Modeling of rate and distortion characteristics has been
frequently used within bit-rate control schemes [11], [17],
[27], [19], [28], [29]. Gaussian, Laplacian or Generalized
Gaussian distributions are typical choices, thus leading to
exponential or logarithmic expressions. Most of the models
only consider the rate function and often implicitly assume
that the distortion is a linear function of the quantization
scale. In addition, most models do not take into account
the dependencies that arise in the choice of quantizers for
the reference frames and the predicted frames [7]. Even
when dependencies are taken into account, as in [11], some
non-linear effects typical in video coding are ignored. For
example, for typical intra/inter selection rules, prediction
is turned off (and intra coding is used) if the quality of the
reference frame is too low, thus eliminating the dependency
if coarse quantization is used on the reference frames. Be-
cause the accuracy of the models directly affects the results
of the bit-rate control, our goal is to design models which
(1) account for both rate and distortion, (ii) make a mini-
mum of a priori assumptions on the frame characteristics
and (iil) take into account the effect of frame dependencies.

A. Intra-Frame Approrimation Method

We consider first the problem of approximating frame-
level R-D characteristics, i.e., estimating r(¢) and d(q) for
any given value of ¢ without actually having to quantize
and encode the data for all values of ¢*. To compare the
accuracy of the various models we use the MPEG-2 encoder
of [31], and compute MSE and code length for all quanti-
zation settings (from 1 to 31) and all frame types (for P
and B frames a constant quantization scale of 10 is used
for the corresponding reference frame.) The relative error
for each model is calculated by

estimated_value — original_value

relative_error = (7)

original value

4The methods we propose can also be applied to macroblock-level
R-D modeling [30], [25] and can thus be used to speed up the block
level rate allocation within a frame (e.g. for the algorithms of [23],

[22]).
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A.1 Exponential Models

Source rate models of the form

i) =a+ 5 log(y ), ®)
where a and 3 are two parameters which may also depend
on ¢, have been proposed in the literature [29]. Curve
fitting can be used to derive appropriate values for o and
3. The results show that relative errors for these models are
too large (average errors of up to 40% for typical I frames
and up to 150% and 400% for P and B frames, respectively)
to be useful in our rate control context.

Alternative rate models, which achieve better perfor-
mance, can be defined as follows [32],

rg) =e+ 5 ©)

where a third parameter, 7, controls the curvature of the
function. The average and maximum relative errors after
fitting are shown in Table I (top table, column labeled as
“opt.expon”). The results are better but the error is still
large, in particular for B and P frames in low activity video
sequences.

These models show relatively large errors, even if the
“optimum” parameters of the model have been computed.
Since model fitting is best when all the data is used (i.e.,
when we measure the rate at all values of ¢ and then fit
the parameters) the complexity of this approach can still be
high. Fixing the models with some a priori empirical values
or adaptively adjusting them based on measured data is a
possibility, but will result in increased relative error. Ad-
ditionally, these models assume that distortion (measured
by MSE) is proportional to ¢, which will result in large er-
rors for d(g). In what follows, we introduce interpolation
functions for both r(¢) and d(g) which allow us trade off
complexity and accuracy.

A.2 Interpolation Functions

In order to increase the accuracy of the models, we en-
code the video data and measure the R-D functions, but
only for a small set of quantization scales, which we call
“control points”. We use M control points, defined as
(ziyyi), ¢t = 0...M — 1, where z; represents the quanti-
zation scale (for MPEG, z; € {1,2,...,31}), and y; repre-
sents the actual measured rate or distortion (see Fig. 1).
Piecewise cubic or linear interpolation is then used to es-
timate rate and distortion for the remaining ¢’s. Let f; be
the function (either r; or d;) which we seek to approximate.
Cubic interpolation provides an approximation which pos-
sesses first-order continuity at the control points. In this
case, the values of f; in between two consecutive control
points, z; and z;4+1, can be approximated as

fi(l‘):ai~x3+bi-x2+ci-x+di, (10)

where ¢ = 0...M — 2. There are M — 1 polynomials,
each corresponding to one segment. For each polynomial,
the four parameters, a;, b;, ¢;, d;, can be derived from

the four control points, (zi—1,%i-1), (zs, %), (Zit1,Yit1),
(i42, Yit2), by imposing the following two constraints: (1)
The interpolated function should take the same values as
the original one at the control points; (2) The first-order
derivative should be continuous at the control points.

