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Abstract

Hyperspectral images have correlation at the level of pixels; moreover, images from
neighboring frequency bands are also closely correlated. In this paper, we propose to use
distributed source coding to exploit this correlation with an eye to a more efficient hard-
ware implementation. Slepian-Wolf and Wyner-Ziv based correlated coding theorems have
quantified how much additional rate reduction can be obtained. In order to better exploit
these correlations, we first propose a prediction model to align images. This model is based
on linear prediction techniques and it is simple and shown to be effective for hyperspectral
images. We then propose a coding scheme to exploit these correlations. A set-partitioning
approach is used on wavelet transformed data to extract bitplanes. Under our correla-
tion model, bitplanes from neighboring bands are correlated and we then use a low-density
parity-check based Slepian-Wolf code to exploit this bitplane level correlation. This scheme
is appealing for hardware implementation as it is easy to parallelize and it has modest
memory requirements. As for coding performance, our preliminary results for high corre-
lation spectral bands from the NASA AVIRIS dataset show, at medium to high reconstructed
qualities, gains of about a factor of 3 in compression efficiency as compared to encoding
the spectral bands independently using SPIHT.

1. Introduction

Hyperspectral images are image data consisting of hundreds of spectral bands, leading
to very large raw data size. For example, the images captured by AVIRIS (Airborne Visi-
ble/Infrared Imaging Spectrometer, operated by NASA) include 224 bands, and each single
hyperspectral image contains up to 140 Mbytes of raw data; therefore, a high performance
compression codec is necessary for hyperspectral imagery. In addition, hyperspectral im-
ages are usually captured by satellites that use embedded processors with limited resources,
so encoding complexity is critical. In this paper, we propose a novel low complexity lossy
and lossless hyperspectral image compression scheme based on distributed source coding
techniques [10]. This scheme also contains an efficient inter-band prediction model. Our
proposed approach achieves excellent compression performance when neighboring bands
are used as side-information during decoding.
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Figure 1: Mean square residuals after simple image alignment and subtraction

In hyperspectral imagery, many spectral bands are highly correlated as shown in Fig-
ure 1, where image mean-square residuals after simple alignment are shown for two dif-
ferent views on a site. Images from neighboring bands are correlated and the variation of
correlation in many spectral regions is small. This motivates exploiting inter-band corre-
lation in order to achieve good compression performance. Previous work on compression
of hyperspectral imagery includes inter-band predictive approaches [4] and 3D wavelet
approaches [19]. In inter-band prediction approaches, each band is predicted by another
band, and then the residuals of prediction are compressed by intra-picture compression
techniques. Compared to inter-band prediction approaches, our proposed distributed source
coding approach has the following advantages. First, inter-band prediction methods need
to generate exact copies of the decoded bands at the encoder, so encoders need to perform
decoding as well, and decoding complexity could be as high as that of encoding. In con-
trast, distributed source coding needs only correlation statistics to perform encoding, and
these statistics can be reliably estimated with low complexity, as we will show. Second,
inter-band predictive methods are inherently serial, since encoding of each band must wait
for the predictors obtained from processing previous bands. A distributed source coding
approach would enable all the correlated bands to be encoded in parallel after inter-band
correlations have been estimated, which requires only limited data exchange across bands.
This inherent parallelism can facilitate hardware implementations and greatly increase the
onboard encoding speed. Third, the proposed approach applies distributed source coding
to encode wavelet coefficient bitplane data. A given bitplane in a given subband depends
only on the same bitplane in a previously encoded image. Once the data has been encoded
efficient rate scalability can be achieved by decoding all images up to the same bitplane
resolution level. In contrast, closed loop inter-band prediction makes it difficult to achieve
efficient rate scalability.

3D wavelet methods including 3D-SPECK and 3D-SPIHT [19] need to operate on sev-
eral spectral bands in memory at the same time. In contrast, a distributed source coding
approach would need to store only a single spectral band in memory at a time once cor-
relation statistics are estimated. Reduction in memory requirements could potentially lead
to low encoding power consumption, since off-chip memory access would be avoided. As
a matter of fact, off-chip memory accesses often consumes up to one order of magnitude
higher power than that for accessing on-chip data [18].

