
Complexity-scalable Transform Coding using Variable

Complexity Algorithms

Wendi Pan and Antonio Ortega �

Integrated Media Systems Center and Signal and Image Processing Institute,

Department of Electrical Engineering-Systems

University of Southern California, Los Angeles, CA 90089

Email: fdwpan , ortegag@sipi.usc.edu

Abstract

In applications where compression has to be performed under varying complexity
constraints (e.g. with hardware having to operate in reduced power mode) it is bene�-
cial to design compression algorithms that allow some degree of complexity scalability.
In this paper we explore complexity scalability for transform coding algorithms. We
show that a variable complexity algorithm (VCA), which uses energy thresholds to
determine the number of coeÆcients to be computed for each input, is preferable to
other alternatives such as a pruned transform, where the same number of coeÆcients
is computed for the whole image. We show that the bene�ts include not only a higher
degree of scalability, but also increased compression performance, as we take advantage
of the energy classi�cation that is needed for VCA operation and design quantizers
that match each class. We provide expressions for the average complexity, as well as
rate/distortion relations for a generic N-point VCA transform. For a two point case, we
present closed-form relations describing the variance changes in two classes. In addition,
rate-distortion-complexity relations are also empirically obtained. We apply VCA to
eight-point KLT and 8 � 8 DCT in the JPEG framework and experiments show that
the VCA approach is superior in rate/distortion performance at low rates as compared
to the standard transform coding techniques.

1 Introduction

The need for compression algorithms that support some sort of complexity scalability is
likely to increase as multimedia information is increasingly handled by portable devices
where the ability to operate under low power conditions is a prime requirement. In this paper
we study techniques that enable scalable operation of block transforms used in standard
algorithms such as JPEG and MPEG.

Traditional transform image coding algorithms, such as the discrete-time Karhunen-
Loeve transform (KLT) and the discrete cosine transform (DCT), have �xed computational
complexity once the size of of the transform matrix is decided upon. Variable complexity
transform coding algorithms, however, allow the complexity to change as a function of the
input. In this case the relevant performance measure is the average complexity for a given
input source. In this paper, we propose a VCA which uses energy thresholds to provide
a trade-o� in complexity, rate and distortion (RD). Since our approach is based on com-
putation of a subset of the transform coeÆcients, our VCA approach yields both di�erent
computation time and RD performance than standard transform coders. In [2], variable
complexity is achieved by classifying the DCT inputs and pruning the DCT computation
accordingly. However, no trade-o� in complexity, rate and distortion is available. Other
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complexity-reduction schemes such as [3], use thresholds to select which DCT coeÆcients
to compute, choosing, for example, whether to compute DC only, or compute 2�2, or 4�4,
or all 64 coeÆcients. Our approach provides a much �ner degree of granularity than [3] and
other related techniques .

We will provide examples based on both the KLT and the DCT. Our objective is two-
fold. First, we aim to demonstrate that lower overall complexity, with �ner degree of granu-
larity is possible with VCA approaches. Second, we demonstrate that the energy thresholds
used to achieve variable complexity can also be used to improve the RD performance of the
coders.

Our VCA transform coding is illustrated in Fig.1, where an eight-point transform is
used as an example. Once the k-th coeÆcient Yk is computed, a test (denoted by the circles

in Fig.1) is performed so as to determine whether
Pk

i=1 Y
2
i � (T �E), where T is the energy

threshold, ranging from 0 to 1, and E =
P8

i=1 Y
2
i , is the source signal energy. If the test

passes (i.e. the �rst k coeÆcients have captured suÆcient energy), then the algorithm stops,
leading to a reduced computation for this input; otherwise, it proceeds to calculating the
next coeÆcient. In the succeeding coding operation, all the coeÆcients that were computed
are quantized, whereas those not computed are simply set to zero, with overhead being used
by the encoder to indicate what coeÆcients are being sent. Note that this equivalent to the
end-of-block (EOB) code that is used in traditional transform coding techniques. Thus in
our approach we generate and quantize a variable number of coeÆcients per input.