In order to capture the exponential-like decay property
of the rate function, we choose our control points such that
z; = xi—1 + ;> (e.g., for MPEG the control points are
{1,2,3,5,8,13,21,31}.) For typical video sequences at the
standard rate (e.g. CIF at 1.152 Mbps), some of the quan-
tizers (e.g., ¢ = 1,...,4) are rarely used, and so only 5 or
6 control points are required in most cases.

Our algorithms show significant reductions in error com-
pared to the exponential model for r(g), with cubic spline
interpolation outperforming linear interpolation (see Ta-
ble I.) For d(g) we include only the comparison between
linear and cubic interpolation functions, which shows lit-
tle difference between the two techniques. Thus, in what
follows, we will use cubic interpolation for r(g), and linear
interpolation for d(q).

B. Inter-Frame Dependency Model

The intra-frame approximations introduced in the pre-
vious section can be used to model P and B frames, for a
given choice of quantizer for their reference frame(s). How-
ever, additional modeling is required to fully approximate
the dependency and take into account the changes in R-D
as the reference frame quantizer varies. To simplify the
computation, motion estimation is based on the original
frames so that re-evaluating the rate and distortion after
a quantization change does not require recomputing the
motion vectors.

B.1 Formulation of Inter-Frame Dependency

Consider the first P frame in a GOP and its reference
I frame (the same analysis applies if the reference is a P
frame). Let ¢r and gp be the quantization choices for the
I and P frames, respectively. The rate and distortion func-
tions for the P frame will have the form dp(qr,¢p) and
rp(qr, gp), so that variations with both ¢y and ¢p have to
be modeled. We can extend the idea of the previous section
and measure dp(gr, ¢p) and rp(qr, gp) at selected control
points in the 2D parameter space. A straightforward ap-
proach would be to select the same M control points used
in the previous section for both ¢ and ¢p (total of M x M
control points). For each choice of ¢y the method is exactly
the same as that described before. However, this approach
is complex because, in order to compute the data for each
additional control point along the ¢; axis, both the I and P
frames have to be re-compressed and reconstructed. This
complexity is much higher than that involved in computing
the data along the ¢p axis (requiring only quantization and
encoding for the P frame). To cope with this problem, we
introduce a model for inter-frame dependency which only
requires two control points along the ¢; axis.

Consider Fig. 2, which plots dp(qr, ¢p) as a function of
dr(gr), the MSE for the corresponding I frame, for all pos-
sible choices of ¢; and ¢gp. These experimental results indi-
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mse of P frame

Fig. 2.

PIECEWISE CUBIC (P\V .CUBIC) .

Intra-frames Relative Errors for r(q)
average error maximum error
opt.expon pw.linear pw.cubic | opt.expon pw.linear pw.cubic
Claire 5.77% 2.27% 0.65% 28 46% 28.89% 7.57%
Football 14.95% 4.30% 0.90% 77.09% 15.43% 6.32%
Miss America | 26.75% 3.07% 1.16% 100.03% 26.05% 9.86%
Susie 21.15% 3.35% 1.24% 68.00% 23.65% 7.13%
Intra-frames Relative Errors for d(q)
average error maximum error
pw.linear pw.cubic | pw.linear pw.cubic
Claire 0.72% 0.55% 2.95% 4.37%
Football 0.95% 0.55% 6.13% 7.01%
Miss America | 0.65% 0.43% 4.63% 3.84%
Susie 0.84% 0.51% 5.95% 6.10%
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MSE for the P frames from two video sequences, plotted as a function of the MSE for their reference I frames. Each solid line

represents the MSE for a fixed gp, as q; changes. The dotted line indicates the boundary where the quantizers for the predicted and

reference frames are equal.

