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Abstract

Hyperspectral imagery is usually highly correlated, in some cases within each spectral band, but in particular across

neighboring frequency bands. In this paper, we propose to use distributed source coding (DSC) to exploit this correlation

with an eye to a more efficient hardware implementation. The theoretical underpinnings of DSC are laid out in the

pioneering work of Slepian and Wolf, and Wyner and Ziv, which provide bounds on the achievable compression when

encoding correlated sources with side information available at the decoder. We apply DSC principles to hyperspectral

images by encoding individual images (each image representing a spectral band) under the assumption that these bands are

correlated. Using DSC tools allows us to operate in ‘‘open loop’’ at the encoder, so that encoding a band does not require

having access to decoded versions of (spectrally) neighboring bands. We first compute the parameters of a linear predictor

to estimate the current spectral band from a neighboring one, and estimate the correlation between these two bands (after

prediction). Then a wavelet transform is applied and a bit-plane representation is used for the resulting wavelet coefficients.

We observe that in typical hyperspectral images, bit-planes of same frequency and significance located in neighboring

spectral bands are correlated. We exploit this correlation by using low-density parity-check (LDPC)-based Slepian–Wolf

codes. The code rates are chosen based on the estimated correlation. We demonstrate that set partitioning of wavelet

coefficients, such as that introduced in the popular SPIHT algorithm, can be combined with our proposed DSC techniques

so that coefficient significance information is sent independently for all spectral bands, while sign and refinement bits can

be coded using DSC. Our proposed scheme is appealing for hardware implementation as it is easy to parallelize and has

modest memory requirements. In addition to these implementation advantages, our scheme can achieve competitive coding

performance. Our results for high-correlation spectral bands from the NASA AVIRIS dataset show, at medium to high

reconstructed qualities, gains of up to 5dB as compared to encoding the spectral bands independently using SPIHT. Our

proposed techniques are also competitive compared to 3D wavelet coding methods, where filtering is applied spatially

within each spectral band, as well as across spectral bands.
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1. Introduction

Hyperspectral image data consists of hundreds of
spectral bands, leading to very large raw data size.
For example, the images captured by AVIRIS
.
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Fig. 1. Mean-square residuals after simple image alignment and

subtraction.
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(Airborne Visible/Infrared Imaging Spectrometer,
operated by NASA) include 224 spectral bands, so
that a single hyperspectral image contains up to
140Mbytes of raw data [2]; therefore, efficient
compression is necessary for practical hyperspectral
imaging applications. In addition, hyperspectral
images are usually captured by satellites that use
embedded processors with limited resources, so
encoding complexity is critical.

In a hyperspectral dataset many spectral bands
are highly correlated. This is shown in Fig. 1, where
image mean-square residuals after simple alignment
are shown for two different views on a site.
Neighboring bands tend to be correlated and the
degree of correlation varies relatively slowly over a
broad range of spectral regions. Thus, exploiting
inter-band correlation using, for example, inter-
band prediction followed by 2D compression [3] or
3D wavelet decompositions [4] has proven to be a
popular approach to compress hyperspectral
images.1

In this paper we propose novel compression
techniques for hyperspectral imagery that requires
low encoding complexity while achieving competi-
tive compression performance. Our proposed tech-
niques use wavelet-based encoding to enable lossy
to lossless, scalable encoding of the spectral bands.
This is combined with distributed source coding
1As will be illustrated later, it is easy to modify an algorithm

that exploits crossband correlation so that it operates indepen-

dently in each frame when correlation is low, as is the case in

some spectral regions in Fig. 1.
(DSC) techniques [5], which are used to exploit the
inter-band correlation. Slepian and Wolf [5] proved
that two correlated sources can be optimally
encoded even if the encoder only has access to the
two sources separately, as long as both encoded
streams are available at the decoder. This counter-
intuitive result permits (in principle) significant
complexity reductions at the encoder, where low
complexity is most needed for hyperspectral ima-
gery, while preserving the encoder’s ability to
optimally compress the data (approaching the same
performance as conventional schemes based on
predictive framework) by exploiting the redundancy
in the correlated sources. Slepian–Wolf coding was
a dormant niche of information theory for nearly
three decades, until the recent development of low-
complexity, capacity-approaching (turbo or low-
density parity-check (LDPC)) channel codes. Now
practical applications seem feasible and codes for
the Slepian–Wolf problem have been proposed by a
number of authors [6–9]. Applications of Slepian–-
Wolf coding include data aggregation in sensor
networks [10,11] and video coding, e.g., [12,13]. In
the video coding application, the correlated sources
are successive video frames. In this paper, correlated
sources will be successive bands of hyperspectral
imagery.

Our proposed scheme, set partitioning in hier-
archical trees with Slepian–Wolf coding (SW-
SPIHT), is an extension of the well-known SPIHT
algorithm [14]. SW-SPIHT first uses an iterative set-
partitioning algorithm to extract bit-planes. Bit-
planes at the same bit position in neighboring bands
are shown to be correlated. Once the first spectral
band, which is encoded independently, is available
to the joint decoder, bit-planes can be extracted
from it and successive bit-planes at corresponding
subbands and significance levels from the second
spectral band can be decoded. All bit-planes other
than those from the first spectral band are encoded
independently using an LDPC-based Slepian–Wolf
code [9,15] and jointly decoded by a sum–product
decoding algorithm. As an example of coding
performance, for the NASA AVIRIS hyperspectral
images data set, at medium to high quality, SW-
SPIHT can achieve similar coding efficiency com-
pared to 3D-SPIHT, and up to 5dB gain compared
to 2D-SPIHT on individual bands. Note that when
all bit-planes are encoded SW-SPIHT can also
provide lossless compression. In many applications
of hyperspectral images preserving the spectral
signature is important (e.g., the spectral signature
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may be used for classification and preserving
classification rates becomes important [4]). SW-
SPIHT provides flexibility in the choice of operating
points, so that the rate can be selected in order to
preserve the spectral signature. A detailed analysis is
presented in Section 5, which demonstrates that
SW-SPIHT can provide a more uniform distortion
profile across bands than 3D wavelet techniques.
This is shown to be advantageous in terms of
preserving the spectral signature.