This paper is organized as follows. In Section 2 we provide an analysis of various
aspects of the performance of VCA approach, including the complexity, the probabilities
and variances of each of the classes generated and the rate distortion performance. Section 3
presents our preliminary experimental results.
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Figure 1: Flowchart of the VCA algorithm to compute a size-8 block transform.

2 Analysis

In this section we �rst provide an expression of the average complexity as a function of
the probability of falling into each class. Then, we provide closed-form expressions for
these probabilities in a simple case. We also show that the pdf's of data in each class are
di�erent from those of the original data. Finally we combine these results to produce an
RDC characteristic.
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2.1 Complexity

Consider Fig.1, where Pi represents the probability of test and stop after computing Yi,

in other words, Pi = Prob:
hPi

k=1 Y
2
k � (T � E)

i
. Obviously, the more coeÆcients are

computed, the more likely our VCA will stop after testing. In general, we thus have
P1 < P2 < : : : < P8 = 1. The average complexity can be found as:

Cavg =

8X
i=1

Yi �
(

7X
i=1

(Pi � Yi+1) +
" 

6X
i=1

Pi

!
� 7

#
�H
)
+ F; (1)

where, Yi denotes the complexity of computing individual coeÆcient Yi (for example com-
puting each coeÆcient requires 7 adds and 8 multiplies in the KLT case), and H is the cost
of testing after computing each coeÆcient Yi. F represents the one-time cost of computing
T �E = T �PN

i=1X
2
i , the input signal energy scaled by the threshold T .

Note that for non-VCA, the complexity is Cb =
P8

i=1 Yi. Hence the complexity of VCA
is less than that of non VCA, by an amount S. It can be shown that the lower and upper
bounds of S are:

Slow = P1 � Cb � (7� 6P1)H � F; Sup = P7 � Cb � (7� 6P7)H � F: (2)

And the tightness of the bounds is given by: Su � Sl = (P7 � P1)(Cb + 6H).
It can be seen from (1) that the cost of testing H, is an important factor in the av-

erage complexity of the VCA. Consider two transforms: First, the KLT has no structure
since it depends on the autocovariance matrix of the input signal. Thus our VCA is useful
within a KLT framework as it allows to reduce greatly its otherwise complex N2 opera-
tions. The overhead of testing does not o�set too much the complexity reduction gained
by computing fewer coeÆcients. Second, for the DCT, however, there are numerous fast
algorithms, many of which require only O(NlogN) operations [1]. Although a VCA can
still contribute to a reduction of computation, the relative overhead of the testing due to
the VCA will be higher than in the KLT case. Therefore, the testing budget tends to be
tight for variable complexity DCT. Some fast testing methods such as using absolute val-
ues rather than square(-multiplication) operations for �nding the energy can be considered
[2][3][4]. Moreover, if we use a larger energy threshold, it is more eÆcient to do the energy
test only after several coeÆcients have been computed so that the overall testing overhead
is reduced. Note that although the computational cost of testing could become a signi�cant
overhead to the overall complexity of a software system, it may not be a major concern in
hardware implementation.

2.2 Class Probabilities

The VCA can be viewed as a pattern classi�er in the sense that it classi�es the source
(coeÆcient sample space) into several disjoint cases. The classi�cation criterion is the
energy test controlled by the threshold use.

For a closed-form solution, we consider the 2-D scenario: two zero-mean/independent
Gaussian random variables Y1 and Y2, with variances �

2
1 and �

2
2 respectively. The probability

P of successful test and stop by using energy threshold T corresponds to the mass of the
shaded region in Fig.2. It can be shown that

P = Prob

�
Y 2
1

Y 2
1 + Y 2

2

� T

�
=

2

�
arctan

 
�1
�2

r
1� T

T

!
=

2

�
arctan(K � r); (3)

where, K =
q

1
T
� 1 = tan�, and r = �1

�2
, is the ratio of standard deviations. In the

context of transform coding, r is an indicator of the energy compaction capability of the
transform used.
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Figure 2: Partitioning of the CoeÆcient Sample Space by VCA. The shaded region contains
all the inputs such that the �rst coeÆcient Y1 contains a percentage of the energy above
the threshold.