cate that, for a fixed g¢p, increasing dy(qr) (i.e. increasing

qr) results in roughly linear increases in dp(qr, ¢p). How-
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ever dp does not increase further beyond the point where
qr and ¢p are equal. This linear-constant model can be
partly justified based on typical mode selection mechanisms
within MPEG (e.g. those used in [31]). Typically, inter-
frame mode is used on a block as long as the energy in the
prediction residue is below the energy in the original block.
However, as gy increases, so does the energy in the residue
and when this energy is greater than that of the original
block, the coding mode is changed to intra (at that point
there is no longer dependency with respect to ¢y, and thus
dp as a function of ¢y is constant). More detailed analyses
to justify this model can be found in [25].

We thus propose the following I-P dependency model (re-
fer to Fig. 3). Let ¢p = C be constant, then, as motivated
above, we can model dp(gr,gp = C) as a one-dimensional,
linear/constant, function of the variable dr(¢qr). The func-
tion is linear with respect to dy(gy) for ¢r < C', and becomes
a constant function for ¢q; > C-

The two model parameters, @ and 3, can be determined
by encoding and measuring the distortion at two values of
gr. As shown in Fig. 3, if the two values are chosen to be
5 and 13, and the same spline model with 6 control points
(as in Section ITI-A) is used along the ¢p axis, the set of 12
control points becomes {(5,3), (5,5), (5,8), (5,13), (5,21),
(5,31), (13,3), (13,5), (13,8), (13,13), (13,21), (13,31)}. To
interpolate d, at an arbitrary quantization setting, say
(10, 10), the interframe model is applied 4 times with C
set to {5,8,13,12}, so that the distortion values are esti-
mated at (10,5), (10,8), (10, 13) (10,21). Piecewise inter-
polation based on these four points is then used to derive
the distortion at (10, 10).

For rp(qr,qp), we have observed for several video se-
quences that, for quantization scales between 3 and 24, the
inter-frame dependency is reasonably low. Hence, the fol-
lowing simple piecewise linear model is used (assuming that
rp(qr, C) has been measured for ¢y set to 21 and z3):

rp(z1,C)
rp(z1,C)(dr(z2)—dr(gr))+rp(x2,C)(dr(gr)—dr(x1))

rp(qr, C) = di(z1)—d; (z2)
rp(za,C)
(12)
for (i) ¢r < @1, (i) 21 < q1 < @2, and (iil) ¢r > 22, respec-
tively.

For B frames, the distortion function can be written as
dp(qr1,qr,qB), Where qp, qr, ¢p are the quantization scales
for the B, I and P frames involved. A priori one would have
to consider a three dimensional set of parameters. To sim-
plify we evaluate two 2D models as illustrated in Fig 4. We
first set ¢qr = ¢ (where ¢ is one of the inter-frame control
points), and evaluate the dependency with respect to the P
frame by using the 2D model for P frames described above
to model di(c, qp,gp). We then fix ¢p = ¢ and apply the
same model to find da(¢r,¢,qp). Finally, d(qr,qp,qB) is
defined as min(d; (¢, ¢p, ¢B), d2(¢1, ¢, 9p)). This procedure
can be intuitively justified given the strategy for selecting

“forward” or “backward” motion vectors in the MPEG en-
coder, where the lowest energy predictor is chosen. The
same model is also used for the rate function, where there
are a total of 18 control points to be measured if the same
set of control points as in the example above is used.

B.2 Model Compliance Tests

We use the MPEG-2 encoder implementation of [31] to
test the accuracy of the approximation model. As before
we encode the frames to measure the MSE and code length,
for every quantization setting. Based on the function values
at the pre-defined control points ({1, 2,3,5,8,13,21,31} for
intra-coded frame, {5, 13} for inter-frame dependency), we
build the model using the procedures just described, and
calculate the estimated rate and distortion values. Both
linear and cubic interpolation for intra-frame approxima-
tion are tested. The relative error is then calculated by
(7). Finally, the average and maximum relative errors are
calculated over the typical operating range of quantization
scales, which is from 3 to 24. The results are shown in Ta-
ble IT and Figs. 5 and 6, and demonstrate reasonably small
errors for P frames, but somewhat larger ones for B frames.
In our examples from the “Football” sequence we show the
model approximations achieved for r;(q) (Fig. 5(a)), dp as
a function of dr (Fig. 5(b)), and dg(gr, ¢p, C) for a given
constant ¢g = C (Fig. 6).