To the best of our knowledge we are the first to
propose the application of DSC techniques in the
context of hyperspectral imagery [1]. Another key
novelty of our work is that we combine (i) DSC
techniques operating on binary data and (ii) bit-plane
successive refinement encoding based on set partition-
ing, a technique that has been broadly used in
wavelet-based image coding. These two techniques
achieve coding efficiency by exploiting different
characteristics of the input data, namely, spatial and
frequency localization of wavelet coefficient energy
(set partitioning) and correlation across spectral
bands (DSC). We show that by combining these
techniques, so that DSC is applied when it provides
the most gain, a better performance is achieved than
if DSC were applied directly to ‘‘raw’’ bit-planes (i.e.,
complete bit-planes, rather than set-partitioned ones).
More specifically, our proposed codec relies on
standard set-partitioning techniques to signal the
location of ‘‘significant’’ wavelet coefficients, while
using DSC to encode signs and refinement bits.

Note that DSC techniques require the encoder to
have information about the correlation between the
source being encoded and side information avail-
able at the decoder. In our application, the side
information, i.e., neighboring bands, is actually
available at the encoder and thus correlation can be
estimated exactly. However, to estimate this corre-
lation accurately may involve a significant over-
head, in terms of memory and complexity at the
encoder. Thus, another important novelty in our
work is that we take into account the cost involved
in estimating inter-band correlation. We propose
low-cost techniques for correlation estimation and
demonstrate that these result in minimal losses in
compression performance. Our proposed approach
has potential advantages when compared with
competing techniques that exploit crossband corre-
lation, such as inter-band predictive methods and
3D wavelet techniques.

In inter-band prediction approaches [3], a band is
predicted using previously encoded bands and the
resulting prediction residuals are encoded using
standard image coding techniques. Compared to
inter-band prediction approaches, our proposed
DSC approach has the following advantages. First,
inter-band prediction methods need to generate
exact copies of the decoded bands at the encoder, so
encoders need to perform decoding as well, and
decoding complexity could be significant, e.g.,
comparable to encoding complexity. In contrast,
DSC requires only access to correlation statistics
and these statistics can be reliably estimated with
low complexity from uncoded data, as will be
shown. Second, inter-band predictive methods are
inherently serial, since each band is encoded based
on a predictor obtained from previously decoded
bands. We will show that a DSC approach has the
potential to enable parallel encoding once the inter-
band correlations have been estimated. While
correlation estimation requires data exchange across
bands, this process is much simpler than encoding/
decoding. This inherent parallelism can facilitate
hardware implementations and greatly increases the
on-board encoding speed. Third, our proposed
approach facilitates scalability. We apply DSC to
bit-planes extracted from wavelet coefficient data. A
given bit-plane in a given subband depends only on
the same bit-plane in a neighboring spectral band.
Thus, once hyperspectral data have been encoded,
efficient rate scalability can be achieved by decoding
all spectral bands up to the same bit-plane resolu-
tion level. In contrast, ‘‘closed-loop’’ inter-band
prediction makes it difficult to achieve efficient rate
scalability. Note that this problem is analogous to
that of achieving scalability in a video compression
scenario, for which DSC techniques have also been
proposed recently [16,17].

3D wavelet methods, including 3D-SPECK and
3D-SPIHT [4], provide an alternative to predictive
techniques. 3D wavelet methods can also exploit
inter-band correlation by performing filtering across
spectral bands, with the expectation that most of the
signal energy will be concentrated in low-pass
subbands (corresponding to low spatial and ‘‘cross-
band’’ frequencies). A drawback of these methods is
that they lead to complex memory management
issues. A naive implementation would consist of
loading several spectral bands in memory so as to
perform crossband filtering. More sophisticated
approaches are possible, e.g., loading simulta-
neously only subbands corresponding to a given
spatial frequency in various spectral bands, but
these approaches have the drawback of requiring
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numerous iterations of memory read and write. In
contrast, a DSC approach requires storing in
memory a single spectral band at a time, once
correlation statistics are estimated. These lower
memory requirements could potentially lead to
lower power consumption at the encoder, since a
substantial amount of off-chip memory access
would be avoided. This is particularly important
because off-chip memory accesses often consume up
to one order of magnitude higher power than on-
chip data accesses [18].

This paper is organized as follows. We present the
proposed codec in Section 2 and our prediction and
estimation model in Section 3. Implementation and
experimental results are described in Section 4
followed by a discussion in Section 5 and conclu-
sions in Section 6.
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2. Codec architecture

Consider two hyperspectral bands, X and Y, and
denote X̂ the reconstruction of band X at the
decoder, which will be used to produce the side
information to decode Y.2 This side information,
X̂ 0, is generated by linear prediction X̂ 0 ¼ aX̂ þ b,
where a and b will be estimated at the encoder.

Let us assume first that the correlation statistics
are known to both the encoder and the decoder. In
particular, assume that for every set of binary data
to be encoded (e.g., a bit-plane or part of a bit-plane
extracted from Y), we have access to the ‘‘crossover
probabilities’’, i.e., the probabilities that two bits in
corresponding bit-plane positions of X̂ 0 and Y,
respectively, are not equal. These crossover prob-
abilities will tend to be different at each level of
significance (i.e., crossover probability will tend to
increase from MSB to LSB bit-planes). Section 3
will present techniques to efficiently estimate both
crossover probabilities and prediction parameters
from input data; these techniques require processing
a small fraction of pixels in spectral bands X and Y

so that computation overhead is kept low.
In our work we use SPIHT [14], a well-known

wavelet-based image coding algorithm, as a starting
point. Similar ideas could be applied to other image
coding algorithms that achieve successive refine-
2Note that, as will be discussed later, decoding is possible with

many reconstructions of X at the decoder; as coarser versions of

X are used, the reconstruction of Y will be correspondingly

coarser. This facilitates rate scalability, i.e., multiple operating

points can be achieved with a single embedded bitstream.
ment of information by representing data in bit-
planes. At each pass, SPIHT uses a significance test
on wavelet coefficients to partition them into two
sets: the significant set and the insignificant set. Bits
corresponding to significance information are en-
tropy coded and output by the encoder; they allow
the decoder to update the list of coefficients in the
significant set.