Our proposed approach for hyperspectral imagery is based on fundamental information-
theoretic results from the 1970s. Slepian and Wolf [10] proved that two correlated sources
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can be optimally encoded even if the encoder only has access to the two sources sepa-
rately, as long as both encoded streams are available at the decoder. This counterintuitive
result permits (in principle) significant complexity reductions at the encoder, where low
complexity is most needed for hyperspectral imagery, while preserving the encoder’s abil-
ity to optimally compress the data by exploiting the redundancy in the correlated sources.
Wyner [11] suggested a practical scheme using syndrome binning. Slepian-Wolf coding
was a dormant niche of information theory for nearly three decades, until the recent de-
velopment of low-complexity, capacity-approaching (turbo or LDPC) channel codes. Now
practical applications seem feasible, codes designed for Slepian-Wolf coding problem have
been reported in a number of articles [2, 13, 14, 8]. Applications of Slepian-Wolf coding
include data aggregation in sensor networks [12, 15] and video coding, e.g., [1, 3]. In the
video coding application, the correlated sources are successive video frames. In this paper,
correlated sources will be successive bands of hyperspectral imagery.

We propose a scheme called set-partitioning in hierarchical tree with Slepian-Wolf cod-
ing (SW-SPIHT) for hyperspectral imagery, as an extension of the well-known SPIHT algo-
rithm [16]. SW-SPIHT first uses an iterative set-partitioning algorithm to extract bitplanes.
Bitplanes at the same bit position in neighboring bands are correlated under our prediction
model. Once the bitplanes from the first band, which is intra-encoded and intra-decoded, are
available to the joint decoder, successive bitplanes at corresponding bit positions from other
bands can be decoded. All bitplanes other than those from the first band are intra-encoded
by an LDPC based Slepian-Wolf code [8, 9] and jointly decoded by a sum-product decod-
ing algorithm. As an example of coding performance, for the NASA AVIRIS hyperspectral
images data set, at medium to high quality SW-SPIHT can achieve gains of up to a factor of
three (compared to SPIHT) for highly correlated spectral bands. These gains can be higher
at lower reconstruction qualities. Note that when all bitplanes are encoded SW-SPIHT can
also provide lossless compression. To the best of our knowledge, distributed source cod-
ing techniques have not been investigated for compression of hyperspectral imagery; This
paper demonstrates that this approach is promising. Preserving the spectral signature is im-
portant in some applications (e.g., in applications where hyperspectral images are classified
and the percentage of correct classification is important [19]). SW-SPIHT is flexible on se-
lection of rate and distortion and it supports progressive transmission, so that the rate can
be selected so that the spectral signature can be preserved. Detailed analysis on how and to
what level SW-SPIHT preserves these application specific spectral signatures will be part
of our future work.

This paper is organized as follows: we present the proposed codec and our prediction
and estimation model in Section 2 and Section 3, respectively. Implementation and experi-
mental results are shown in Section 4, and Section 5 concludes this paper.

2. Codec Design

In this section, we will present our codec for compression of two hyperspectral bands
X and Y . Assume that reconstruction X̂ of X will be used to form side-information for
decoding of Y . We use a linear predictor to generate side-information from X̂ . The filtered
version X̂ ′ of X̂ is as follows: X̂ ′ = αX̂ + β, where α and β are known. Furthermore, in
this section, we assume that correlation statistics in terms of crossover probabilities are also
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known to both the encoder and the decoder. Section 3 will present techniques to efficiently
estimate these parameters from input data.

We first briefly describe SPIHT [16]. SPIHT uses a significance test on wavelet coef-
ficients to partition them into two sets at each iteration: significant set and insignificant
set. Bitplanes formed from the significant coefficients are directly outputted to a bitstream.
The significance/structure bits convey the significance tree information to the decoder and
this is used by the decoder to identify these significant coefficients. Bits representing this
significance tree are entropy-coded.

Referring to Figure 2, source band X is intra-encoded by the encoder and independently
decoded by the decoder as shown by the gray boxes. The reconstructed band X̂ will be used
as side-information to decode Y . The other branch consisting of white boxes in Figure 2
shows coding of Y . Image Y is first transformed by a wavelet transform T (f, n) where
f is the filter used in the transform and n is the number of transformation levels. Then
SW-SPIHT iteratively identifies significant sets of wavelet coefficients of Y . As shown
in Figure 3, at the end of each iteration, a sign bitplane, a refinement bitplane and corre-
sponding significance bits are generated. Sign bits and refinement bits are further encoded
by an LDPC based Slepian-Wolf code and corresponding syndrome bits are output to the
bitstream, and significance bits are intra-coded.