C. Bit-Rate Control with Interpolated R-D

The proposed models are general and can be applied to
any bit-rate control scheme which requires R-D data. In-
deed, the appropriate way of demonstrating their effective-
ness is to show that a particular R-D based bit-rate control
scheme does not lose in performance when it uses interpo-
lated R-D data instead of measured data. Thus, we test
the models introduced in Sections III-A and III-B with the
gradient-based algorithm proposed in [24]. The basic idea
is to replace the actual data with the one obtained from the
models in the rate control algorithm. Once the algorithm
has converged to a solution q for the GOP, we can apply
this quantizer selection to encode the GOP.

Due to the errors in the model some of the constraints
(e.g. constant rate per GOP as in [24]) may not be strictly
met by the solution. However because modeling errors are
only significant for the B frames, which consume the fewest
bits, the buffer constraints are normally still satisfied. To
mitigate the effect of relatively large model errors in B
frames, we can introduce a second pass in the algorithm.
First we use the approximations to select the quantization
settings, then, after encoding the I and P frames using
those settings, we calculate the total number of bits re-
maining for the B frames, which we denote Rp. Using this
available bit budget, the bit allocation for B frames is then
re-optimized. The additional optimization procedure does
not cost much in terms of computation, because all the ref-
erence frames (I and P) are fixed and all the Mp B frames
are independent of each other. Denote rp;(¢;) and dpi(¢;),
respectively, the rate and distortion functions for the i-th
B frame. Our goal is to select the quantization scales for
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Reconstruction of approximated distortion B frame. The dots indicate all the admissible operating points in the 3D space. The

circled dots indicate those operating points at which rate and distortion are actually measured.

each B frame (qo,q1,...,qpmz—1), SO as to®,

Mg—1 Mg—1
minimize Z dpi(g;) subject to Z rpi(¢i) < Rp.
=0 i=0

(13)
This problem can be solved efficiently using Lagrangian
optimization [23].

We use two standard MPEG video sequences, “Football”
and “Table tennis”, in CIF format at 1.152 Mbps, and
compare four algorithms: (i) mdl: gradient-based method
with approximated R-D characteristics; (ii) mrb: method
(1) with additional bit-re-allocation for B frames using the
Lagrangian method; (iii) org: gradient-based method with
the original R-D as in [24]; (iv) tmJ: the TMb algorithm
[15] implemented in [31]. A GOP of size 6 (IBBPBB) was

5Note that reallocating bits for the B frames does not affect the
performance for the other frames in the GOP

chosen in our experiments. The results are shown in Fig. 7
and Table III. The computation complexities provided are
relative to an encoder using TM5, and are estimated based
on the subroutines in [31], where (i) 13 multiplications and
29 additions are required for each 1-D size-8 DCT opera-
tion; (ii) the full search method is used for motion estima-
tion. We assume that there is sufficient memory to hold
all intermediate data including the motion vectors, recon-
structed reference frames, DCT coefficients; etc., so that
for example motion estimation or DCT computation only
have to be done once during the evaluation of R-D data
on the control points. Note that the relative increase in
complexity with respect to TM5 will become larger if a
fast motion estimation algorithm is used, since motion es-
timation is responsible for most of the complexity in the
encoding process (e.g., 90 % of computations when using

full search and TM5).
Our results show that the proposed models reduce the



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. Y, MONTH 1998 9

10°
5X
- 35

original

approximated
)
s &
< :_S original
g %307 approximated |
[} L
3 7]
] s

0 . . . . . . 25 . . . .
5 10 15 20 25 30 0 20 40 60 80 100
quantization scale MSE of reference frame

(a) (b)
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Fig. 6. (a) Original measured data and (b) reconstructed with B-frame model, of a B frame in the football sequence, as a function of g; and
gp, with gpg fixed at 10.