As shown in Fig.3 (left �gure), as expected, P decreases monotonically with increasing
threshold T . If we �x T and increase r, then samples are more likely to fall into class 1.
The reason is that a larger r means that Y 1 contains more energy than Y 2 on average and
thus the probability of passing the energy test becomes higher. Fig.3 (right �gure) shows
the saving of complexity introduced by the VCA. If the savings drop below zero, it indicates
that the VCA does not bring any gain in terms of complexity. This is because for those
thresholds the complexity of testing is not compensated by savings in coeÆcient calculation,
since with high probability both coeÆcients have to be computed.
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Figure 3: (Left) P as a function of r and T ; (Right) Complexity reduction as a function of
r and T.

2.3 Variances within each Class

The energy threshold T controls the number of coeÆcients computed and thus the overall
complexity. At the same time, the choice of T also a�ects both rate and distortion, given
that the test determines which transform coeÆcients are quantized. For any given input
vector of dimension N and a particular choice of T , there will be N classes, depending
on how many coeÆcients are computed. For each class k, (k = 1; 2; :::; N), k coeÆcients
are computed and quantized, and the remaining (N � k) are simply set to zero and not
quantized. In practice, overhead will be used to inform the decoder that (N�k) coeÆcients
were not encoded. We assume that the probability of class k occurring is Pk. We can then
represent the variances of the N coeÆcients conditioned on k, that is �2ki for i = 1; : : : ; N .
See also TABLE 1. It is important to note that the variance will not be the same for each
k, since through testing we are separating several di�erent scenarios. For example, for a
given T if k is small, i.e., a few coeÆcients contain most of the energy, then �2ki can be
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expected to be relatively large for small i, and relatively small for large i, as compared to
the original variances. Thus, in this example, if �2i is the original variance of the coeÆcient
(when using the standard, non-VCA, transform), then we expect �2ki � �2i for i < k and
�2ki � �2i for i > k.

Table 1: Classes in an N-point VCA.
Class Probability Var of Coef's Comp. Var of Coef's Not Comp.

1 P1 �211 �212; :::; �
2
1N

2 P2 �221; �
2
22 �223; :::; �

2
2N

k Pk �2k1; :::; �
2
kk �2

k(k+1); :::; �
2
kN

N PN �2N1; :::; �
2
NN

We take the two-point VCA as an example. By using the previous Gaussian model, we
can �nd a closed-form expression of the variances of two classes in relation to the original
source variance as follows:

Assume that Yi; i = 1; 2: , are the jth coeÆcient belonging to class i. For brevity, only
the pdf of Y11 of class I are given below :

fY11(y) =
2

P

" 
1p
2��2

Z Kjyj

0
e
� x2

2�2
2 dx

!
1p
2��1

e
� y2

2�2
1

#
(4)

where, P is the probability of class I occurring, as given in equation (3).

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2
1st coef of class I

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5
2nd coef of class I

−10 −5 0 5 10
0

0.5

1

1.5

2
1st coef of class II

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4
2nd coef of class II

threshold = 0.1 

 std = 2.56    std = 0.96 

 std = 0.26   

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2
1st coef of class I

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1
2nd coef of class I

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
1st coef of class II

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4
2nd coef of class II

threshold = 0.9 

std = 3.21 std = 0.53 

std = 1.64   std = 1.25 

Figure 4: Distribution of CoeÆcients in Two Classes(solid curves):(Left) T = 0:1; (Right)
T = 0:9. Dashed curves represent original normal distributions.

The distributions are plotted in Fig.4 for two thresholds. It can be observed that class
II is a dual case to class I. Y11 splits into a bi-modal distribution from the original normal
shape. As T is increased, the two peaks of Y11 are increasingly separated while Y12 shows
an increasingly \peaked" distribution. This suggests that the variance of Y11 increases and
that of Y12 decreases as a result.

