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Abstract

In this paper we consider the problem of searching for the best match for
an input among a set of vectors, according to some predetermined metric.
Examples of this problem include the search for the best match for an input
in a VQ encoder and the search for a motion vector in motion estimation
based video coding. We propose an approach that computes a partial distance
metric and uses prior probabilistic knowledge of the reliability of the estimate
to decide on whether to stop the distance computation. This is achieved with
a simple hypothesis testing and the result, an extension of the partial distance
technique of Bei and Gray provides additional computation savings at the cost
of a (controllable) loss in matching performance.

1 Introduction

Many lossy compression applications require that the encoder perform vector match-
ing of some kind. A classical example is vector quantization (VQ) where the objective
is to find for each input vector the best match among all the vectors in the codebook.
The complexity of the search then depends on the dimension of the vectors as well as
the size of the codebook. A second example of vector matching can be found in mo-
tion estimation (ME) in video coding. In this case the goal is to find for each block in
the current video frame the best match among blocks within a predetermined search
region in the previous frame. The information about the best match is then sent to
the decoder in the form of a motion vector.
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ence Foundation Engineering Research Center, with additional support from the Annenberg Center
for Communication at the University of Southern California, and the California Trade and Com-
merce Agency, by the National Science Foundation under grant MIP-9804959, and by an equipment
grant from the Intel Corporation.
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In both VQ and ME, vector matching for a given input is performed by computing,
for each vector, a metric to determine how good the match is. Then the matching
proceeds through all the elements of the codebook or the blocks in the search region
until the best (i.e., lowest metric) match is found.

In the VQ case, the matching metric normally used is the Euclidean distance
between the input and the codeword, defined as d(x,y) = ‖x−y‖2 =

∑k
m=1(xm−ym)2,

where x is the input vector of dimension k and y is a codeword in the codebook
C = {y1,y2, ...,yn} of size n. Therefore, the quantization rule is Q(x) = yi if
‖x− yi‖2 < ‖x− yj‖2, ∀j 6= i.

In the ME case, the sum of absolute difference (SAD) is a more popular choice as a
matching metric because of its lower computation requirements. The SAD of a motion
vector ~mv is defined as S( ~mv) =

∑
(nx,ny)∈B |It(nx, ny) − It−1(nx + mvx, ny + mvy)|

where It(nx, ny) is the intensity level of pixel (nx, ny) at frame t, B is normally the
set of all pixels in the block being coded and ~mv = (mvx,mvy) ∈ M , where M is
the allowable range of MV and thus also defines the size of the search region. For
example a typical value for M is [-16,15.5]x[-16,15.5]. The SAD normalized by |B|,
the size of B, is the mean absolute difference (MAD). We will use both SAD and
MAD throughout this paper.

The metric computation dominates the overall complexity of the system. Basi-
cally, the system has to compute the metric between an input and all codewords
(in VQ) or all possible MVs (in ME) in order to find the best match codeword or
MV with the lowest metric. Obviously the sources of complexity are two, namely,
(i) comparing the input with all the vectors in the codebook or search region and
(ii) computing a metric for each of the vectors, where the complexity of the metric
computation depends on the dimension of the vectors.

Thus, fast vector matching techniques, both for VQ and ME, can be achieved by
attacking each of these complexity factors, i.e., by reducing the number of searched
codewords or MVs, and by reducing the number of operation required for metric
computation. We refer to the first class of techniques as fast search (FS) and to
the second class of techniques as fast matching (FM). Note that fast techniques (FS
or FM) can be designed to provide the same result as an exhaustive search, or to
be suboptimal, given that the faster matching comes at the expense of a slightly
degraded performance. Throughout this paper we will call “optimal” matching a
matching technique that computes the exact metric values for all the candidates.