TABLE II
RELATIVE MODELING ERRORS FOR PREDICTIVE CODING MODEL. THE RESULTS ARE GIVEN FOR QUANTIZATION SCALES IN THE RANGE FROM 3 TO
24.
Predictive Coding Model Errors
BITS MSE
average error maxIimuin error average error maximuin error
linear cubic linear cubic linear  cubic linear cubic
Claire 9.34%  2.49% | 40.90% 33.02% | 3.03% 0.88% | 12.30% 12.30%
Football 5.38% 0.66% | 14.01% 8.41% | 1.81% 0.39% | 5.59% 6.60%
Miss America | 12.39% 3.27% | 43.54% 45.82% | 2.89% 0.89% | 11.03% 11.03%
Susie 11.04%  2.92% | 39.33% 15.88% | 4.30% 1.24% | 15.88% 15.88%
Bi-directional Prediction Coding Model Errors
BITS MSE
average error maximuim error average error maximuin error
linear  cubic linear cubic linear  cubic linear cubic

Football B1 | 5.08% 3.74% | 22.14% 22.72% | 3.08% 2.61% | 17.56% 17.56%
Football B2 | 5.73% 4.43% | 23.43% 23.64% | 3.13% 2.58% | 13.92% 14.73%

computation to just 15 to 20% of the original cost in [24], with very little loss in PSNR. If re-allocation for the B
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Fig. 7. PSNR for each frame in the “Football” and “Table tennis” sequences. mrb: gradient-based method using the approximated R-D by
the proposed model, with additional bit-re-allocation for B frames; mdl: gradient-based method using the approximated R-D only; org:
gradient-based method using the original measured R-D; tm5: Test model 5 algorithm.

TABLE III
AVERAGE PSNR AND COMPUTATION COMPLEXITY WITH DIFFERENT ENCODING METHODS. THE COMPLEXITY IS RELATIVE TO THE TEST MODEL

5 ALGORITHM.

Table Tennis

PSNR  Complexity

Football
PSNR Complexity
mdl 33.12 1.68
mrd 33.17 1.70
org [24] | 33.17 8.87
tmb 32.43 1.00

32.23 1.71
32.81 1.73
32.74 11.35
31.25 1.00

frames is used, the same PSNR as in the original method
[24] can be achieved with minimal additional computa-
tion. The proposed algorithm has clear advantages over
TM5 in handling scene changes and in general in being ro-
bust enough to be used with different sequences and rates.
While scene changes tend to mask compression artifacts it
can be noted that TM5 takes several frames to adjust to the
new frame characteristics (see the Table tennis sequence in
Fig. 7 (b), with a scene change in frame 66-67) while our
algorithm “learns” much faster the characteristics of the
new scene.

IV. RATE CoONTROL WITH PREDICTED R-D
CHARACTERISTICS

The interpolated R-D models presented in the previous
section can be used to speed up R-D based rate control
algorithms with pre-analysis, to ensure robust rate con-
trol with good quality, independently of specific video con-
tents and channel rates. The computational complexity
is independent of the specific rate control algorithm be-
cause the number of R-D evaluations (or control points) is
fixed. Thus, this method is suitable for either off-line DVD
program encoding, or, with appropriate pipelining hard-
ware, for real-time TV broadcasting. The cost paid for the
increased quality and robustness is both complexity (less
than a factor of two increase as compared to TM5) and

encoding delay (one GOP).

For two-way interactive communication applications, a
delay of one GOP is no longer admissible. Thus we now
introduce the use of predicted R-D characteristics to re-
duce the encoding delay to a single frame. This approach
could also be useful in non-interactive applications where
complexity or encoding delay are limited. This section will
also serve to demonstrate the applicability of the R-D mod-
els of Section III for benchmarking: the performance of a
particular fast algorithm can be compared to that attained
with an R-D optimized method. While in benchmarking
applications off-line computation is possible, and thus one
could also use the original R-D data, our interpolated R-D
method makes faster benchmarking possible, thus allow-
ing tests to be conducted over longer sequences (while still
giving a reliable approximation to the true R-D optimal
solution).