It can be shown that class variances �ij are related to the original variances �i by two
simple adjustment factors, called G1 and G2, as follows:

�211 = (1 +G1)�
2
1 ; �212 = (1�G1)�

2
2 ; (5)

�221 = (1�G2)�
2
1 ; �222 = (1 +G2)�

2
2 : (6)

with G1 =
2Kr

P (K2r2+1)�
=
�
1
P
� 1
�
G2 , where K and P are as de�ned in Section 2.2, and

r = �1/�2.
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2.4 Rate Distortion Relations

In an N -point VCA, there exist N classes, such that in class k, only the �rst k coeÆcients
are computed, and the remaining (N � k) coeÆcients are simply set to zero. We introduce
an optimal bit allocation by considering allocation at two levels. At the lower level, we
consider coding within each class. There we can use standard bit allocation techniques to
determine how to allocate Bk bits among the k coeÆcients coded in class k [5]. If coeÆcients
computed are scalar quantized at high resolution, then the optimal distortion for the total
number of bits Bk is

Dk = kHk�
2
k2

�2
Bk
k +

NX
i=k+1

�2ki (7)

where, Hk =
�Qk

i=1 hki

� 1

k
, �2k =

�Qk
i=1 �

2
ki

� 1

k
are the geometric means of the distortion con-

stants and variances, respectively, which can be obtained from the probability distributions
of the coeÆcients [5].

At a higher level, our goal is to allocate optimally bits to each of the classes, i.e., to �nd
Bk for each class. This allocation has the aim of minimizing the total average distortion D
under a constraint on total rate B, where:

D =

NX
k=1

(Pk �Dk); and B =

NX
k=1

(Pk � Bk) (8)

Note that here the total rate and distortion are averaged with weights corresponding to the
probabilities of each class. Conventional Lagrange multiplier techniques can be employed
by introducing the cost function J and searching for the rates that minimize it for a given
Lagrange multiplier � � 0,

J = B + � �D =

NX
k=1

(PkBk) + � �
"

NX
k=1

Pk �
 
D0

k +

NX
i=k+1

�2ki

!#
: (9)

We minimize J by taking the N derivatives: @J=@Bk = 0; with k = 1; :::; N . We obtain the
following optimal bit allocation, expressed in average number of bits assigned to class k:

Bk;opt =
Bk

k
= �B +

1

2
log2

Hk�
2
khQN

i=1(Hi�
2
i )

iPi

i 1

Pt

(10)

where, Pt =
PN

k=1 kPk, is the average number of coeÆcients computed for all N classes,
and �B = B=Pt, is the average number of bits per coeÆcient. Note that the distortion of
(7) corresponds to the best bit assignment to the coeÆcients within a class and has been
used in estimating the distortion in (10). Thus, this two step procedure (allocation among
classes �rst, then within classes) is also guaranteed to be optimal. Intuitively, (10) shows
that the allocation to class k exceeds the average allocation �B if the parameter Hk�

2
k is

greater than the class probabilities weighted geometric average of Hk�
2
k for k = 1; 2; : : : ; N .

Conversely, if Hk�
2
k is less than this geometric mean, then the bit allocation is less than the

average allocation �B. Note that the main change with respect to standard bit allocation
results comes from the fact that the number of coeÆcients receiving bits varies from class
to class. Thus, whereas in the standard geometric mean expression we had a 1=N term
(assuming N inputs) and equal power for each of the terms, here we use Pt (the average
number of inputs) instead of N and iPi instead of constant weights for each class in the
allocation. With this optimal allocation we can obtain the following R/D relations:

D = �2t + Pt �
"
2�B �

NY
k=1

(Hk�
2
k)

kPk
2

# 2

Pt

; and �2t =

NX
k=1

Pk

 
NX

i=k+1

�2ki

!
(11)
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In summary, with the usual caveat that these results are only valid at high rates, we can see
that the optimal allocation results are the same as for �xed complexity transform coding [5],
except that in allocating bits across classes both the source variances and the probability
of each class are taken into account.