At decoder, X̂ ′ is transformed by T (f, n) which is the same transformation used on Y at
the encoder. Then the significance tree of Y (not X) is used to parse the wavelet coefficients
and extract the side-information bitplane. Note that this significance tree is transmitted in
intra-mode to the decoder. We experimented with longer predictor for better side informa-
tion for decoding, but settled on a first-order predictor as it provided good enough results.
Since SW-SPIHT can use a small fraction of pixels in band X and Y to estimate prediction
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coefficients α and β, the computation overhead is not really an issue and details on this are
shown in Section 3. LDPC sum-product algorithm (SPA) is used to decode the bitplanes of
Y given syndrome bits and side-information bitplanes from X̂ . When these bitplanes are
decoded, refinements to the corresponding coefficients from which these bitplanes are ex-
tracted are added. This can be done because the significance tree of Y is sent to the decoder
in intra-mode.

When all bitplanes are decoded and coefficient refinements are performed, the decoder
applies the inverse wavelet transform T−1(f, n) to reconstruct Ŷ , an estimate of Y . Since
Slepian-Wolf coding is used to code these bitplanes, no or negligible information loss is
introduced on these bitplanes. As long as the correlation model is correct, all bitplanes can
be decoded correctly and information loss is only introduced by not transmitting some of
the least significant bitplanes. This means that SW-SPIHT can also provide lossless com-
pression for hyperspectral imagery when all bitplanes are coded, provided that an integer-
to-integer wavelet transform [6] is used. Note that the least significant bitplanes tend to
be uncorrelated from image to image and have near maximum entropy, thus, in lossless
applications, these bitplanes can be sent uncoded.

Crossover probabilities are used by the encoder to determine the compression rate. This
rate determines which parity-check matrix should be used for a bitplane. In SW-SPIHT, ir-
regular Gallager codes are used. A table is built offline and it associates different crossover
probabilities with random seeds for proper parity-check matrices. Once the crossover prob-
ability between a bitplane and its corresponding side-information bitplane is obtained, a
proper parity-check matrix can be selected at run-time.

In the coding process, the wavelet decomposition scheme (e.g. dyadic, pyramidal or other
wavelet packet bases [7]), the filter function f , and the number of transformation levels n
should be kept the same for each band during encoding and decoding. To make sure the
same parity-check matrix is used at the decoder, the random seed used by the encoder to
generate the parity-check matrix is sent to the decoder. To match the exact bitplane width,
column puncturing and splitting is used on the parity-check matrix.

When multiple bands are compressed together, since

H(bz
i |by

i , b
x
i ) ≤ min{H(bz

i |bx
i ), H(bz

i |by
i )}

(i.e., conditioning does not increase entropy), where bz
i is a bitplane from a third source Z to

be compressed, it could possibly decrease the compression rate to use both side information
from X and Y . It is quite straightforward to extend SW-SPIHT for compression of any
number of correlated bands. We have also implemented this extension, based on our test on
three bands, the additional rate reduction on the third band is quite substantial. Due to the
lack of space, we omitted here the description of this multi-band extension of SW-SPIHT.

3. Model of Correlation Estimation and Inter-band Prediction

Performance of distributed source coding depends strongly on the estimation of correla-
tion and prediction parameters. In our system, we need to estimate two sets of parameters:
1) linear prediction coefficients, since our proposed system obtains side-information by lin-
ear prediction, 2) the crossover probabilities of bitplanes (a priori probabilities), which are
used to determine the rates of the Slepian-Wolf codes. In this section, we will first outline
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the system model on which the proposed codec is based. Then we will present techniques
to estimate these parameters with limited data exchange and simple computations. Prelim-
inary results show that these low-complexity techniques are effective.