FS techniques for ME rely on searching fewer points within the search region by
imposing a structure to the search. Furthermore, the search can be initialized with a
“good” candidate so that the search can be restricted to a relatively small region close
to the candidate input. The search can then be stopped whenever a “good enough”
match has been found. Most of these ME FS techniques are suboptimal, i.e., they
do not find the best match within the search region, although the degradation as
compared to exhaustive search tends to be small. Examples of fast search for ME
include [1], [2], [3], [4] and [5]. In the VQ case, there are many FS algorithms that
achieve the optimal solution ([6], [7], [8], [9], [10]). In these approaches codewords
that are known to be too far from the input are eliminated first, then the exhaustive
search is performed on the rest of the codewords. An alternative approach is to build
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the codebook with a structure that allows a faster search. The best known approach
of this type is the tree-structured VQ (TSVQ) algorithm [11].

While the gains of FS approaches are well known and documented, less attention
has been given to FM techniques. In the VQ case, to the best of our knowlegde, only
the partial distance technique of Bei and Gray [12] has been proposed. This technique
consists of incrementally (i.e., one dimension at a time) computing the metric and
stopping the computation as soon as the partial distance exceeds the best distance so
far. This approach can provide significant gains (e.g. a factor of 3-4 speed up in some
cases) without any suboptimality. As for the ME case, most research on FM ME
has focused on finding a computationally cheaper distance metric that preserves the
ability to discriminate between good and bad matches. However, the partial distance
method can also be applied to speed up the SAD computation. In fact this approach
is succesfully implemented in many software video encoders (e.g. [13],[14]). Other
approaches for fast SAD computation with suboptimal solution can be found in [15],
where the number of pixels used to calculate the SAD is reduced by subsampling
pixels in a macroblock. Other alternative distance metrics used in ME can be found
in [16], [17], [18], etc.

In this paper, we focus on the FM approach by presenting a novel hypothesis test-
ing fast matching (HTFM) approach for vector matching which extends the partial
distance techniques by allowing a probabilistic stopping criterion. We start with a
review of the partial distance technique in Section 2. Given that the result of the
vector search using partial distance is optimal, we refer to these techniques as deter-
ministic testing fast matching (DTFM). In Section 3, we present a general framework
for HTFM. The basic idea is to use the partial distance estimate to predict the total
distance. This prediction will be subject to an error which can be modeled. The
HTFM approach will stop the metric computation when it has sufficient confidence,
given the probabilistic model, that the total distance will exceed the best match so
far. Note that this approach was originally proposed for ME in [19], although here we
present an improved version that includes adaptive “on the fly” parameter estimation
(see also [20]). In this paper we generalize the idea to include VQ. In Section 3.1 and
3.2 we apply HTFM to ME and VQ, respectively, and provide results of complex-
ity saving versus degradation in matching performance. Conclusions are provided in
Section 4.

2 Deterministic Testing Fast Matching

We present the partial distance matching method in the context of VQ as described
in [12]. The basic idea is to test an incomplete calculation of the distance with the
“best-found-so-far” distance while the computing process is not finished yet. Based
on the monotonicity of the distance (i.e., total distance increases with dimension),
we can terminate the computation if the partial distance is already greater than the
“best-found-so-far” distance. Then the current codeword being compared cannot be
optimal and we move on to evaluate next codeword. We formalize the partial distance
for both VQ and ME as follows.
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We define the partial distance between input x and codeword y as dk′(x,y) =∑k′
m=1(xm− ym)2, i.e., the sum of square difference up to dimension k′ between input

vector x and codeword y. It is obvious that dk′(x,y) ≤ d(x,y) for ∀k′. Next we define
the “best-found-so-far” codeword, y∗ for input vector x with their corresponding
distance, d∗, as y∗ = arg minyi∈Cs d(x,yi). Cs are subset of codewords in the codebook
C whose distances to x have been tested.