A block diagram of our proposed system is shown
in Fig. 2. Band X is encoded and decoded
independently (i.e., without information from any
other band) using a wavelet transform and SPIHT
coding. The reconstructed band X̂ will then be used
to form side information to decode Y. As for band
Y, the first step is again a wavelet transform Tðf ; nÞ
where f is the filter used in the transform and n is the
number of transformation levels. Then SW-SPIHT
successively updates the set of significant wavelet
coefficients of Y at each pass. As shown in Fig. 3, at
the end of each iteration, a sign bit-plane, a
refinement bit-plane and corresponding significance
bits are generated. Sign bits and refinement bits are
LDPC R
E
A
M

Fig. 3. Bit-plane coding in SW-SPIHT.
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encoded using an LDPC-based Slepian–Wolf code
and corresponding syndrome bits are output to the
bitstream. However, significance bits are encoded
independently, i.e., exactly as they would have been
coded in a standard SPIHT approach. In Section 5
we will provide some insights to explain why in our
proposed system coding of bit-planes after set
partitioning tends to outperform raw bit-plane
coding, i.e., without set partitioning.

In what follows, bw, bw
i , and bw

i ðlÞ denote a bit-
plane, the ith bit-plane and the lth bit of the ith bit-
plane of image W , respectively. Also in what
follows, unless otherwise stated, bit-planes are sets
of sign bits and refinement bits as generated after set
partitioning at a given level of significance. This is
illustrated by Fig. 3. The encoder comprises the
following steps (see Fig. 4).

(E-1) Estimation of predictor coefficients a and b
using a subset of information in X and Y.

(E-2) Application of the prediction coefficients to
obtain wavelet transform coefficients of X 0.

(E-3) Computation of wavelet transform of Y.
(E-4) At each iteration, set partitioning of the

wavelet coefficients of Y to extract bit-
planes b

y
i (1pipm).

(E-5) Application of the significance tree of Y to
the wavelet coefficients of X 0 to extract bit-
planes bx

i (1pipm).
(E-6) Computation of p̂i, estimated crossover

probability of the bit-plane pair ðbx
i ; b

y
i Þ

(1pipm) of X 0 and Y respectively.
(E-7) Determination of the Slepian–Wolf coding

rate based on the estimated crossover
probability.

(E-8) Generation of parity-check matrix for b
y
i

(1pipm).
E-3: Wavelet 
Transform 

E-4: Bitplane
Encoding

E-5: Apply 
Significance Tree of Y 
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Fig. 4. Encoding using proposed system.
The compressed bitstream generated for Y includes,
for each coding pass, the corresponding significance
map and the syndromes generated for sign and
refinement bit-planes. Note that in this algorithm it
is not necessary to have access to an encoded
version of X. Also, we will discuss in Section 3 how
prediction coefficients and crossover probabilities
can be estimated with low complexity.

At the decoder, the reconstructed X̂ 0 is trans-
formed using Tðf ; nÞ, i.e., the same wavelet trans-
formation used on Y at the encoder. Then the
significance tree of Y (not X) is used to parse the
wavelet coefficients of X̂ 0 in order to extract the bit-
planes to be used as side information. Note that the
significance tree is sent to the decoder directly (i.e.,
coded in ‘‘intra’’ mode) and thus will be available
without requiring any side information. This is an
important aspect of our algorithm because we have
chosen to partition Y into sets before applying
Slepian–Wolf coding techniques to some of the
data. Thus, in order to produce the ‘‘right’’ side
information for decoding we must apply the same

set partitioning to X̂ 0. The LDPC sum–product
algorithm (SPA) is used to decode the bit-planes of
Y given syndrome bits and side-information bit-
planes from X̂ 0.

When all bit-planes are decoded and coefficients
have been refined to a desired quality level, the
decoder applies the inverse wavelet transform
T�1ðf ; nÞ to reconstruct Ŷ an estimate of Y. Since
Slepian–Wolf coding is used to code these bit-
planes, they can be transmitted with no or negligible
information loss, as long as the correlation model is
correct. Information loss would only occur if some
of the crossover probabilities were underestimated.
Note also that simple quality scalability can be
achieved with our scheme; since any bit-plane in Y is
encoded based on a single bit-plane in X, we can
scale the rate by stopping the bit-plane refinement at
the same level of significance in both X and Y. SW-
SPIHT can also provide lossless compression for
hyperspectral imagery when all bit-planes are
coded, provided that an integer-to-integer wavelet
transform [19] is used. Note that the least significant
bit-planes tend to be uncorrelated from image to
image and also have near maximum entropy; thus,
in lossless applications, these bit-planes can be sent
uncoded.

Crossover probabilities are used by the encoder to
determine the compression rate. This rate deter-
mines which parity-check matrix should be used for
a given bit-plane. In SW-SPIHT, irregular Gallager
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codes are used. A table is built offline that associates
different crossover probabilities with random seeds
for proper parity-check matrices. Once the cross-
over probability between a bit-plane and its
corresponding side-information bit-plane is ob-
tained, a proper parity-check matrix can be selected
at run-time. To make sure the same parity-check
matrix is used at the decoder, the random seed used
by the encoder to generate the parity-check matrix is
sent to the decoder. To match the exact bit-plane
width, column puncturing and splitting is used on
the parity-check matrix.