To motivate our algorithm we note that, except at scene
changes, the contents of consecutive frames tend to change
slowly over short periods of time (e.g. within a GOP).
Thus, when encoding a GOP, it is reasonable to assume
that the R-D characteristics of future, not yet coded,
frames are similar to those of the most recently coded frame
of the same type. In this section we propose an algorithm
which uses the intraframe model considered earlier (Section
ITI-A) but where we now assume that R-D data is only
measured for the current frame, while models based on al-
ready encoded frames are used for the remaining frames in
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the GOP. We further simplify the procedure by not taking
into account the dependencies in the coding.

A. Control Procedures

In the new control procedure we still consider GOPs as
the basic optimization unit. Because of the R-D prediction,
all frames of the same type will have the same R-D data
and thus the formulation can be further simplified. As in
the TM5 algorithm, we also do not explicitly consider the
buffer constraints in the new formulation. The number of
frames for each frame-type within a GOP is denoted as Ny,
Np, Np. The total number of bits allocated for the GOP
can be represented as

B = Bo+ (Nr+ Np + Ng) (14)

o
where By is the number of bits left (or over-used if it is
negative) from the previous GOP, R is channel rate in bits
per second, and F' is frame rate in frames per second. The
encoding procedure is as follows. For each frame, we first
measure and approximate its R-D functions, r(¢) and d(q).
To avoid any further pre-analysis, the R-D data of future
frames is estimated using the data from the most recently
coded frame of the same type. For example, the latest P
frame model is used for all future P frames remaining in
the GOP. Therefore, we need to keep three sets of R-D data
for the future frames, denoted as r1(q), dr(q), rp(¢), dr (),
re(q), dp(q), for I, P, B frames respectively. With this R-
D data, we optimize quantization scales for all frames in
the GOP, but only the quantization scale selected for the
current frame is actually used in the encoding. After the
current frame is encoded, we count the actual number of
bits consumed by the frame, subtract it from B in (14),
and then remove the current frame from the GOP (so the
number of frames is decreased by one). The procedure, us-
ing the updated values of B and changing GOP structure,
is repeated one frame at a time until all the frames in the
GOP have been encoded. The two different optimization
criteria shown in Section II are used.

A.1 Minimizing Average Distortion

We first consider Formulation 1. Since we have ignored
the effect of dependencies to build our predicted R-D mod-
els, we take advantage of the monotonicity property. This
property [7], confirmed by our MPEG coding experiments,
indicates that a better quality in the reference frame (I and
P) will lead to a better total coding efficiency. Hence, it
is reasonable to restrict the admissible operating points to
the range ¢; < qp < ¢p. The total (estimated) MSE is

D(q1,qp,q8) = Ni-di(q1) + Np -dp(qp) + Np - dp(qB),

(15)
and the goal of our optimization becomes to minimize
D(qr,qp,q8) subject to

Nr-ri(qr)+ Np -rp(gp) + N - rB(98B) < B,(16)
qr < qp < 9gs, (17)

where B is total number of bits available for a GOP. Be-

cause there are only three independent variables and there

is no inter-frame dependency involved, it can be efficiently

solved by the Lagrange multiplier method proposed in [23].
Algorithm 1: Minimum MSE

Step 1. Initialize Ny, Np, Ng and the set the total bit-
budget for a GOP using (14).

Step 2. Read the current frame and compute its DCT
transform (after motion compensated prediction
if it is a P or B frame). Let X be the current
frame type (X is I, P or B).

Step 3. Evaluate and approximate r(¢q) and d(g) for the
current frame, using the intra-frame approxima-
tion method of Section ITI-A. Use the results to
update rx(¢) and dx(g).

Step 4. Minimize total MSE in (15) subject to the con-
straints in (16) and (17). The solution is denoted
as (47, 49p, 4B)-

Step 5. Use g% to encode the current frame.

Step 6. Calculate the actual number of bits consumed by
the current frame, and subtract it from B. De-
crease the counter corresponding to the current
frame type Nx by one.