Similarly, in the ME case the partial SAD computation can be defined by dividing
the set B in k subsets B1, ..., Bk where Bi ⊂ Bj for i < j and Bk = B. There-
fore, the partial SAD computed at stage k′ for block B with MV ~mv is Sk′( ~mv) =∑

(nx,ny)∈Bk′ |It(nx, ny) − It−1(nx + mvx, ny + mvy)|, and Sk′( ~mv) ≤ S( ~mv) for ∀k′.
The “best-found-so-far” MV, ~mv∗ for block B, ~mv∗ = arg min ~mv∈Ms S( ~mv) , and its
corresponding SAD, S∗, are defined similarly. Ms is analogous to Cs, i.e., it includes
the blocks that have been tested thus far. We now show the partial distance algorithm
for ME; its VQ counterpart is similar.

Algorithm 1 (Partial Distance Search (DTFM))
Step 1: At the beginning of motion search for a particular block, initialize S∗ to

a very large number and set ~mv∗ = (0, 0).
Step 2: The next ~mv in the search region (or the one dictated by any applicable

FS strategy) is considered. Set k′ = 0. If there are no more vectors to evaluate, return
~mv∗.

Step 3: Compute Sk′( ~mv).
Step 4: If k′ < k, go to step 5, else go to step 6.
Step 5: If Sk′( ~mv) ≥ S∗, go to step 2. Otherwise, k′ = k′ + 1 and go to step 3.
Step 6: If S( ~mv) < S∗, S∗ = S( ~mv) and ~mv∗ = ~mv. Go to step 2.

The complexity savings of this technique come from the possibility of early ter-
mination in Step 5. This reduction is data dependent, i.e., it varies according to the
nature of the input. Obviously if a FS technique is also used (and determines the
order in which the vectors are tested in Step 2) then the gain achievable will depend
on the FS strategy. In general, the more efficient FS is, the less computational savings
can be achieved with DTFM: since we are already considering only candidate vectors
that are more likely to provide “good” matches early termination will not be as likely.

3 Hypothesis Testing Fast Matching

One drawback of the DTFM approach is that it does not provide any computation
scalability, i.e., DTFM achieves the same solution as optimal matching but does not
allow us to obtain a faster solution at the cost of some quality reduction. In this
section, we investigate algorithms which possess computational scalability with grad-
ual reductions in complexity coming at the cost of corresponding reductions in the
matching quality. These algorithms are based on the Hypothesis Testing Fast Match-
ing (HTFM) approach, which uses hypothesis testing to decide when to terminate
the search at Step 5 in Algorithm 1.
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The basic idea is to first estimate the distance metric from the partial distance at
stage k′. The difference between the actual and estimated distance can be modeled
as a random variable with a certain probability density function (pdf). In addition
to the partial distance testing, we can add a decision rule to determine whether our
estimate based on the partial distance allows us to decide that the final total distance
will be greater than the “best-found-so-far” distance. We make this decision by taking
into account the reliability of the estimate as determined by our probability model.
If we have sufficient confidence we can terminate the search, otherwise we continue
computing the metric at the next stage (i.e., including more vector dimensions.) Thus
HTFM combines partial distance test and hypothesis test. We present two examples
of applications of HTFM to ME and VQ.

3.1 Motion Estimation

Let us consider the MAD as our distance metric. Thus, the “best-found-so-far” MAD
and the partial MAD at stage k′ can be directly defined as M∗ = S∗/|B| and Mk′ =
Sk′/|Bk′|, respectively where | · | denotes size of the set. We start by formulating the
estimate of MAD from partial MAD. By considering the distance and partial distances
as random processes, the best estimation in mean square sense is the expected value of
distance given partial distance i.e. E{M |Mk′}. From our observation E{M |Mk′} can
be approximated by Mk′ , with the estimation error, E{(M −Mk′)

2} getting smaller
as k′ grows as shown in Figure 1(a). This figure shows histograms from a typical
sequence of the estimation error M −Mk′ at various values of k′ where we partition
B into sixteen subsets B1 ⊂ B2 ⊂ ... ⊂ B16 = B. In this paper, Bi is the set of pixels
in the first i row of a macroblock1.