In summary our decoder comprises the following
steps:

(D-1) Application of prediction coefficients to
obtain X̂ 0 ¼ aX̂ þ b.

(D-2) Transformation of X̂ 0 using the same
wavelet transform used for Y at the
encoder.

(D-3) Application of the significance tree of Y to
the wavelet coefficients of X̂ 0 to extract m

bit-planes bx
i (1pipm).

(D-4) Computation of a priori probability
Prðb

y
i ðjÞ ¼ 0jbx

i ðjÞÞ for bx
i ðjÞ ¼ 0 or 1. De-

coding of Y using SPA.

Note that our proposed technique can be also
extended to support multiple sources of side
information. For example, if we consider encoding
each bit-plane of the current band, n, which we
denote X n, using the corresponding bit-planes in the
two previous bands, n� 1 and n� 2, denoted X n�1

and X n�2, respectively, we could in theory achieve
an encoding rate close to HðX njX n�1X n�2Þ, and this
would be smaller than that of using only single side
information, HðX njX n�iÞ, i ¼ 1; 2. This would
require a minimal increase in complexity at the
encoder (due to computation of additional predic-
tion coefficients and crossover probabilities) but
would lead to an increase in decoder complexity.
We tested this approach for the datasets considered
in this paper, and observed that the gains may not
justify the additional complexity at the decoder
except lossless or near-lossless coding operation.
For most bit-planes, using band n� 1 alone as side
information already leads to significant compre-
ssion gains, and a relative small conditional
entropy, HðX njX n�1Þ. In our observation, the
additional compression gain when using X n�2 as
additional side information, i.e., HðX njX n�1Þ�
HðX njX n�1X n�2Þ, tends to be relatively small. As
an example, Fig. 5 shows HðX njX n�1Þ and
HðX njX n�1X n�2Þ at different bit-planes of typical
spectral bands. As shown in the figure, the reduction
in coding rate achievable when using multiple bands
as side information is only around 0:01 bits/sample
in the more significant bit-planes, which for many
lossy compression applications would not justify the
additional complexity at the decoder. As for the less
significant bit-planes, the reduction in conditional
entropy when using multiple bands as side informa-
tion is larger (up to 0:05 bits/sample), so that in
lossless or near-lossless scenarios multiple side
information may be useful. Given that we are not
focusing specifically in the near-lossless or lossless
case, the rest of this paper describes our design and
experimental results based on a single band used as
side information.

3. Correlation estimation and encoder complexity

comparison

The performance of DSC techniques depends
strongly on the estimation of correlation and
prediction parameters. In our system, we need to
estimate two sets of parameters, namely, (i) the
linear prediction coefficients, a and b, and (ii) the
bit-plane crossover probabilities. In this section, we
demonstrate that accurate estimation of correlation
parameters can be achieved using techniques invol-
ving a limited number of data transfers and
computations. Because this estimation is accurate
and requires low complexity, our proposed DSC
techniques compare favorably with inter-band
predictive approaches, which usually involve a
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substantial amount of data transfer (e.g., if a whole
spectral band is predicted using another spectral
band, then all pixels in the predictor image need to
be fetched in order to generate a prediction residue).
Reduction in the amount of data transfer is
particularly important for applications operating
in embedded environments, such as hyperspectral
imagery compression in satellites. In these applica-
tions the encoder may only have enough internal
memory to accommodate the current spectral band
(since the application programs and operating
systems may have occupied significant portions of
the internal memory). In order to perform predic-
tion, the system would need to fetch the relevant
information from neighboring bands, which is likely
to be stored in external memory. Such external
memory accesses usually lead to substantial power
consumption and delay. For example, while some
sophisticated CPU/DSPs can handle multiple ar-
ithmetic operations in a single cycle, accessing
external memory data may incur latency of
the order of tens of cycles [20]. So it is desirable
to reduce the total amount of data exchanged,
which translates into reduction in overall system
complexity.

In what follows we present low-complexity
techniques in estimating prediction coefficients and
correlation. We also compare the encoder complex-
ity of the proposed system with two competing
techniques, namely those based on inter-band
prediction and 3D wavelets.

3.1. Estimation of predictor coefficients and

correlation

The encoder can determine a rough level of
correlation after it estimates a and b by computing
an estimate of the residual energy after prediction. If
this energy is above a certain threshold, the spectral
band can be coded in intra-mode (i.e., indepen-
dently of other bands); with the coding mode
reverting to DSC mode when the residual energy
goes under the threshold. For example, Band 162 in
Fig. 1 can be coded in intra-mode. Note that in real
data sets, we have considered a majority of bands
can be coded using DSC (e.g., 95% of bands in the
Cuprite data set we use in our experiments).

3.1.1. Estimation of predictor coefficients

As discussed earlier, we use a linear predictor
X 0 ¼ aX þ b to generate side information for Y.
The least-squares technique can be used to calculate
a and b. In order to reduce the complexity (and data
exchange requirements) of this process, we first
down-sample the spectral bands and use only pixels
in the down-sampled bands for estimation. As
shown in Fig. 6, with only 0:32% of pixels, the
resulting predictor can achieve a prediction mean-
square error (MSE) within 0.05 of that of the
optimal predictor (i.e., that computed using all
pixels in X and Y). By using only a small fraction of
data we reduce data exchange and computation in
the least-squares calculation, without compromising
the performance of the predictor (or its impact on
the crossover probability estimation).

The overhead due to downsampling the data is
usually negligible, as downsampling can be accom-
plished by incrementing the access position in data
memory by a constant, and nowadays many CPU/
DSPs have build-in hardware to support this
operation and incur negligible overhead.