3 Experimental Results

3.1 Two-point VCA

In our experiments, both the conventional two-point �xed complexity and the variable
complexity KLT are applied to adjacent pixels of test image \Lenna". Uniform, midriser
quantizers are used. We can vary rate and distortion by changing the quantization cell
size. Entropy is measured as an estimate of the overall rate, and an energy threshold is
used to control the complexity. Note that the advantage of the VCA approach comes from
the fact that in the low rate scenario all the bits can be assigned to the low frequency
coeÆcients whenever they have most of the energy. Because we can test for this condition
at the encoder we can in e�ect use a simple vector quantizer as shown in Fig.5 (left),
with di�erent quantization characteristics depending on whether the test fails or not. More
speci�cally, as derived in Section 2.3, we expect that (i) �211 � �21, �

2
12 � �22 and (ii) �

2
21 � �21 ,

�222 � �22 .
The experimental R/D/C surface is shown in Fig.5 (right), where rate denotes the

total number of bits assigned to the two KLT coeÆcients, distortion is the MSE after the
VC-KLT. Complexity is represented by the energy threshold T since complexity increases
monotonically with T . It can be seen that for a given complexity an increase in rate results
in decreased distortion, as was to be expected.

A more interesting result is that, for a given rate, the distortion varies as a function of
the complexity and indeed for each rate there is an \optimum" complexity, that is the one
corresponding to the threshold that guarantees minimal distortion at that rate. Distortion
varies because the set of coeÆcients that are computed depends on the complexity. Thus
for low threshold, many coeÆcients are not computed, and are e�ectively quantized to zero.

The curve of optimal distortion for each rate is plotted in Fig.5 (middle). Also shown
in the same plot is the rate/distortion curve of the �xed complexity 2-point KLT. It is
obvious that at low rates (total number of bits lower than 7), VCA does much better in
rate/distortion sense. Note that one bit of overhead has been added to the VCA-KLT
approach to notify the decoder of whether one or two coeÆcients are being transmitted.
Clearly, when the rate becomes suÆciently high, the best approach would be to compute
both coeÆcients so that the �xed complexity algorithm should be used.
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3.2 Eight-point VCA

As in the previous experiments, we apply an eight-point variable complexity KLT to adjacent
pixels of test image \Lenna". We study the variance of each of the eight possible classes
and the result con�rms our analysis in sec.2.3. The histogram of Y5k in class k is shown
as an example in Fig.6 (left). It can be observed that �5k rises until k = 5 and then drops
with increasing k.

The rate/distortion curve is shown in Fig.6 (right). We test three schemes: (1) �xed
complexity KLT (FCA) with one uniform quantizer for all eight coeÆcients. End of block
(EOB) is introduced to represent the trailing zeros. EOB is also entropy coded; (2) VC-KLT
with separate uniform quantizer for each of the eight classes; (3) Same as (2) except that a
separate quantizer is used for each coeÆcient computed for each class, so that there are a
total of 36 such quantizers.

It can be concluded that we can achieve better R/D performance with more quantizers
tailored to the characteristics of each coeÆcient and of each class in the context of the VCA.
At rates lower than 1:2bits/sample, the VCA scheme (2) outperforms �xed complexity ones
by up to 2dB in MSE. This is consistent with what we have observed in the two-point
experiment.
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3.3 8� 8 VCA

We extend our VCA to the 8� 8 DCT employed extensively in most existing international
standards in image and video compression. VCA divides the 8 � 8 DCT coeÆcients into
64 disjoint classes according to the actual number of DCT coeÆcients computed after the
energy test. We adopt the zigzag order used in JPEG [6] to index these 64 DCT coeÆcients
in an 8� 8 block.