Intuitively it should be obvious that, as confirmed by our experiments, the more
pixels we use, the more accuracy we will achieve, on the average, for our SAD esti-
mation, and therefore the better MV we will obtain if only the partial SAD is used.
Moreover, the resulting histograms can be seen as estimates of the pdf of the estima-
tion error. For ME, in most cases the pdf can be well approximated by a Laplacian
distribution. Our next procedure is to design a decision rule for hypothesis testing.
The decision is given Mk′ and M∗, we want to decide between two hypotheses: (i)
there is a high likelihood that the final Mk will be larger than the current M∗ and thus
we stop computing, or (ii) we do not have a reliable enough estimate and thus we
proceed to compute Mk′+1, i.e., compute the k′ + 1-th stage for the metric, and test
again. Thus our hypothesis are, given Mk′

H0 : Mk ≥ M∗

H1 : Mk < M∗

The one parameter that determines the performance of the decision rule is the proba-
bility of false alarm, Perr = Pr(H1| H0 was chosen). Therefore, our problem is to find
the optimal decision rule such that Perr < Pf , where Pf is a given target probability
of false alarm.

1The choice of partition method also plays an important role in the system. However, due to the
space limitation, we refer the interested readers to [20] for details.
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Figure 1: (a) histograms of estimation error using Mk′ as an estimate for M at 16
stages stepping from left to right and top to bottom. (b) estimation error obtained
from ’solid line’: histogram of training data and ’dashed line’: parametric modelling.
Hypothesis testing to determine whether to terminate the search given M∗ and Mk′ at
stage k′ with certain the probability of false alarm, Pf , that determines the threshold,
Thk′ .

Thus the condition Perr < Pf can be written as follows,

Perr = Pr(H0|Mk′) · Pr(Mk < M∗|Mk′ ,M
∗) ≤ Pf ,

and the optimal decision rule is

Pr(Mk < M∗|Mk′ ,M
∗)

H0

<
>
H1

Pf

Since p
(M|Mk′ )

(y) = p
(M−Mk′ )

(y−Mk′), the left-hand side can be written as
∫ M∗
−∞ p(M−Mk′ )(y−

Mk′)dy. For the right-hand side, we find Thi such that Pf =
−Thi+Mk′∫

−∞
p

(M−Mk′ )
(y −

Mk′)dy then the decision rule becomes

Mk′ −M∗
H0

>
<
H1

Thi (1)

which can be visualized in Figure 1(b). Now we can add (1) to the partial distance
test in section 2. With Laplacian distribution model, p

(M−Mk′ )
(y) = λk′

2
e−λk′ |y| where

λk′ is Laplacian parameter for stage k′, the threshold can be written as

Thk′ =

{ − 1
λk′

ln(2Pf ) Pf ≤ 0.5

− 1
λk′

ln2(1− Pf ) Pf > 0.5
(2)
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In general, we can design hypothesis testing for each stage differently, i.e., having
a different Pf at each stage. However, for simplicity, we set Pf to a constant at all
stages in our experiment. However, even with the same Pf , Thk′ varies depending on
λk′ of each stage. In [20], we address the issue of obtaining a fast estimation of the
parameter λk′ for any sequence while performing motion search. Here we use a fast
parameter approximation derived in [20] that adaptively estimates the λk′ at every
GOP (size 15 frames).

The result from applying HTFM to ME is shown in Fig.2 where the distortion is
the energy of the residue blocks, and the complexity is measured in terms of number
of pixel comparison as well as the CPU clock cycles spent in our software simulation
on the PentiumII 300 MHz. Both distortion and complexity units are normalized by
the results of DTFM. We traverse along complexity-distortion curve by increasing Pf

from 0.01 to 0.2. In Figure 2, we show our HTFM applied to exhaustive search, 2-D
Log search [1] and ST1 search [5].
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Figure 2: Complexity-distortion of 150 frames of (a) “mobile& calendar” (b) “foot-
ball” sequence where ’dashed’: CPU clock cycle, ’solid’: no. pixel comparisons.