Denote bitplanes from source W by bw and a particular bitplane at bit position i of
source W by bw

i , and denote the l-th bit of bitplane bw
i by bw

i (l). Estimation of prediction
coefficients is performed at the encoder for the purpose of determining of the level of
correlation. We list the steps for a two-source case:

1. Encoder: 1-1. Estimation of predictor coefficients α and β using pixels in X and Y ;
1-2. Application of the prediction coefficients to obtain X ′ = αX + β; 1-3. Trans-
formation of X ′ using the same wavelet transform used for Y ; 1-4. Application of
the significance tree of Y to the wavelet coefficients tree of X ′ to extract m bitplanes
bx
i (1 ≤ i ≤ m); 1-5. Estimation of crossover probability pi of bitplane pair (bx

i , b
y
i )

(1 ≤ i ≤ m); 1-6. Determination of the Slepain-Wolf coding rate; 1-7. Generation of
parity-check matrix for by

i (1 ≤ i ≤ m).

2. Decoder: 2-1. Application of prediction coefficients to obtain X̂ ′ = αX̂ + β; 2-
2. Transformation of X̂ ′ using the same wavelets used for Y at the encoder; 2-3.
Application of the significance tree of Y to the wavelet coefficients of X̂ ′ to extract
m bitplanes bx

i (1 ≤ i ≤ m); 2-4. Computation of a priori probability Pr(by
i (j) =

0|bx
i (j)) for bx

i (j) = 0 or 1.

The encoder can determine a rough level of correlation after it estimates the prediction
coefficients (i.e., by measuring the mean-square residual). When the mean-square residual
is above a threshold, the model can simply flag the codec to code this bitplane in intra-mode
and flag it back to inter-coding mode when the mean-square residual is below a threshold.
For example, Band 162 in Figure 1 should be coded in intra-mode. From real data sets,
a majority of bands can be inter-coded, e.g., more than 95% bands in the Cuprite data
set which is one of data sets we used in our experiment. The predictor coefficients used
in (2-1.) are transmitted from the encoder. In Step (2-4.), the a priori probability is pi if
bx
i (j) = 1, and 1 − pi otherwise.

Each pixel in band Y is filtered by a linear predictor formed by pixels in X . We use the
first order linear predictor X ′ = αX + β. Least-square technique can be used to find the
coefficients α and β. The linear predictor will be used to determine correlation statistics,
and this filtering is also performed by the decoder to form side-information.

In addition, we also need the estimates of the crossover probabilities at the encoder for
the selection of an appropriate Slepian-Wolf coding rate. The estimated probabilities are
also used by the decoder for the initialization of SPA. Next we will outline the techniques
to perform this estimation.

To estimate linear predictor coefficients α and β, we down-sample the image bands and
use only the pixels in the down-sampled bands for estimation. As shown in Figure 4, with
0.32% of pixels, the resultant predictor could achieve a prediction mean square error (MSE)
within 0.05 to that of optimal predictor, which is formed by using all pixels in X and Y .

To estimate the crossover probability we exchange a small portion of bitplane bits formed
by set-partitioning. This is viable since set-partitioning can be considered as a scrambling
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process on the ordering of coefficients and the probability mass of bits in a bitplane ex-
tracted from significant coefficients tends to be even in different segments within the bit-
plane. We use the upper bound of the 95 percent statistical confidence interval as the esti-
mate. Since the estimation is simply counting of pairs of crossover in small portions of two
bitplanes, thus, the overall estimation overhead is small. Figure 5 shows the estimated a
priori probabilities by different percentages of bits of bitplanes. As an example, with 9077
bits out of 181554 bits of two bitplanes, the crossover probability estimate is within 0.003
to the actual crossover probability. This demonstrates that accurate estimates of crossover
probabilities are possible with little computation and data access across bands. In addition,
since the compression rate is set to have some margin of about 0.05 bits from the Slepian-
Wolf limit (i.e., conditional entropy), so this estimation accuracy is sufficient.