3.1.2. Estimation of crossover probability

We now consider estimation of the crossover
probabilities at the encoder. These are needed to
select an appropriate Slepian–Wolf coding rate at
the encoder and to initialize the SPA at the decoder.
To achieve low-cost estimation we propose that
only a small portion of bit-plane data (generated by
set partitioning) be exchanged between spectral
bands. Note that, since set partitioning can be
considered as a scrambling process on the ordering
of coefficients, estimates of crossover probability
after set partitioning tend to be reliable. We use the
upper bound of the 95% statistical confidence
interval as our estimate. Specifically, the upper
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bound of the ð1� oÞ � 100% confidence interval
for a population proportion is given by [21]

p̂i ¼
si

ni

þ zo=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1� piÞ=ni

p

�
si

ni

þ zo=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
si

ni

1�
si

ni

� �
=ni

s
. ð1Þ

Here p̂i is the estimate of the crossover probability
of bit-plane pair ðbx

i ; b
y
i Þ, ni is the number of samples

exchanged in estimating pi, si is the number of
exchanged samples for which crossover occurs, and
zo=2 is a constant that depends on the chosen
confidence interval, e.g., zo=2 ¼ 1:96 when we use a
95% confidence interval. Note that we choose the
upper bound as the estimator to minimize the risk of
decoding failure, at the expense of some encoding
rate penalty. Statistically, with this estimation, we
are ð1� oÞ � 100% confident that the true cross-
over probability pi is within si=ni�

zo=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1� piÞ=ni

p
. Hence the estimation error,

Dpi ¼ p̂i � pi, is bounded by 0pDpip
2zo=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1� piÞ=ni

p
with probability 1� o. In

addition, it can be shown that (refer to the
Appendix for details):

PrðDpio0Þ ¼ o=2,

Pr Dpi42zo=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1� piÞ=ni

p� �
¼ o=2,

which allows us to bound in a systematic way the
probability of decoding error and the probability of
incurring a large encoding rate penalty. Since the
estimation process consists of simply counting of
occurrences of crossovers in small portions of two
bit-planes, the overall estimation overhead is small.

As an example of the accuracy of crossover
probability estimation using this low-complexity
technique, Fig. 7 shows a typical estimation result
using different percentages of data from a bit-plane.
As an example, with 5% of bits exchanged the
crossover probability estimate is within 0.003 of the
actual crossover probability. Since we choose the
compression rate to leave a margin of about 0.05
bits over the Slepian–Wolf limit (as estimated by
Hðp̂iÞ, since we assume the source model as in [9]),
this estimation accuracy is sufficient. In addition, we
also test this technique in our coding performance
experiments (details in Section 4). There we use
around 10% of data in a bit-plane for correlation
estimation and our experimental results show that
the estimates are accurate enough that no decoding
errors occur.
3.2. Encoder complexity comparison

In this section we compare the encoder complex-
ity of our proposed scheme to that of inter-band
prediction and 3D wavelet approaches.
3.2.1. Comparison with inter-band prediction

Inter-band prediction approaches need to gener-
ate exact copies of the decoded bands at the
encoder, so that the encoder needs to perform
decoding as well. To encode the current band Y

using neighboring band X for prediction, the inter-
band encoder requires following steps (Fig. 8):

(I-1) Estimation of predictor coefficients a� and
b� (in this case approximate techniques
could also be used as long as the chosen
parameters are communicated to the deco-
der).

(I-2) Application of the prediction coefficients to
obtain X̂ 0 ¼ a�X̂ þ b�.

(I-3) Computation of Y � X̂ 0 to generate the
residue.

(I-4) Transformation of residue using the wave-
let transform.

(I-5) Set partitioning on the wavelet coefficients
of residue. Output bitstream.

(I-6) Inverse set partitioning.
(I-7) Inverse transformation.
(I-8) Adding X̂ 0 to the output of inverse trans-

formation to generate Ŷ .
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Comparing the encoding steps of our proposed
scheme (Fig. 4) with inter-band prediction approach
(Fig. 8), we can make the following observations:

(i) Both schemes need to compute the wavelet
transform and perform bit-plane encoding
of the current band Y (Steps (E-3) and (E-4)
in Fig. 4, Steps (I-4) and (I-5) in Fig. 8).

(ii) The inter-band prediction approach has to
perform an inverse wavelet transform (I-7).
In our proposed scheme, we need wavelet
coefficients of the linear predictor X 0 for
correlation estimation. However, forward
transformation is not necessary here since
wavelet coefficients of X have been com-
puted during the compression of previous
band, and we can compute wavelet coeffi-
cients of X 0 simply by

TðX 0Þ ¼ TðaX þ bÞ

¼ aTðX Þ þ bTð1Þ, ð2Þ

where T denotes wavelet transformation,
and 1 is a vector of ones. We pre-compute
Tð1Þ and use it for all bands.

(iii) The inter-band prediction approach needs
to perform bit-plane decoding (I-6).3 In our
proposed system we apply the significance
tree of Y to the wavelet coefficients of X 0 to
extract bit-planes (E-5), for crossover prob-
ability estimation. Note that in (E-5) we
merely extract coefficients according to the
significance tree of Y, and no significance
3Miguel et al.[3] has proposed using only full bit-planes to form

the predictor. This could avoid bit-plane decoding at the encoder,

but leads to performance degradation. In the general case when

one wants to truncate at the middle of bit-plane, decoding of the

significance bits is necessary to determine the order of the wavelet

coefficients.
test on partition is required, so this is
similar to (I-6) in terms of complexity. We
would like to emphasize that the complex-
ity of our system can be further reduced by
avoiding bit-plane extraction, since there
are low-complexity alternatives for correla-
tion estimation. For example, our work in
[22] has presented a technique in estimating
crossover probability by first estimating the
probability density function (pdf) of the
wavelet coefficients, and then computing
crossover probabilities analytically. Effi-
cient pdf estimation techniques, such as
those proposed in [23] for generalized
Gaussian distributions, can be used and
no bit-plane extraction will then be re-
quired.