Step 7. If the current frame is the last frame of GOP,
assign B to By, advance to next GOP, and go to
Step 1. Otherwise, advance to next frame and go
to Step 2.

A.2 Minimizing Distortion Variation

The optimization criterion in Formulation 2 aims at min-
imizing the difference in MSE between consecutive frames
and often leads to a more stable playback quality. When
using predicted R-D characteristics the formulation can be
further simplified. We use a two-step optimization process,
where we first minimize the MSE difference. Based on the
current frame type, we pick one variablein {qs, ¢gp, qg} asa
primary variable. For example, suppose the current frame
is an I frame, the primary variable is q;. Given gy = z, the
quantization scales for P frames and B frames (denoted as
y*(z) and z*(z) respectively) are derived by minimizing

the MSE difference

@) = agminlde() - i), (19
2*(x) = argmzin[dB(z)—dI(x)]. (19)

As in the Minimum MSE case, we also add a constraint,

dr <dp < dp, (20)
to force the quality of the reference to be better than that of
predictive frame, which in general gives better performance
due to the monotonicity property. Then, in the second step,
the solution for the I frame, denoted as ¢7, is derived by
minimizing the difference between the total bits (generated
by the model) and the total bit-budget B,

[[Nr-rr(z) + Np -rp(y*(2)) + Np - r(27(2))] —
(21)
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over all possible #’s (or values for ¢r). If the current frame-
type is P or B, the solution of ¢}, or ¢ can be derived by
a similar procedure.

Algorithm 2: Smooth MSE

Step 1. Initialize the value of Ny, Np, Ng and the total
bit-budget of a GOP using (14).

Step 2. Read the current frame and compute its DCT
transform (after motion compensated prediction
if it is a P or B frame). Let X be the current
frame type (X is I, P or B).

Step 3. Follow the same procedure as in Algorithm 1,
Step 3 to derive and update R-D data.

Step 4. Derive the solution ¢% by using the above
double-loop optimization procedure.

Step 5. Follow the same procedure as in Algorithm 1,
Step 5 and Step 6.

Step 6. If the current frame is the last frame of GOP,
assign B to By, advance to next GOP, and go to
Step 1. Otherwise, advance to next frame and go
to Step 2.

B. Ezperimental Results

We encode the six MPEG test video sequences using the
algorithm. The results are shown in Table IV. The PSNR
of encoded image frames for GOP size 15 is shown in Fig. 8.
Results for the algorithm of Section III, the gradient-search
procedure with approximated R-D plus re-optimization on
the B-frames, are also shown in the Table for comparison.
Note that we use linear interpolation for distortion approx-
imation and cubic interpolation for rate. If both the rate
and distortion models use linear interpolation, the PSNR/’s
will be 0.05-0.2 dB lower on average. Also note that the
computational complexity of the new algorithm is simi-
lar to that of TM5, with only 8 additional quantization
and encoding operations per frame. Compared to other
operations like motion estimation or DCT, the additional
overhead is not significant, with further speed-ups being
achievable by using a parallel hardware implementation.
Note that our results are also very close to those achieved
in Section III thus indicating that the potential for even
further gains using R-D techniques is limited. Even if the
differences in PSNR compared to a simple algorithm like
TMb5 are small on average, our algorithm has the advantage
of being robust (it works well for different rates and video
sequences and at scene changes) and also being amenable
to the introduction of perceptually based criteria as part
of the optimization process [33].

V. CONCLUSION

In this paper, we have followed the framework of deter-
ministic rate-distortion optimization techniques with pre-
analysis and formulated the bit-rate control problem as a
constrained optimization problem. We proposed an ap-
proximation model which reduces the computational com-
plexity of R-D based methods to a practical level without
degrading the quality. We also introduced a fast R-D based
algorithm suitable for low-delay encoding, and have shown
promising results in the simulations. Additional work to

incorporate subjective quality measures into the cost func-
tions is currently underway [33].
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Fig. 8. PSNR of image frames the six video sequences, encoded using GOP size 15. In each figure, smooth: optimizing by smooth MSE
criterion; min-mse: optimizing by minimum MSE criterion; tm5: Test Model 5 algorithm.
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