4. Implementation and Experimental Results

We have implemented SW-SPIHT with our SPA, and hyperspectral images used in our
test are 16-bit images. The SPA we implemented for SW-SPIHT is based on the algorithm
in Section (III-A) of [17] and similar notations are also used here, and we made two changes
to it in order for it to decode Slepian-Wolf based LDPC codes. The first change is on the
initialization step to make it support for multiple side-information bitplanes. The initial
posteriori probabilities of variable nodes are given as follows:

(q0
ml, q

1
ml) = (p0, 1 − p0), 1 ≤ l ≤ n
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Figure 6: Rate-Distortion Curves (Site: Cuprite, View: SC01)

where, n is the total number of check nodes, p0 = Pr(bz
i (l) = 0|xl), for these check nodes

(wm) which have an edge in the bipartite graph to variable node vl. xl is a vector consisting
of all j-th bits from these side-information bitplanes (it is a scalar 1 or 0 in the 2-band case).
Note that for the two-band case, Pr(by

i (l) = 0|bx
i (l)) equals to the crossover probability pi

if bx
i (l) �= 0. The second change is on the check-node update step in which we introduce a

new local kernel function to force the search of the most probable codeword in a designated
bin specified by the syndrome while the standard LDPC SPA searches the most probable
codeword in the bin corresponding to the syndrome with all zero bits.

Experimental results use SNR and PSNR which are defined as follows:

MSE = E[(x − x̂)2]

SNR = 10 log10

(
E[x2]

MSE

)

PSNR = 10 log10

(
(65536)2

MSE

)

where, E(.) is the expectation operator, x is the 16-bit value of a source pixel and x̂ is the
16-bit value of reconstructed pixel of x. From our experimental data, the performance in
terms of bit per pixel per band (bpppb) and multi-band SNR (MSNR) can be derived.

Figure 6 compares the performance of SPIHT and SW-SPIHT, where the X-axis in these
plots is in logarithmic scales for an easy comparison at low bitrates. We selected three pairs
of bands from different spectral regions where the levels of correlations are different as also
shown in Figure 1. We did not select bands in spectral regions where the predictor sees large
surges on mean square residuals and these bands have low correlation and intra-coding on
these bands is used instead. Note that application specific metric (e.g. percent correctly
identified for detection) could be used for the selection of different coding modes. In Fig-
ure 6, SW-SPIHT outperforms SPIHT significantly especially in the low bitrate regime. In
the high bitrate regime, the performance of SW-SPIHT degrades somewhat, and this is due
to the fact that these bits from least significant bitplanes are random and uncorrelated, and
they are sent in raw mode. There are some variations on the PSNR gain due to variations
of the energy among these images and correlations between images in these pairs. Table 1
shows rates obtained with different numbers of bitplanes encoded.

Figure 7 shows a set of rate-distortion curves from another view. Compared to these cor-
responding plots in Figure 6, the performance gains of SW-SPIHT are slightly degraded
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Table 1: Rate Comparison of SW-SPIHT and SPIHT

SNR (dB) PSNR (dB) No. of Bitplanes SW-SPIHT Bitrate SPIHT Bitrate
61.96 97.93 17 4.377 bpp 6.39 bpp
37.27 73.21 13 0.89 bpp 2.48 bpp
22.244 58.19 11 0.287 bpp 0.889 bpp
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Figure 7: Rate-Distortion Curves (Site: Cuprite, View: SC02)

comparing to what have been obtained for view SC01. This actually conforms to the cor-
relation statistics of these two sets of bands as shown in Figure 1 where the residuals from
view SC02 are slightly bigger than those from view SC01.

5. Conclusions and Future Work

In this paper, we have demonstrated a viable approach for compression of hyperspectral
imagery. A novel scheme called SW-SPIHT on correlating and compressing hyperspectral
imagery is proposed. Our scheme obtains significantly lower bitrates compared to existing
techniques. Encoding of bands under SW-SPIHT can proceed in parallel once the corre-
lation statistics are estimated, which enables a possible efficient parallel hardware imple-
mentation. Estimation of correlation statistics is simple and requires limited data exchange
across bands. Encoding of bitplanes takes linear time on bitplane of width.

Currently, our prediction model is based on two images, and our future work will build a
prediction model for multiple images at low cost. For the prediction part, further work also
includes efficient estimation methods on prior probabilities with minimum bit exchange be-
tween bitplanes. Different applications in hyperspectral imagery (e.g. classification) have
different interpretations on distortion (e.g. percentage of correctly classified). Another re-
search direction is on analysis and experimental study of the effect of SW-SPIHT on appli-
cation performance when the codec is configured to be lossy and the predictor optimization
is based on application specific requirement.
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