(iv) The inter-band prediction approach re-
quires subtracting the predictor from the
current band to compute the residue (I-3),
and then adding back the predictor to the
reconstructed residue (I-8). Since the sub-
traction/addition has to be performed on
every pixel, the complexity here is of the
order of the amount of data in one band.
On the other hand, our proposed scheme
needs only a small portion of data to
estimate crossover probabilities (E-6). Also
the complexity of generating syndrome (E-
8) is linear (since the parity-check matrix is
sparse), and is of the order of the number of
bit-planes we need to encode, which is
usually small since in most lossy compres-
sion applications only high significance bit-
planes are transmitted.

Based on the above comparisons, we conclude
that our scheme requires lower encoding complexity
than inter-band prediction approaches.

3.2.2. Comparison with 3D wavelet approaches

3D wavelet approaches operate on multiple
spectral bands at the same time. This usually incurs
substantial external memory access overheads in
storing intermediate results. For example, using 3D
wavelet approaches, 3D wavelet coefficients need to
be computed first, followed by set partitioning of
the 3D wavelet coefficients. Since the internal
memory may not be able to accommodate several
bands of 3D wavelet transform coefficients, they
need to be transferred back and forth between
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external and internal memory. In contrast, our
proposed scheme operates on each single spectral
band independently once the inter-band correlation
has been estimated, and wavelet transformation and
bit-plane encoding of a single spectral band can be
completed entirely in internal memory without
incurring external memory access for storing inter-
mediate data. Hence the data access overheads in
our scheme are much smaller than those involved in
a 3D wavelet approach.
4. Implementation and experimental results

We have implemented SW-SPIHT and applied it
to 16 bit hyperspectral images. The SPA we
implemented for SW-SPIHT is based on the
algorithm in Section (III-A) of [24] and similar
notations are also used here. Consider the bipartite
graph derived from the parity-check matrix, where
each column of the matrix corresponds to a variable
node in the graph and each row of the matrix
corresponds to a check node in the graph. Let vl be
a variable node corresponding to the lth bit, and wm

be the check node corresponding to the mth check.
We made two changes to the algorithm in [24] in

order to adapt it to decoding LDPC codes using
side information. For details on these two changes,
and further references on alternative sum–product
decoding algorithms, we refer to the algorithm
proposed in [25], for decoding correlated bit-planes
using this belief propagation principle.

First, the initialization step makes use of a side-
information bit-plane. Let q0

ml be the a posteriori

probability of variable node vl after an assignment
of 0 which satisfies check node wm. The a posteriori
probabilities of variable nodes are initialized as
follows:

ðq0
ml ; q

1
mlÞ ¼ ðp

0; 1� p0Þ; 1plpn,

where n is the total number of check nodes,
p0 ¼ Prðb

y
i ðlÞ ¼ 0jxlÞ, for these check nodes (wm)

which have an edge in the bipartite graph to
variable node vl . xl is a binary scalar from the
side-information bit-plane. Note that Prðb

y
i ðlÞ ¼

0jbx
i ðlÞÞ equals to the crossover probability pi if

bx
i ðlÞa0.
The second change is on the check-node update

step, in which we introduced a new local kernel
function to force the search of the most probable
codeword in a designated bin specified by the
syndrome. Instead, the standard LDPC SPA
searches the most probable codeword in the bin
corresponding to the syndrome with all zero bits.

In our experiments we use data sets originally
comprising 224 spectral bands, each of size 614�
512 pixels. Due to constraints of the implementation
of the codecs, in the experiments we compress 512�
512 pixels in each band, and in total 192 bands
starting from band number 33. Experimental results
use SNR and PSNR for the comparison on
individual frames and multiband SNR (MSNR)
and multiband peak SNR (MPSNR) for the
whole spectrum. These quantities are defined as
follows:

MSE ¼ E½ðx� x̂Þ2�,

SNR ¼ 10 log10
E½x2�

MSE

� �
,

PSNR ¼ 10 log10
ð65535Þ2

MSE

� �
,

where Eð:Þ is the expectation operator over pixels
from an image band. x is the 16-bit value of a source
pixel and x̂ is the 16-bit value of reconstructed pixel
of x. Also,

MSNR ¼ 10 log10
E½x2�

MSE

� �
,

MPSNR ¼ 10 log10
ð65535Þ2

MSE

� �
,

where now Eð:Þ is the expectation operator over
pixels from all spectral bands. The rates for
individual image band is bits per pixel (bpp) and
those for the whole spectrum are in bits per pixel per
band (bpppb).

The outline of this experimental study is given as
follows: first, we provide a comparison in terms of
rate-distortion performance between SW-SPIHT
and predictive 3D-SPIHT. Second, we compare
SW-SPIHT with predictive 2D-SPIHT. In these
experiments, we use different scenes and sites from
the NASA AVIRIS data set including Cuprite
Radiance (SC01), Moffet Field Radiance (SC03)
and Lunar Lake Reflectance (SC02). In each
experiment, all 224 bands are compressed.

In order to describe these alternative codecs and
our implementations of them, we need the following
notations:
1.
 A denotes a general image band.

2.
 Bi denotes the ith image band from the spectrum.



ARTICLE IN PRESS
N.-M. Cheung et al. / Signal Processing ] (]]]]) ]]]–]]] 11
3.
(a
1 is the vector with all 1 elements. The dimension
is set as the number of pixels used by the least-
squares predictor.
4.
 V ðAÞ is the function to vectorize a fixed number
of pixels from image band A.
5.
 For the predictor image bands A and source
image band Bi, aðA;BiÞ is the prediction slope
coefficient and bðA;BiÞ is the prediction intercept
coefficient.
6.
 B0iðAÞ denotes the band after regression using
least-squares prediction, and the design matrix is
given by X ¼ ð1;V ðAÞÞ. Recall that the least-
squares coefficients are given as follows:

ðb; aÞt ¼ X tXð Þ
�1XV Bið Þ,

where t is the transpose operator.

7.
 Regression residuals of the least-squares predic-

tor of the ith frame can be computed as Bi � B0i.