Fig.7 (left) illustrates the number of blocks classi�ed into each class by VCA. Obviously,
the higher the energy threshold is used in the test, the more blocks are assigned to the classes
of higher index. Fig.7(right) illustrates the variances of the DC(1st),second,third and tenth
DCT coeÆcients in each class. A peak in variance always exists which corresponds to the
ith coeÆcient in class i. This feature is caused by the energy test of VCA and can lead to
coding gains if properly utilized.

We then apply the VCA onto JPEG baseline algorithm. The approach taken in our
preliminary experiment is to perform the energy test of the 8 � 8 DCT coeÆcients in a
block by following the zigzag order. Once the energy threshold is satis�ed, we set the
remaining coeÆcients in the block to zero. This procedure can be readily embedded into
the JPEG encoder. Note that this is similar to the approach of thresholding [7][8], with the
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di�erence being that here coeÆcients are not even computed if the energy of the vector is
deemed to be suÆcient already, whereas in [7] this decision was made after the coeÆcients
were computed.

The rate of JPEG can be varied by changing the scaling factor of the quantization
table. We then obtain the rate (bits/sample) and distortion (PSNR) curves with/without
the proposed energy test, see Fig.8 (left) for the comparison of JPEG versus VCA. It can
be seen that VCA provides a better R/D performance for a certain range of thresholds
than that obtained by merely decreasing the scale factor in JPEG. This e�ect is even more
pronounced at rates below 0.2bits/sample, which agrees well with our �ndings in two-point
and eight-point cases.
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Figure 7: 8�8 VC-DCT (Left)Number of blocks falling into each class for image \Peppers";
(Right)Variances of DCT coef's for classes.

Note that the threshold we have been using so far is relative in the sense that it represents
the percentage of the total vector energy we want to retain. From a rate/distortion tradeo�
perspective, however, an absolute energy threshold may be more desirable in some situations.
We introduce such an absolute threshold scheme in the JPEG experiment, i.e., we keep
computing DCT coeÆcients until the energy of the coeÆcients not yet computed drops below
an absolute threshold. For these residual coeÆcients not computed, we simply set them to
zero, exactly as we have done in relative threshold approach. The absolute threshold, as a
control parameter, represents the distortion (MSE) of the remaining coeÆcients, and thus
enables us to have direct control over the larger distortion. By contrast, in relative threshold
approach, we can not distinguish DCT coeÆcient blocks of di�erent total energy. Therefore
the distortion caused by the coeÆcients which are not computed varies from block to block
and is not directly related to the threshold itself as in the absolute threshold case. In
general, we thus expect that the absolute threshold approach to perform much better than
the relative one on images of high inter-block energy variations.

The R/D curve when applying the absolute energy threshold in JPEG is shown in Fig.8
(right). The curves obtained when using relative thresholds are also shown in the same plot
for comparison. It can be seen that absolute threshold approach can always outperform the
relative one (up to about 1dB). Consequently, the absolute threshold approach does better
than standard JPEG within a wider range of rates than the relative threshold method.

4 Conclusions

This paper presents a variable complexity algorithm (VCA) for transform coding. VCA uses
energy thresholds to provide 
exible tradeo�s among computational complexity, rate and
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Figure 8: Comparison of R/D relations between JPEG and VCA's using two threshold ap-
proaches. (Left) VCA with relative thresholds. The dashed curve is for the JPEG baseline,
and solid lines stand for the curves obtained by using di�erent energy thresholds when we
�x the scale factor of the quantization table.; (Right) VCA with absolute thresholds.

distortion. We view VCA as a pattern classi�er and carry out extensive statistical analysis
on the average complexity, as well as rate/distortion relations for the generic N-point VCA.
By introducing a standard model in a two point case, we derive closed-form relations which
describe the variance variation after classi�cation. In addition, rate-distortion-complexity
relations are also empirically obtained. In the eight-point VCA study, We show that by
quantizing each coeÆcient within each class separately, we can achieve better rate/distortion
performance. Finally, we apply VCA to the JPEG baseline algorithm, where both the
relative and absolute threshold method are used and compared. Experimental results show
that our VCA approaches can provide better rate/distortion tradeo�, especially at low rates
than the JPEG techniques.
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