3.2 Vector Quantization

As in the ME case, we first change the unit of the distance to be a per-dimension
distance. In this case we define d̃(x,y) = d(x,y)/k and d̃k′(x,y) = dk′(x,y)/k′. Our
first goal is to estimate d̃(x,y) from the d̃k′(x,y). Then we find the estimation error
pdf and model it such that we can design a decision rule based on hypothesis testing
to meet the targeted probability of false alarm. As in the ME case we found that
E{d̃|d̃k′} can be well approximated by d̃k′ For simplicity, we can also approximate
the estimated error pdf using a Laplacian distribution, as in ME case, and design the
decision rule based on this assumption. The Laplacian parameter in this VQ case is
obtained from the training vectors. The complexity-distortion result using HTFM is
shown in Figure 3, which shows the result of DTFM at different codesizes, as well
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as HTFM curves corresponding to one codebook size with Pf ranging from 0.05 to
0.55. Figure 3(a) is for an i.i.d. Gaussian source with unit variance and Figure 3(b)
is the high-high band from subband decomposition of “lenna” image. In both cases,
the codebook is designed using the LBG [21] algorithm from training vectors which
are i.i.d. Gaussian and typical images, respectively.
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Figure 3: Complexity-distortion of HTFM VQ with vector size (a) 8 for i.i.d. source
and (b) 16 (4x4) for high-high band of “lenna” image.

We can see that unlike the ME case, in which the equivalent codebook size is fixed
by the search region, in this VQ case the size of the codebook can be chosen to meet
a complexity-distortion requirement. Note, however, that in order to operate in a
computation scalable mode, in the DTFM case the codebook size has to be modified,
while scalability is achieved with a constant codebook size for the HTFM case. In
Figure 3, complexity-distortion performance achieved by HTFM is approximately
the same as that achieved with DTFM using different codebook size within a certain
range. This is due to several factors. First, the speedup from using DTFM alone is
already large, i.e., about 3 to 4 times faster than original MSE computation. More
than 90% of the distance computations are terminated early by DTFM, and most of
the terminations occur at early stages. Second, the HTFM introduces more overhead
cost for testing while providing more early termination at first few stages. However,
the number of additional early termination is relatively small compared to the overall
gain achieved by DTFM. And finally, the vector dimension in VQ case is still far
less than in the ME case (16x16 macroblock). Thus, a few extra early termination
at a little bit earlier stages is outweighted by the overhead cost for extra testing.
Therefore, in order to get the maximum speedup performance, in our experiment for
subband data VQ, Figure 3(b), we apply the HTFM test to the first one quarter of
dimensions and simply use the DTFM test for the rest. As a conclusion, the HTFM
for VQ, even though it does not provide a significant speedup over DTFM, provides
computational scalability for a given fixed codebook, while scalability can only be
achieved with different codebook sizes with DTFM.
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4 Conclusion

We categorized the fast algorithms for vector matching into 2 classes, FS and FM.
We focused on the partial distance method for FM and gave a brief overview of
the algorithm. As an extension of the partial distance approach we present a general
framework for HTFM which consists of first distance estimation from partial distance,
then modeling the error pdf and finally finding a decision rule to meet a desired target
probability of false alarm. We apply our HTFM to two vector matching applications,
ME and VQ. Our results show computational scalibility by trading off the quality of
best matching with complexity budget. The only caveat is that we have to carefully
apply HTFM in the case of VQ since the overhead of more test may outweigh the
early termination gain. For future work, a more practical tree-structured VQ (TSVQ)
will be considered to explore all the possibility of speeding up gain for low dimension
vector.
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