4.1. Rate-distortion comparison with 3D wavelet

approaches

Before presenting the rate-distortion comparison
of SW-SPIHT with a predictive variant of 3D-
SPIHT [4], we briefly describe these codecs and how
we implemented them.

We modify 3D-SPIHT to adjust the bands taking
into account their correlation. Thus, instead of
operating on the original bands, ðB1;B2; . . . ; Þ we
apply the wavelet transform and encoding to a new
set of bands, ðB01;B

0
2; . . . ; Þ, obtained as follows:
1.
 B01 ¼ B1.

2.
 For all i41, B0i ¼ aðBi;B

0
i�1ÞBi þ bðBi;B

0
i�1Þ, and

aðBi;B
0
i�1Þ and bðBi;B

0
i�1Þ are directly encoded

into bitstream.

We use this predictive 3D-SPIHT approach so as to
better ‘‘align’’ all spectral bands, so that wavelet
transform can better exploit the inter-band correla-
tion.
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Fig. 9. Rate-distortion curves of SW-SPIHT and predictive 3D
Similarly, as previously mentioned, in the SW-
SPIHT codec, we take into account the prediction
accuracy and when the estimated value for the
residual MSE is high the standard SPIHT is used,
i.e., the spectral band is coded in intra-mode. Also,
individual bit-planes with an estimated crossover
probability greater than a threshold are intra-coded.
This information (intra-coded bands or bit-planes)
is explicitly conveyed to the decoder.

Fig. 9 provides coding performance comparisons
for the radiance data from the Cuprite and Moffet
Field sites, and the reflectance data from the Lunar
Lake site (log scale is used for the rate to facilitate
the comparison at low bit-rates). To obtain the
results of predictive 3D-SPIHT, we use an imple-
mentation of 3D-SPIHT [27,28] available in the
public domain. It can be seen that SW-SPIHT
performs competitively, with marginal gain over
3D-SPIHT at most rate regions. In addition, SW-
SPIHT has moderate memory requirement for
encoding. It should be noted that the performance
of 3D-SPIHT can be improved by applying entropy
coding (e.g., arithmetic coding) on the output bits.
Similarly, we can improve our SW-SPIHT by
applying entropy coding on the significance bits
information. Also note that results for 3D-SPIHT
without prediction (not included here) are close to
predictive 3D-SPIHT with a marginal loss at low
bit-rates.

It is well known that wavelet set-partitioning-
based codecs can precisely control the bit-rate. In
other words, the SNR can be kept at a required level
when the bit-rate is allowed to change. However,
this only holds for global SNR, and not necessarily
for different parts of the encoded stream. In the case
of 3D-SPIHT, the SNR of individual spectral bands
can actually fluctuate significantly for a given target
global SNR (variations of up to 5 dB are possible,
see Fig. 10 for an example). Another salient feature
of SW-SPIHT is that it allows targeting individual
band SNRs, so that fluctuations across bands can
be kept very small (e.g., within 1 dB). Note that
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these variations are undesirable, as they could
destroy the spectral signatures that are of primary
interest in analysis of hyperspectral imagery. Refer
to Section 5 for an example of how SW-SPIHT is
better at preserving these spectral signatures.

4.2. Rate-distortion comparison with 2D wavelet

approaches

We have also implemented two other 2D wavelet-
based codecs. The first is the standard 2D-SPIHT
codec that operates independently on all spectral
bands, without crossband prediction. The second is
the predictive 2D-SPIHT codec, which operates as
follows:
1.
 The first image band B1 is encoded as is.

2.
 B̂i�1, reconstruction of image band Bi�1, is used

to obtain a predictor for Bi;B
0
i.
3.
 2D-SPIHT codec is applied to Bi � B0i for all
i41; if the residual energy is above a certain
threshold then Bi is enclosed directly.
4.
 Prediction coefficients aðB̂i�1;BiÞ and bðB̂i�1;BiÞ

are sent as overhead.

Note that the predictor used in 2D-SPIHT is the
preceding image band, and this is different from the
predictor used in the predictive 3D-SPIHT codec.

Fig. 11 provides comparisons based on the
radiance data from the Cuprite and Moffet Field
sites, and the reflectance data from the Lunar Lake
site. For Cuprite site, SW-SPIHT achieves marginal
gain at middle range bit-rates, but suffers marginal
loss at high bit-rates. The coding performance of
predictive 2D-SPIHT improves at high bit-rates
thanks to the better quality reconstruction used as
predictor. For Moffet Field and Lunar Lake sites,
SW-SPIHT achieves marginal gain consistently,
Lunar Lake Reflectance (Scene SC02)
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Fig. 10. Inter-band SNR fluctuation under 3D-SPIHT.
demonstrating competitive rate-distortion perfor-
mance.

Fig. 12 compares the performance of SPIHT and
SW-SPIHT on individual image bands. We selected
three pairs of bands from different spectral regions
where the levels of correlations are different as also
shown in Fig. 1. We did not select bands in spectral
regions where the predictor sees large surges on
mean-square residuals and these bands have low
correlation and intra-coding on these bands is used
instead. In Fig. 12, SW-SPIHT outperforms SPIHT
significantly, with up to 5dB gain at some rate
regions. There are some variations on the PSNR
gain due to variations of the energy among these
images and correlations between images in these
pairs.

5. Discussion

In the previous section, we have demonstrated
that SW-SPIHT performs competitively comparing
to other set-partitioning-based codecs. In this
section, we will shed some light on why Slepian–-
Wolf bit-plane coding after set partitioning is better
than Slepian–Wolf coding on raw bit-planes with-
out set partitioning. We will also present results in
this section to illustrate the improved preservation
of spectral signature under SW-SPIHT.

5.1. Slepian– Wolf coding of bit-planes

In our proposed method we have applied
Slepian–Wolf to bit-planes comprising only sign
and refinement bits. To illustrate why this is better
than applying the same coding technique to raw bit-
planes, we compared the rates achieved by Sle-
pian–Wolf coding of set-partitioning output and
that of raw bit-planes. To estimate the rates, we
measured the crossover probabilities between bit-
planes for these two cases and computed their
respective coding rate lower bounds. For the case
with set partitioning, we also take into account the
significance bits when computing the rates. The
same least-squares predictor is used for both cases.

Table 1 compares these two approaches in a case
where the MSE of prediction residuals is 14.87.
Here, b1 and t1 are the Slepian–Wolf compressed
bit-plane width and uncompressed bit-plane width,
respectively, when set partitioning is performed
before encoding. b2 and t2 are the Slepian–Wolf
compressed bit-plane width and uncompressed bit-
plane width, respectively, when the raw bit-planes
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Fig. 11. Rate-distortion curves of SW-SPIHT and predictive 2D-SPIHT: (a) Cuprite; (b) Moffet Field; (c) Lunar Lake.
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Table 1

Set-partitioning gain on Cuprite radiance spectrum

Significance level Set-partitioning outputs Raw bit-planes

b1 t1 Significance r1 b2 t2 r2

15 108 108 1792 0.007 148675 524288 0.567

14 364 364 3476 0.015 174908 786432 0.667

13 620 620 5012 0.021 201142 1048576 0.767

12 880 880 6548 0.028 227376 1310720 0.867

11 1182 1182 8125 0.036 253610 1572864 0.967

10 1744 1744 10410 0.046 279971 1835008 1.068

9 3321 3321 16229 0.075 306660 2097152 1.170

8 8039 8039 32729 0.156 334642 2359296 1.277

7 10412 21126 73164 0.319 367315 2621440 1.401

6 17960 53099 153660 0.655 416002 2883584 1.587

5 40267 120426 285472 1.243 507542 3145728 1.936

4 101193 240667 451763 2.109 678079 3407872 2.587

3 229661 416565 595444 3.148 938715 3670016 3.581

2 425301 632331 683658 4.230 1200859 3932160 4.581
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are encoded directly. To calculate the coding rates
achieved by Slepian–Wolf coding of set-partitioning
outputs, r1, and that of raw bit-planes, r2, we first
calculate the conditional entropy between side-
information bit-planes and the coding bit-planes,
and it is multiplied by the number of bits of the bit-
plane to obtain the Slepian–Wolf lower bound. In
case of set-partitioning outputs, we also add the
number of significance bit, which is uncompressed.
We then divide the results by the number of pixel in
an image band to obtain the rates. Comparing the
rates of these two approaches, the case with set
partitioning outperforms the case without set
partitioning in most bit-planes, with performance
very close at low bit-rates.

Fig. 13(a)–(c) shows the rate comparison plots
from Cuprite, Moffet Field and Lunar Lake sites,
respectively, at varying MSE of predicted residuals.
The gain from set-partitioning process is persistent
in these cases.
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Fig. 13. Set-partitioning gain: (a) Cuprite at 14.87 MSE; (b) Moffet Field at 151.96 MSE; (c) Lunar Lake at 250.54 MSE.
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5.2. Preservation of spectral signature

As mentioned earlier, SW-SPIHT allows encod-
ing with very consistent quality across bands, a
property that cannot be guaranteed with 3D-
SPIHT. To illustrate the potential advantages of
SW-SPIHT in terms of signature preservation, we
have also assessed its performance in a remote
sensing classification application. We tested our
system with Spectral Angle Mapper (SAM) algo-
rithm [26], which is a well-known algorithm
designed to measure the similarity between the
unknown test spectra and the reference spectra.
Similar to the setup in [4], we assume that the
classification results of the original image are
correct, and measure the number of pixels of the
reconstructed image which have the same classifica-
tion results as the original image pixels. Fig. 14
depicts the comparison of classification perfor-
mance. As shown in the figure our proposed
approach outperforms 3D-SPIHT in general. This
is because our approach can keep the variation of
SNR small across bands. As a result, spectral
signatures can be better preserved.
6. Conclusions

In this paper, we have demonstrated a viable
approach for compression of hyperspectral imagery.
A novel scheme called SW-SPIHT is proposed. Our
scheme has low computation and memory require-
ments for encoding, which are critical for hyper-
spectral imagery applications. In addition, encoding
can proceed in parallel once the correlation statistics
are estimated. This enables efficient parallel hard-
ware implementations. Also we have shown that
estimation of correlation statistics requires only
limited data exchange across bands. As for coding
performance, we have compared our scheme with
several existing techniques including 3D-SPIHT,
predictive 2D-SPIHT and SPIHT. Experimental
results show that our scheme can achieve competi-
tive coding efficiency. Furthermore, our scheme can
preserve spectral signatures and obtain good classi-
fication performance.
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Appendix

Here, we justify the two equations in Section
3.1.2. We let the crossover probability estimator be
the upper bound of the ð1� oÞ � 100% confidence
interval for a population proportion, i.e.,

p̂i ¼
si

ni

þ zo=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1� piÞ=ni

p

�
si

ni

þ zo=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
si

ni

1�
si

ni

� �
=ni

s
.
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Let m ¼ zo=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1� piÞ=ni

p
. By the definition of

confidence interval, we have

Pr
si

ni

�mppip
si

ni

þm

� �
¼ 1� o.

Equivalently,

Pr pi �mp
si

ni

ppi þm

� �
¼ 1� o.

By this and the fact that si=ni can be approximated
by a normal density with mean pi and variance
pið1� piÞ=ni, we have

Pr
si

ni

opi �m

� �
¼ o=2,

Pr
si

ni

þm� pio0

� �
¼ o=2,

Pr p̂i � pio0
� �

¼ o=2

and

Pr
si

ni

4pi þm

� �
¼ o=2,

Pr
si

ni

þm� pi42m

� �
¼ o=2,

Pr p̂i � pi42m
� �

¼ o=2.

From these equations, the probability of decod-
ing error and probability of large encoding rate
penalty can be estimated.
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